3dfy

VOODOO? GRAPHICS
H1GH PERFORMANCE
GRAPHICS ENGINE
FOR
3D GAME ACCELERATION

Revison 1.16
Decemberl, 1999
Copyright & 1996-1999 3Dfx Interactive, Inc. All Rights Reserved

3Dfx Interactive, Inc.
4435 Fortran Drive
San Jose, CA 95134
Phone: (408) 935-4400
Fax: (408) 262-8602
www.3dfx.com

Proprietary Information

B \Voodoo® Graphics
\J
3dfxX

Copyright Notice:

[English translations from legalese in brackets]

©1996-1999, 3Dfx Interactive, Inc. All rights reserved

This document may bereproduced in written, electronic or any other form of expression only in itsentirety.
[If you want to give someone a copy, you are hereby bound to give him or her a complete copy.]

This document may not be reproduced in any manner whatsoever for profit.

[If you want to copy this document, you must not charge for the copies other than a modest amount sufficient to
cover the cost of the copy.]

No Warranty

THESE SPECIFICATIONS ARE PROVIDED BY 3DFX "ASIS' WITHOUT ANY REPRESENTATION
OR WARRANTY, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
FITNESSFOR A PARTICULAR PURPOSE, NONINFRINGEMENT OF THIRD-PARTY
INTELLECTUAL PROPERTY RIGHTS, OR ARISING FROM THE COURSE OF DEALING BETWEEN
THE PARTIES OR USAGE OF TRADE. IN NO EVENT SHALL 3DFX BE LIABLE FOR ANY
DAMAGESWHATSOEVER INCLUDING, WITHOUT LIMITATION, DIRECT OR INDIRECT
DAMAGES, DAMAGESFOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE THE SPECIFICATIONS,
EVEN IF 3DFX HASBEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

[You're getting it for free. We believe the information provided to be accurate. Beyond that, you're on your own.]

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 2 Updated 12/1/99

B 7) Voodoo® Graphics
)

COPYRIGHT NOTICE: ... ittt ettt ettt ettt e e e e e e ettt e e e e e e e s eeabbaeeeeeeesaaabbbeeeeaeesssassbraeesaesssanssrreeess 2
INO VVARRANTY L.tttttttuuuttuntittutusanuusaaaanaanaaaa_._________ssssanssssnsnnsnsnnssnsnssssssssssnssnssssssnsssnnsssssnssnnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnn 2
1. GENERAL DESCRIPTION ..ottt ettt e e s ettt aee e e e e e e s ettt aaeeeeeeesseanbbaeeesaeesasssbbreeesaeessnssraeeess 7
2. PERFORMANCE.... .ottt ettt e e e e e e et e e e e e e s e e bbb e e e e e e e e s s aabbbeeeeaeessssabbaeeeaesssassrreeess 9
3. ARCHITECTURAL AND FUNCTIONAL OVERVIEW. ...ttt 11
3.1 SYSTEM LEVEL DIAGRAMS.... . e e e nnnnnnnnnnnnnn 11
3.2 ARCHITECTURAL OVERVIEWceiiiiiiiiiiiieiieeeeeeeeeeeeeeesessessessssssssssssssssssasssssssssssssssssssssssssssssssssssnssssssssssssssnnnns 14
3.3 FUNCTIONAL OVERVIEW ...euuttttuututsssnnns 15
4., VOODOO2 GRAPHICS ADDRESS SPACE......ueeii ittt ettt ettrree e e e e b re e e e e e an 20
5. MEMORY MAPPED REGISTER SET ...ttt ettt ettt e e e s s eattaee e e e e e s s nanbbaeeeseseesnnnnes 21
51 SN LS R I = 29
52 INTROCTRL REGISTERuututttttuttsssnnns 30
53 VERTEX AND FVERTEX REGISTERS.....ccettiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeseesessessassnnnes 31
54 STARTR, STARTG, STARTB, STARTA, FSTARTR, FSTARTG, FSTARTB, AND FSTARTA REGISTERS........ccccceeunnnn. 31
55 STARTZ AND FSTARTZ REGISTERSuuuiiiiiiiiieeeaeaeaseeeeaeaeaaas e s s e s s s s s s s e nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 32
5.6 STARTS, STARTT, FSTARTS, AND FSTARTT REGISTERS. .. .uuuiiitieiiiaaiaeeeeeseseesee e s s s nan 32
57 STARTW AND FSTARTW REGISTERS.....uuuuuiiiiiaiaiiaaeseeasaaeaaae s e s e e s s s s e s s e nn s nnnnnnnnnnnnnnnnnnnn 33
5.8 DRDX, DGDX, DBDX, DADX, FDRDX, FDGDX, FDBDX, AND FDADX REGISTERS......ccevttereeeerrereeeereeeeeeennes 33
59 DZDX AND FDZDX REGISTERS. ... uuuuttttttuttssmmne 33
510 DSDX, DTDX, FDSDX, AND FDTDX REGISTERS......ciiiiiiiiiiiieeiiiiaeieeeasa e e e s ee e e s e e se e s s s e s e e s e s s e s s nnann 34
511 DWDX AND FDWDX REGISTERS .. .uiiiiiiiiiiiiiieeee e e ee e e e e s e e e s e e e s e e s e e s e s s s e s e s s s s s s s e e e e s e e s s s e e s e e e s nnnnnnnnnnnn 34
512 DRDY, bGDY, DBDY, DADY, FDRDY, FDGDY, FDBDY, AND FDADY REGISTERS.....ccccceteiiiiiiiieiaieeeeeennnns 34
5.13 DZDY AND FDZDY REGISTERS. ... iiiiiiiiiiiiiiiie i et e e et e e e e e e e e e e e e e s e s e e e e e s e e e e e e s e s e s e s e e s e e s e e s e e s e s e e s e s e s e e e nnnnnnnnnnnnnnn 35
514 DSDY, DTDY, FDSDY, AND FDTDY REGISTERS.....cciiiiiiiiiiiiiieiieieeee e e e ee e e e s e e naan 35
5.15 DWDY AND FDWDY REGISTERSuiiiiiiiiiiiiiiiieieieeeee e e e e e e e e e s s e e e s s e s s e e s e s s s e s s s e s e e e e s e e s e e s e s e s nnnnnnnnnnnnn 35
516 TRIANGLECMD AND FTRIANGLECMD REGISTERSuciiiiiiiieeiieieieeeeeee e e s e e e e s e s 36
5.17 FBZCOLORPATH REGISTER ...uiiiiiiiiiii ettt ettt e et s e e e e s e e e e e nnnnn 36
LT S T = 1] \Y/ @ = = £ = 41
LT S T N = N L]] = =TS 1 = 43

