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O(1) packet scheduling at high data rates
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Why do we care about packet scheduling ?
» arbitrate access to common resources;
» provide service guarantees and resource isolation;

» overprovisioning is not always possible/desirable, today’s
CPUs are too fast;

» links are very fast too, so schedulers must keep up with
high data rates and number of flows.
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Problem setting and definitions

Many definitions for Service Guarantees. We consider the
deviations of our actual scheduler (Packet System) from the
service offered by an Ideal Fluid System.
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» each flow has a weight ®;, and should receive a fraction
o,/ Zj ®; of the total link capacity at any time;
» the Fluid System serves all flows simultaneously;

» the Packet System serves one packet at a time, is non
preemptable, online, and possibly work-conserving;
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Service Guarantees

Because of its nature, a Packet System cannot guarantee
perfect sharing at all times. The magnitude of deviations is an
indicator of the quality of the scheduler.

» various quality metrics including

B-WFI = max [0, W(At) — Wi(At)]
At

> in the best possible Packet System (e.g. WF2Q),
B-WFI = 1 MSS (Optimal B-WFI);

» tradeoff between guarantees and complexity:
Xu-Lipton 2002: optimal B-WFI requires Q(log N) time;
Valente 2004: an O(log N) version of WF3Q;

» breaking the O(log N) barrier implies relaxed guarantees.
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State of the art of fast schedulers

» Priority-based schedulers are fast but give no guarantees
except to the flow with highest priority;

» Round Robin schedulers have O(1) time but poor
guarantees (O(N) B-WFI);

» some timestamp-based schedulers such as WF2Q give
optimal service guarantees in O(log N) time;

» approximated variants of timestamp-based schedulers
(KPS - Karsten 2006; GFQ - Stephens,Bennet,Zhang
1999) have near-optimal guarantees and O(1) time
complexity (but several times slower than RR).
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Our result

QFQ is a practical O(1) approximated timestamp-based
scheduler with

» near-optimal guarantees (B-WFI ~5 MSS);

» truly constant complexity, independent of number of flows
and configuration parameters;

» uses very simple CPU instructions;

» 110 ns/pkt on common workstations, compared to 55 ns
for DRR and 400 ns for KPS.

Fair Queueing in software (or inexpensive hardware) is feasible
at GBit/s rates.
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QFQ overview

QFQ operates as other timestamp-based schedulers:
» track the behaviour of a Fluid System;
» for each packet, compute Virtual Start and Finish times;
» schedule in Finish time order among packets that are i)
available and ii) already started in the Fluid Server
(Eligible)
The sorting steps imply a O(logN) complexity.
» use approximated sorting to reduce complexity;
» use careful approximations to preserve guarantees;

» use extra data structures to reduce constants.
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QFQ data structures

N

i

enqueue()

3

OH

P — dequeue()

R

» Approximated sorting based on rounded timestamps and
splitting flows into a constant number of groups;

» flow i belongs to group [log, L;/®;];
» rounding intervals grow exponentially.
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QFQ data structures — sorting
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» Use approximate timestamps for sorting, but keep exact
values internally;

» within each group, there is only a finite number of slots,
so we can use bucket sort;

» for selection purposes, use same (F — S) for all flows in a

group, so the order on F and S is the same.
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QFQ data structures — selection (1)

The goal is to select the eligible flow with smallest F.
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» GFQ needs to iterate on groups to find the candidate,
hence O(G) complexity;

» QFQ organizes groups into four Sets, such that group
index reflects the Finish time order;

» one of the groups contains all interesting candidates, so a

single FFS instruction replaces the scan.
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QFQ data structures — selection (2)
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» partitioning is done on Eligibility and Readyness (groups
that violate the ordering are put in a different set);
» on packet arrivals, finding the right set for a group

requires only one FFS instruction;

» on packet departure, moving multiple groups between sets
is also done without loops, using MASK/AND/OR ops.

A

A

dequeue()
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QFQ - enqueue

A

— —— enqueue()
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]« dequeue()

Nothing to do if flow is already backlogged. Otherwise:
» bucket-insert the flow in its group;
» update group state;
» put the group in the correct set.
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QFQ - dequeue

A

— —— enqueue()

K

]« dequeue()

locate first bit set in ER;

serve the head flow in the corresponding group;

possibly put the flow in a new slot;

update group state;

move groups between sets, due to changes in Virtual time
and Readiness.

vVvyVvVvyypy
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Service guarantees

Service guarantees for QFQ:
B-WFI¥ = 3¢%0; + 2¢"L

(remember that L*/®, < o; < 2LK/®))

AL 1
T-WFI* = (3 [@W +2L> E

(R is the link’s rate).
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Experimental results

Measurements taken by running the kernel code in userspace:

Controller

Packet
generator

Scheduler

» generate traffic for a programmable number of flows,
packet size and weight distribution;
» carefully control the operating point of the scheduler;

./test
dn_rr

./test
dn_qfq
./test
dn_kps

-alg rr -gmin 4n -qmax 30n -flowsets 1::512,8::64

n 5004288 10000000 time O.
-alg qfq -qmin 4n -gmax 30n
n 5004288 10000000 time O.
-alg kps -qmin 4n -gmax 30n
n 5004288 10000000 time 2.

683968 136.676
-flowsets 1::512,8::64
974142 194 .661
-flowsets 1::512,8::64
855963 570.703
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Performance comparison — scalability

enqueue() + dequeue() time, ns
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Mixed workloads

Measurement results in ns for an enqueue()/dequeue() pair
and packet generation. Standard deviations are within 3% of
the average.

Flows || NONE | FIFO | DRR | QFQ | KPS [ WF2Q+
1 62| 83| 105| 221 450 210
8 60| 80| 102 | 163 | 543 344
64 59| 80| 100 | 158 | 540 526
512 64| 85| 110 | 175| 560 740
4k 74| 102 | 157 | 197 | 590 1110
32k 62| 117 | 147 | 222 601 1690
1:32k,2:4k,4:2k,8:1k,128:16,1k:1 flows
mx || 92| 119| 160 | 255 | 612| 1715
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Conclusions

v

QFQ is a Timestamp-based scheduler with near optimal
service guarantees and true O(1) run time;

110 ns/pkt, only 2 times slower than DRR, and 4 times
faster than comparable algorithms;

already available as part of dummynet, together with
several other schedulers:
http://info.iet.unipi.it/~1luigi/dummynet/
technical report and code at
http://info.iet.unipi.it/~1luigi/qfq/

soon available as a Click module.
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Future work

Future work:

» detailed performance analysis on low-end hardware
(OpenWRT platforms);

» identify performance bottlenecks, memory access
patterns;

» investigate feasibility of hardware implementations
(including NETFPGA).
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