5.19. 1 AIPNA TUNCHION ...ttt ettt ettt e bt e bt e e e bt e e sabe e smbe e eabe e e abee e snbeesnbeasnbeeentes 44

5.19.2 AIPNA BIENAINGueeiiiii ettt ettt ettt et e b et sa b et e e et e e e abe e e eabe e anbeeebeeenres 45
LI O T = = Y L0) =l = T 1 = = 46

520.1 Depth-DUFfering FUNCLION.coiiiiiiii ettt st e sb e e sae e e sabe e s beeenees 50
LI A I = =1/) =l = T 1 = = 50

5.21.1 Linear Frame BUfEr WEITES........ooi ittt ettt e e e e e s e e aab b e e e e e e e e s ennnbaeeeas 53

5.21.2 Linear Frame BUfEr REAGS.........oocciriiee ettt e e e e e s et e e e e e e e e s enanbaeeeas 56
522 CLIPLEFTRIGHT AND CLIPLOWYHIGHY REGISTERSiiiiiiiiiiiicice e 57
LI T 10 = D = S = 58
LI N o T I Y D = I = 58
525 SWAPBUFFERCMD REGISTERuciiiiiiiiiiiiii i e ee et e e e e e e et e e s e e e s e s e s e e s e e e e e nnnan 59
LI I = @O0 I 0] 2 =TT I = = 59
LI A N O 0 T) B = 1 = = 60
5.28 CHROMAKEY REGISTERiiiiiiiiiii ittt ettt ettt e et e e e e e s e nnannnnnn 60
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 3 Updated 12/1/99

B . Voodoo® Graphics
Y
3dfx

529 CHROMARANGE REGISTERiiiiiiiiiiiiiieee ettt et e e e e e e e e e e e e e e e nnnnnnn 60
5,30 USERINTRCMD REGISTERiiiiiiiiiiiiece ettt ettt e e s e e e e nnnnn 61
LIRS A1 1= = T =] I = 62
LIRS Y 0 I O =TS 1 = = 62
LTRSS T 0 I 3 I =TT 1 = = 62
5.34 FBITRIANGLESOUT REGISTER. ... iiiiiiiiiiiiiii e s e e s e e e e s e e s e e s e e e e e e e e e e e e e s e e e e nnnnnnnnnn 62
5.35 FBIPIXELSIN REGISTER.iiiiiiiiiii i e ettt ettt e nnnnnnnnnnnn 63
5.36 FBICHROMARAIL REGISTER ...uiiiiiiiiiiiee e e e et e ettt et e nnnnnnnnn 63
LT A = = 74 = U Lo N T = £ = 63
5.38 FBIAFUNCRFAIL REGISTER ...uiiiiiiiiie i i e ettt e e e e e e e s e nnnnnnnnnn 63
5.39 FBIPIXELSOUT REGISTERiiiiiiiiiiii e et e e et e e e e s e e e e s e e e e e e e e e e e e e e nnnnnnnnn 63
540 FBISWAPHISTORY REGISTER.......ciiiiiiiiiiiiiiiie e e e ee e et e e e e e e e e e e e e e e e s e e e e e e s s e e e e e e e e e s e e e e e e e e s e e e e e e e e e e s e s n s nnnnnnnnnnnnn 64
LT I = @ e 7Y =T = =] 1 = T 64
LT Y o 7X@ = =] 1 = 65
543 HVRETRACE REGISTER ... iiiiiiiiiii it e ettt ettt ettt e s e e s e e e e s e s s e e nnnnnnnnnnnnnnnnnnnnnnnnn 65
L7 A N T 1 = = 66
LT LS TN A2 T = £ I = = 66
LT L =N @ T o 2T e T 1 = 66
5.47 VIDEODIMENSIONS REGISTERciiiiiiiiiieiiiieeieea e e e e e e e e e e e s e s e e e s s e s s s e e s s e e e s s e s e s e s e e e s s s e s s s e s e s aaaasaaaaa e nnnnnnnnnnnnnnnnnnnnnnnn 66
548 MAXRGBDELTA REGISTERciiiiiiiiiii i ettt e e ettt e s e s e e e e e e e s e e s e e nnnnnnnnnnnnnnnnnnnnn 66
5,49 HBORDER REGISTERciiiiiiiiiiiii e e e et ettt ettt ettt et et et s e e e e e e e s e nnnnnnnnnnnn 67
550 VBORDER REGISTERiiiiiiiiiiiiiii e e et ettt ettt et e e e e s e nnnnnnnnn 67
551 BORDERCOLOR REGISTERiiiiiiiiiiii e i e it ee et e e e e e e e e e e e e e e e e e s e s e e e s s e s e s e e s s e e e e e e s e e e e e e e e e s e e e e e e nnnnnnnnnnnn 67
552 FBIINITO REGISTER.......ciiiiiiiiii ettt ettt et e et e nnnnnnnnnnnnn 67
LTS T = = Y1 N IO] = 68
LT =Y LN 2] o = 69
LT Lo T = =1 LN G 3 =] 1 = 70
LT oL = =1 LN I] 1 = 70
LT A = =1 LN T =] 1 = 71
LTS T = =1 LN I T =] 1 = 72
LT oL I = = 1 N =] 1 = 73
5,60 CMDFIFOBASEADDR REGISTERciiiiiiiiiiiiiieeeee e e e e et e e e e et e e e e s e e e e e e e e e e e nnnan 74
LT Y o o] = LU Y = = 74
5.62 CMDFIFORDPTR REGISTER.....iiiiiiiiiiiiii e et e ettt ettt e e e e e e e e e e e e e e e e e s e s nnnnnnnnnnnn 74
5.63 CMDFIFOAMIN REGISTER ...uiiiiiiiiiii e e e et et et e et e e e e e e e e e e e e e s e nnnnnnnnnn 74
LTG0 Y o TN D = T 1 = 74
5.65 CMDFIFODEPTH REGISTERiiiiiiiiiii i e i e e e e e ee e e e e et e e e e e s e s e e e e e e e e s e s e s e e e e e e e e e s e e e e e e e e e e e e e e e e e e nnnnnnnnnnnn 74
I I Y o T 0] [=S =] o = 75
LT A & U D 7 1) =1 = 75
L TGS T 07X 0y N =17 1 1 = T 75
5.69 SSETUPMODE REGISTERiiiiiiiiiiiii i e e e ee et e e e e e e e s e s e e e s e e e e s e e s e e e e e e e e s e e e e e e e e e e e e e e nnnnnnnnnn 76
570 TRIANGLE SETUP VERTEX REGISTERS.iiiiiiiiiiiiiieie e e ee e eeeee e e e e e e e s e e s e s s s e e s s e e e s e e s e s e e e s e e e e nnnnnn 76
LT T ST B = I = 77
LT S\ VAV = 3= 1 = 7
B.73 SS/WO REGISTER........ccccttteeeteeeeiieittteeeeeeessaeittraeesaesssaaisbraeeesaeesaaabbseessaessaasbbaeeesaesssasssbsaeesaesssaassraneesasessnnsees 78
B.74 ST/WO REGISTERcoiicttteeeteeeeiiettteeeeeeessaatttaeessesesaaassaeeesasessassbbseeesaessaassbaeessaesssasssbsaessaeessasssbaneesasessnnsses 78
LT 4 T\ Y =1 11 = S 78
LT S AV Y T L0 =T 1 = 78
LT A A =\ VAV Y L =T 1 = 78
B.78 SS/WTMUL REGISTERutttiiiieeiiiiittteeeeee et iiaittteeeeeessssaitttaeeesasessaistraseesaessaassbbseeesaassiasssbassssaesssaassrasessesessnnses 78
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 4 Updated 12/1/99

B 7) Voodoo® Graphics
)

B.79 ST/WTMUL REGISTER....utttiiiiieiiiiititeee e e e et eettteeee e e e e s s etbbaeeeseeessaabbaeeeaaesssasbbaeeesaeessasssbsaessaesssassbbaneesasessnnsses 78
Lo O TN I = N] I = = 78
Lt 3 A = =] I = = T 79
LS Y2 = = V=] 1 = 79
LS S T U = =] 1 = 79
5,84 SDRAWTRICMD REGISTER.....ciiiiiiiiiiiii e i e ei e e et e e e e e e e e e e e e e e e s e e e s e e e e e e e s s e s e e nnnnnnnnnnnn 79
5.85 SBEGINTRICMD REGISTER......ciiiiiiiiiiiie ettt ettt e nnnnnnn 79
5.86 TEXTUREMODE REGISTER.......ciiiiiiiiiiiiiiei e e e e e e e ee e e e e e e e e e e e e e e e e e e s e e e e e e e s s e nnnnnnnnnnnn 79
LTS A O 0 = = 82
LT e S T 0 N [=T 1 = 84
589 TEXBASEADDR, TEXBASEADDRIL, TEXBASEADDR2, AND TEXBASEADDR38 REGISTERS.....cccceieiieeiinnnnns 85
5.90 TREXINITO REGISTER....ciiiiiiiiiiiii e e e et e et e ettt e s e e e e e e e e e e e s e e e e e e e e e e e e e nnnnnnnnnnnnnnnnnnnnnnn 85
LIRS A 1 BT 0 =TT o1 = 85
5.92 NCCTABLEO AND NCCTABLEL/PALETTE REGISTERSuuttiiiiieeiiiiittiteeeeeeesisittreeeesasssisssssseessesssssssssssessessssannes 85

LN 2 R N (G F-1 o] [OO PRSPPI 85

B.92.2 B-Bit PAlEE......uuveiiiiee ittt e e e e e e e e e e e s e b b — e e e e e e e e e b braeraaeeeaaarrraeeas 86
5.93 BLTCOMMAND REGISTERuiiiiiiiiiiiiiii e e e e e ee e e ee e e e e e e e e e e e s e e e e s e e s s e e e s e e e s e e e e e s s e e e s e e e e e e s e e e e e nnnnnnnnnnnnnnnnn 87
LTS = Ty 1S 0t = N = AN] 91
5.95 BLTDSTBASEADDRiiiiiiiie ettt e aaaaaaaaeaaasaaaaaaaaeaaaeannnnnnnn 91
LTS T = T 1 G 20 = =5 92
LT A = T 1S = O T 0 Y Y N (= 93
5.98 BLTDSTCHROMARANGE.......ciiiiiieiiiieiee s e s e s e e e e e s nnnnnnnnnnnnnnnnnnnnn o)
LTSS I = T O T = QN N I = 4 = 2 A
5.100 BLTSRCXY i 95
5101 BLT D ST XY 95
5.102 BLT S ZE . i 96
5.103 BLTROP ... 97
5.104 BLTCOLOR. ... i, 98
5.105 BLT D AT A 99
6. PCl CONFIGURATION REGISTER SET .ooviiiiiiiiiititiiee ettt eettteee e e s ettt e e e e e e e s naabbaeeeaaeessnnnnes 102
6.1 VENDOR D REGISTER...uttttitiiiiiitttititiesesiiititeeesaessssatteeeesaeessaasbeeeeeaeessaasbaeeeeaeessasbbeeeeeaeessassbeneeeaeessnnnnes 102
6.2 DEVICE D REGISTER......cutttttttiei i ittt ittt e e s sttt et e e s e s s bt tae e e e e e e s saaa b e e e e e e e s s aaaa b ba e e e e e e s sansbbaeeeaeeesassbaneeeaaenan 102
6.3 COMMAND REGISTER. ... ittt e e e e e e e s e e e e e e e e e e s e e e e nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 102
6.4 Y 1N LU L =TT 1 = 103
6.5 REVISION_ID REGISTER.....uuttttitiiiiiiittitttttesssistttseessasssssstsaeesaaessassssaaeeaaaessaasstbeeesaesssaassbaaeeeaeessanssssnensanens 103
6.6 CLASS CODE REGISTER ..ttttiiiiiiiittiitetiee st siitiseeesasssssustsseeaaaessasstaeeaeaeessaasbaeeeeaeessasbebaeeeaeessassbbneesaeessannnes 104
6.7 CACHE _LINE_SIZE REGISTER.....icctttttttteetiiiiuttttettasssissustseeesasessassssseeesassssasssseessassssassssseessessssnssssssensassssnnnnns 104
6.8 LATENCY _TIMER REGISTER .. 1ttttiiiiiiittitttttesssissttteesasssssssssaessaasssasssssasesaessssssssseeesassssanssssneesessssansssnensansns 104
6.9 HEADER _TYPE REGISTERttttttiiiiiiiittittette s st ssttteees s e s s s st ttae e e e e e s s ass b aaee e e e e s s aaabbaeesaaessassbaneeeaeeesasnbaneeeaeenns 104
[T0 O = 1 S I =171 1 = = 104
6.11 MEMBASEADDR REGISTER.......ciiiiiiiiiiiiieee e et et e e e e e s e e e e e s e nnnnnnnnnn 104
6.12 INTERRUPT _LINE REGISTER.......iictttttttieeiiiiittttettasessssuttsseesasessassbseeeaaesssaasbaeeaeaeessassbaaeeeaeessassbseenaaeessannnes 105
6.13 INTERRUPT _PIN REGISTER......cciiiitttttttteeisiiitttteessasssssattteeeaaeessassbaeeeaaeessaasbaeeeeaeessassbbeaeeeaeesssnssbbeenaaeessnnnes 105
B.14 IMIN_GNT REGISTER ...uuutttiiiieiiiiiittittettas e s sssittteessaessssasteeeesaeessaa st eeeeaaeessaasbeeeeeaeessassbseeeaaeessassbeeeeaaeessnnnes 105
B.15 IMAX _LAT REGISTER ...uuutttiitieeiiiiitttttettes st ssitstseeesaeesssastseeeaaaessasstaeeeaaaessaasbeeeeeaeessassbeeeeeaeessassbseensaeessnnnnes 105
B6.16 INITENABLE REGISTER....ciiiiiiiiiii it i ettt ettt ettt e nnnnnnnnnnnnnn 106
6.17 BUSSNOOPO AND BUSSNOOPL REGISTERSuiiiiiiiiiiiieeiiiieeiaee e e ee s s e e e e e s s e e s e sa s s s s e s e s s s e s e s e s s s e s s nnnnnnnnnn 107
(ST S T 07 = € N WU S =€ I = 107
6.19 CFGSCRATCH REGISTER ...uiiiiiiiiii e e e i e e ettt e nnnnnnnnnnnn 107
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 5 Updated 12/1/99

Voodoo? Graphics

3dfy

6.20 SIPROCESSREGISTERccvvtuiiiiiiiiiiiiiiiiisieeseesaiiss s e s s s essssasneeanes
7. 3D COMMAND DESCRIPTIONS. ...

7.1 INOP COMMANDcuutuuitieeeeeeeeeeerereereereererrersererer—r——————————————————.
7.2 TRIANGLE COMMANDccoeiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee,
7.3 FASTFILL COMMANDcvvviiiiiiiieieeeeeeereeeeeseseseesrsssesseeeeesessee.
7.4 SWAPBUFFER COMMAND ...
7.5 USERINTERRUPT COMMANDccvvviiiiiiiieireeeeeeeeeeeeeeeeeeeeeennes

8. 2D COMMAND DESCRIPTIONS........cociiiieiiienrec e

8.1 SCREEN-TO-SCREEN BITBLT COMMAND......cciiiiiiiiiiicae
8.2 CPU-TO-SCREEN BITBLT COMMANDciiiiiiiiiieeeeeeee
8.3 BITBLT RECTANGLE FILL COMMAND.......cvvvvvevereeereereeeeeeeeeeneennes
8.4 SGRAM FILL COMMANDuuiiiiiiiiiieeeeeeeeeeee e
85 REGISTER USE BY COMMANDccvvverierirreereeeerereresseseeeesessseseeenes
8.6 COMMAND USE BY REGISTER.....uciiiiiiiiiiiiicciecee e

9. LINEAR FRAME BUFFER ACCESS.........ccccooiiiiiiiieiee

9.1 LINEAR FRAME BUFFER WRITES......ciivttiiiiieeeeeeetiin e eeeanan
9.2 LINEAR FRAME BUFFER READS.......cciiitiiiiiiceeceeeti v

10. TEXTURE MEMORY ACCESS.......cccccoieiiiiinee e

11. CMDFIFO OPERATION.....ciiiiiiiiieirecrree e

11.1 LEGACY ADDRESSMAPuuuuut s
11.2 CMDFIFO ADDRESSIMAP......uuuus s
11.3 COMMAND TRANSPORTuuuuuuunns
11.31 CMDFIFO Managementccceeeerieeeennieeeeniieeeeeiieens
11.3.2 CMDFIFO Data........cccovveeeieeeiiiiiiieeeeee et
11.3.3 CMDFIFO Packet TYpe 0......ccoceeiieieiiiieiiee e
11.34 CMDFIFO Packet TYpe L......coocieiiiiieiiieniee e
11.35 CMDFIFO Packet TYPE 2......ccvcveiinieieiieieiiee e
11.36 CMDFIFO Packet TYPe 3......coiieiiieeeriieeniee e
11.37 CMDFIFO Packet TYPe 4......ccoceviieiiiiieiiee e
11.3.8 CMDFIFO Packet TYpe5......cooiiiiieieiii e

12. PROGRAMMING CAVEATS. ...

121 /O ACCESSEScoiccuttteieeeeeeieitireee e e e e e seitttreee s e e e s ssnsbaeeeeaeesannnnes
12.2 MEMORY ACCESSES.....uuuuuuuuuuunnns
12.3 DETERMINING CV G IDLE CONDITIONuuuuuumnnnnnnnnnnnnnnnnnnnnnnnnnns
124 TRIANGLE SUBPIXEL CORRECTIONuuuuuuununnnnnnnnnnnnnnnnnnnnnnnnnnns

12.5 LOADING THE INTERNAL COLOR LOOKUP TABLE

14. REVISION HISTORY ...t

13, VIDEO TIMINGoooiiiiiiiite e

Copyright O 1996-1998 3Dfx Interactive, Inc.
Proprietary

Revision 1.16
Updated 12/1/99

B Voodoo® Graphics
\)

1. General Description

I mportant Note: Throughout this document, features, descriptions, and specifications which are marked with
the* symbol are not present in the Alpha version of the Voodoo2 Graphics chipset.

Voodoo2 Graphics from 3Dfx Interactive is a second generation 3D graphics accelerator specifically designed to
address the reguirements of the game console, location-based entertainment, arcade, and PC game enthusiast
markets. Optimized for real-time texture-mapped 3D applications, Voodoo2 Graphics provides acceleration for
advanced 3D features including true-perspective texture mapping with trilinear mipmapping and lighting, detail
and projected texture mapping, texture and polygonal anti-aliasing, and high precision sub-pixel correction.
Voodoo2 Graphics also supports general purpose 3D pixel processing functions including polygonal-based Gouraud
shading, depth-buffering, alpha blending, and dithering. In addition, Voodoo2 Graphics includes an optimized 2D
BitBLT engineto accelerate traditional Windowsa GDI primitives.

3D Features
- Triangle raster engine
Full hardware triangle setup supporting backface culling in addition to triangle primitives
independent, strips, and fans
Sub-pixel correction to .4 x .4 resolution
Polygonal anti-aliasing*
Linearly interpolated Gouraud-shaded rendering
Perspective-corrected (divide-per-pixel) texture-mapped rendering with iterated RGB
modul ation/addition/blending
Texture filtering: point-sampling, bilinear, and trilinear filtering
Per-pixel Mipmapping with programmable Mipmap LOD bias and clamping
Detail and Projected Texture mapping
16-bit texture formats: RGB(5-6-5), ARGB(8-3-3-2), ARGB(1-5-5-5), ARGB(4-4-4-4), Alpha-
Intensity(8-8), Alpha-Palette (8-8 expanded to RGB 8-8-8), and AY AB(8-4-2-2)
8-hit texture formats: RGB(3-3-2), YAB(4-2-2), Alpha(8), Intensity(8), Alpha-Intensity(4-4),
PalettedRGB(8 expanded to RGB 8-8-8) and PalettedARGB(8 expanded to ARGB 6-6-6-6)*
Texture decompression: 8-bit “narrow channel” YAB
Embedded 512-entry texture palette with command to automatically load palette from texture memory
(256-entry texture palette in Alpha version)
Texture coordinate clamping, wrapping, and mirroring (mirroring not present in Alpha version)
Linearly interpolated 16-bit Z-buffer rendering
Perspective-corrected 16-bit floating point W-buffer rendering
8 depth comparison functions
Programmabl e depth biasing and depth stenciling
Transparency with dedicated color mask and chroma-keying
Source/Destination pixel apha blending
8 apha comparison functions
Per-pixel fog using interpolated fog lookup table and programmable color
24-bit color dithering to native 16-bit RGB buffer using 4x4 or 2x2 ordered dither matrix

2D Features
Direct memory-mapped access to frame buffer and texture memories via linear address mapping
2D BitBLT engine supporting CPU-to-Screen and Screen-to-Screen transfers
Separate programmable strides for Source and Destination areas during BitBL T transfers

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 7 Updated 12/1/99

B] \Voodoo® Graphics
\J
3dfx

Solid Fills

Monochrome text expansion with optional byte-packed glyph format
Ultra-fast full-screen clears using SGRAM color-expansion capability*

16 Raster Operations (ROPs)

Source and Destination Chroma-range functionality

Scissor rectangle clipping

2D BitBLT registers and state independent of 3D rendering registers and state

Other Features
- 66 MHz PCI Bus 2.1 compliant
Bi-endian (byte swizzling) support for linear frame buffer and register accesses
Memory-backed FIFO for optimized 2D/3D command transport flow control
Embedded RAMDAC with dual-PLLs for video and graphics clock synthesis* (may be ommitted
from spec)
Embedded NTSC/PAL Encoder for direct Television output* (may be ommitted from spec)
Video backend Gamma correction using interpolated color lookup table
Support for progressive (VGA) or interlaced (NTSC*/PAL*) video output with programmable
resolutions and refresh rates
Programmabl e 3-tap vertical line filter for interlaced video output “flicker” reduction*
2 or 4 MBytes of SGRAM* or SDRAM* frame buffer memory
2,4, 8, or 16 MBytes of SGRAM* or SDRAM* texture memory
Maximum Resolution Support (lower resolutions are also supported):

Frame Buffer Double Buffered, Triple Buffered, Double Buffered,
Memory no Depth-Buffering [no Depth-Buffering | 16-bit Depth-Buffering
2 Mbytes 800x600x16 640x480x16 640x480x16
4 Mbytes 800x600x16 800x600x16 800x600x16
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 8 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

2. Performance

The following table shows the peak performance of Voodoo2 Graphics. Note that the numbersincluded illustrate
the maximum performance and number of pixels per clock generated for particular operations. The numbers below
should not be used to estimate real-world performance, as Monitor/TV refresh, DRAM refresh, rendering DRAM
page misses, and memory FIFO operation lowers overall performance. The numbers below assume a 75 MHz
graphics clock frequency.

Operation / Command Peak Pixels per Clock Generated Peak Fill Rate Generated
Rendered Triangles/ TRIANGLE 1 75 MPixels/sec
command
Solid Fills/ FASTFILL command 2 150 MPixels/sec
Solid Fills/ BITBLT command 1 75 MPixels/sec
CPU-to-Screen BLT / BITBLT command 1 75 MPixels/sec
Screen-to-Screen BLT / BITBLT command 5 37 MPixels/sec
Ultra-fast clears using SGRAM color- 16* (4 for Alphaversion) 1200 MPixels/sec* (300
expand / BITBLT command MPixels/sec for alpha version)

The tables below show more redlistic, real-world estimated performance of Voodoo2 Graphics. Performanceis
calculated assuming that the PCI Bus master is supplying data at its peak bandwidth. Thus, the performance levels
are the maximum sustainable rates of Voodoo2 Graphics, not necessarily the system performance. If a particular
operation is CPU limited or a particular PCI bus master is not supplying data at its peak rate, then the effective
system performance level will decrease. All numbers are estimated assuming 16-bit frame buffer pixels, the
memory-backed FIFO disabled, 640x480 resolution @ 60 Hz refresh rate, and a 75 MHz graphics clock frequency
driving SGRAMs. The estimated triangle performance numbers assume al triangles are rendered and not
backface culled by the triangle setup engine.

Single color, rendered triangles (no hardwar e triangle setup, Gouraud Ktriangles/sec
shading, fogging, alpha-blending, Z-buffering, or sub-pixel correction)

10-pixel, right-angled, horizontally oriented
25-pixel, right-angled, horizontally oriented
50-pixel, right-angled, horizontally oriented
1000-pixel, right-angled, horizontally oriented

Hardwar e setup, RGB Gouraud shaded, per-pixel fogged, alpha- Ktriangles/sec
blended, Z-buffered, sub-pixel corrected, rendered triangles

10-pixel, right-angled, randomly oriented
25-pixel, right-angled, randomly oriented
50-pixel, right-angled, randomly oriented
1000-pixel, right-angled, randomly oriented

Hardwar e setup, bilinear filtered, Mipmapped, texture-mapped, RGB Ktriangles/sec
Gouraud shaded, per-pixel fogged, sub-pixel corrected, rendered
triangles (no alpha-blending or Z-buffering)

10-pixel, right-angled, randomly oriented
25-pixel, right-angled, randomly oriented
50-pixel, right-angled, randomly oriented
1000-pixel, right-angled, randomly oriented

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 9 Updated 12/1/99

B Vioodoo? Graphics
\ 2
3dfx

Hardwar e setup, bilinear filtered, Mipmapped, , texture-mapped, RGB Ktriangles/sec
Gouraud shaded, per-pixel fogged, alpha-blended, Z-buffered, sub-pixel
corrected, rendered triangles

10-pixel, right-angled, randomly oriented
25-pixel, right-angled, randomly oriented
50-pixel, right-angled, randomly oriented
1000-pixel, right-angled, randomly oriented

Full-Screen Clears (using FASTFILL command) msec

RGB Buffer
Depth Buffer
RBG and Depth Buffer simultaneously

Full-Screen Clears (using SGRAM ColorExpand BITBLT command) msec

RGB Buffer
Depth Buffer
RBG and Depth Buffer simultaneously

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 10 Updated 12/1/99

B] \Voodoo® Graphics
\J
3dfx

3. Architectural and Functional Overview

3.1 System Level Diagrams

Inits entry level configuration, a Voodoo2 Graphics graphics solution consists of two rendering ASICS: Chuck and
Bruce. Chuck serves as a PCl slave device, and all communication from the host CPU to Voodoo2 Graphicsis
performed through Chuck. Chuck implements 3D features including triangle setup, Gouraud shading, alpha
blending, fogging, depth-buffering, and dithering. Chuck also includes logic for the 2D BitBLT engine, and
processes al linear frame buffer accesses. Additionally, Chuck includes a video display controller which controls
output to the display monitor or Television. Bruce implements all of the texture mapping capabilities of Voodoo2
Graphics. Bruce includes logic to support true-perspective texture mapping (dividing by W every pixel), level-of-
detail (LOD) mipmapping, and bilinear filtering. Additionally, Bruce implements advanced texture mapping
techniques such as detail texture mapping, projected texture mapping, and trilinear texture filtering. Both Chuck
and Bruce support both SGRAM and SDRAM to provide awide range of price/performance options. Note in the
single Bruce Voodoo2 Graphics solution, the advanced texture mapping techniques of detail texture mapping,
projected texture mapping, and trilinear texture filtering are two-pass operations. There is no performance penalty,
however, for point-sampled or bilinear filtered texture mapping with mipmapping with the single Bruce solution.
The diagram below illustrates a base-level Voodoo2 Graphics graphics solution.

PCI System Bus
A Frame
Buffer | 2-4 MBytes SORAM/SGRAM
Memory
Chuck |«—{ Bruce
—> Frame Texture Texture
Buffer Mapping Memory
Interface > Engine
? 2-16 MBytes SDRAM/SGRAM
no connect

-

Bruce includes a dedicated expansion bus which allows either an external device to directly access texture memory
or for multiple Bruce ASICs to be chained together for improved performance and functionality. Bruce reads the
value of a strapping pin upon power-up reset to determine whether the expansion busis to be used as a direct port
to texture memory (“DT Bus’) or as away of chaining multiple Bruce ASICstogether (“TT Bus’). The diagram
below shows the Bruce expansion bus configured asa DT Bus* (DT Busis not included in the Alpha version):

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 11 Updated 12/1/99

B | Vioodoo? Graphics
3dfx

PCI System Bus
(66 MHz) > Chuck Frame
Frame Buffer
Buffer Memory
Interface
2-4 M Bytes
&l stem SDRAM/SGRAM
CPU |«—7F> ASIC (75 MH?2)
Bruce
l\?ai? »| Texture Texture
y DT Bus Mapping Memory
I 1oMBy: (75 MHz) Engine
es
SORAMISGRAM SORAMISORAM
(100 MHz) (75 MH2)

By configuring the Bruce expansion bus as a way of chaining together multiple Bruce ASICs, the performance of
advanced texture mapping features such as detailed texture mapping, projected texture mapping, and trilinear
filtering can be doubled. A two Bruce Voodoo2 Graphics graphics solution allows single pass, full-speed, detail
texture mapping, projected texture mapping, or trilinear filtering. The diagram below illustrates a two Bruce
graphics solution:

2-4 M Bytes SDRAM/SGRAM

Frame
PCl System Bus Buffer
A Memory
2-16 MBytes SDRAM/SGRAM
Bruce g
> Texture Texture
Y Mapping Memory
Engine
Chuck
> Frame — T
Buffer
Interface
Bruce
- Texture Texture
Mapping Memory
Engine
2-16 MBytes SDRAM/SGRAM
\ ?
no connect

Three Bruce ASICs can also be chained together to provide single-pass, full-speed rendering of all supported
advanced texture mapping features including projected texture mapping. The diagram below illustrates the three
Bruce Voodoo2 Graphics graphics architecture:

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 12 Updated 12/1/99

Vioodoo? Graphics

“3dfy

2-4 MBytes SDRAM/SGRAM
2-16 MBytes SDRAM/SGRAM
— Bruce Y
Buffer —»> Texture Texture
PCl System Bus Memory Mapping Memory
A Engine
A
2-16 MBytes SDRAM/SGRAM
Chuck Bruce Y
< - Frame > Texture Texture
o | Buffer Mapping Memory
Interface Engine
| A
V V B 2-16 MBytes SDRAM/SGRAM
ruce
monitor TV L 3| Texture Texture
v Mapping Memory
. . Engine
no connect

The chart below provides performance characterization of advanced texture mapping rendering functionaltity for
various Voodoo2 Graphics configurations.

Texture Mapping Bruce
Functionality Performance
OneBruce ASIC Two Bruce ASICs Three Bruce ASICs
Point-sampled with mipmapping One-Pass One-Pass One-Pass
Bilinear filtering with mipmapping One-Pass One-Pass One-Pass
Bilinear filtering with mipmapping Two-Pass One-Pass One-Pass
and projected textures
Bilinear filtering with mipmapping Two-Pass One-Pass One-Pass
and detail textures
Bilinear filtering with mipmapping, Not supported Two-Pass One-Pass
projected and detail textures
Trilinear filtering with mipmapping Two-Pass One-Pass One-Pass
Trilinear filtering with mipmapping Not supported Two-Pass One-Pass
and projected textures
Trilinear filtering with mipmapping Not supported Two-Pass One-Pass
and detail textures
Trilinear filtering with mipmapping, Not supported Two-Pass Two-Pass
projected and detail textures

For the highest possible rendering performance, multiple Chuck/Bruce subsystems can be chained together

utilizing scan-line interleaving to effectvely double the rendering rate of a single Chuck/Bruce subsystem. The

figure below illustrates this high-performance Voodoo2 Graphics architecture:

Copyright O 1996-1998 3Dfx Interactive, Inc.
Proprietary

13

Revision 1.16
Updated 12/1/99

B Vioodoo? Graphics
3dh
A.
M emory —Bruce M emory
PCl System Bus _’_1 v
A

—Chuck Bruce
L|Bruce
Y o o N |

M emory —Bruce

Y
v >huck Bruce
v —Bruce

To Monitor/

TV

3.2 Architectural Overview

The diagram below illustrates the abstract rendering engine of the Voodoo2 Graphics graphics subsystem. The
rendering engine is structured as a pipeline through which each pixel drawn to the screen must pass. The
individual stages of the pixel pipeline modify pixels or make decisions about them.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 14 Updated 12/1/99

. 4 Voodoo? Graphics
Y

' Bruce #2 'Chuck Line
Texture 0

: : Frame
Memory ! ‘l' + !

Buffer Iterator
Access ARGB

Texture Combine Colorl Color0

. I
I I
: Texture i
______________ + : :
"Brice #1 R :
Texture ! Bruce #1 ! . | Chroma| | Color Combine !
Memory | ! + . | Key ¢ !
I : : : I
' Texture Combine : : o !
| Co 0 :
Sl il ! : Src¢ Dst r}—
I I
(el - : AlphaBlend |
' Bruce #0 v :
Texture | ! . { |
Memory ! ;IV ! : + + :
| — | Z,A Dither | Frame
'| Texture Combine |t | Compare + : Buffer
""""""" ! Lo ~...p» RGB Mask, !
1 e > Apply Vlsblllty :

3.3 Functional Overview

Bus Support: Voodoo2 Graphics implements the PCI bus protocol, and conforms to PCI bus specification 2.1 at PCI
clock frequencies up to 66 MHz. Voodoo2 Graphicsis a dslave only device, and supports zero-wait-state and burst
transfers.

PCI Bus Write Posting: Voodoo2 Graphics uses an asynchronous FIFO 128 entries deep which allows sufficient
write posting capabilities for high performance. The FIFO is asynchronous to the graphics engine, thus allowing
the memory interface to operate at maximum frequency regardless of the frequency of the PCI bus. Zero-wait-state
writes are supported for maximum bus bandwidth.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 15 Updated 12/1/99

d f Vioodoo? Graphics
3 \ 2

Memory FIFQO: Vood002 Graphics can optionally use off-screen frame bufffer memory to increase the effective
depth of the PCI Bus FIFO. The depth of this memory FIFO is programmable, and when used as an addition to the
regular 128 entry host FIFO, allows up to 65536 host writes to be queued without stalling the PCI interface.

Memory Architecture: The frame buffer controller of Voodoo2 Graphics (Chuck) has a 64-bit wide interleaved
datapath to RGB and al pha/depth-buffer memory with support for up to 75 MHz SGRAMs or SDRAMs. For
Gouraud-shaded or textured-mapped polygons with depth buffering enabled, one pixel iswritten per clock -- this
resultsin a 75 MPixels/sec peak fill rate. For screen or depth-buffer clears using the standard 2D BitBLT engine,
two pixels are written per clock, resulting in a 150 MPixels/sec peak fill rate. For screen or depth-buffer clears
using the color expansion capabilities specific to SGRAM, sixteen (16) pixels are written per clock, resulting in a
1.2 GPixels/sec pesk fill rate. 2 MBytes of memory is required to support 640x480x16 resolution with 16-bit depth
buffering. Additionally, non-depth-buffered modes are supported with the 2 MByte RGB/depth-buffer
configuration, including 640x480x16 triple-buffered and 800x600x16 double-buffered. 800x600x16 double-
buffered with depth-buffering is supported with 4 MBytes of RGB/depth-buffer memory. The minimum amount of
RGB/depth-buffer memory is 2 MBytes, with a maximum of 4 MBytes supported.

For storing texture bitmaps, the texture memory controller of Voodoo2 Graphics (Bruce) has a separate 64-bit wide
datapath to texture memory. Bruce provides support for SGRAM or SDRAM memories to be used for texture
storage. An interleaved memory architecture, in addition to sophisticated texture caching, allows Voodoo2
Graphics to perform bilinear texture filtering with no performance penalty relative to point sampling. In addition,
texels are not required to be duplicated in texture memory for maximum performance. The minimum amount of
texture memory required is 2 MBytes, with a maximum of 16 MBytes of texture memory supported.

Host Bus Addressing Schemes: Voodoo2 Graphics occupies 16 Mbytes of memory mapped address space. VVoodoo2
Graphics does not utilize 1/0 mapped address space. The register space of Voodoo2 Graphics occupies 4 Mbytes of
address space, the linear frame buffer access port occupies 4 Mbytes of address space, and the texture memory
access port occupies the last 8 Mbytes of address space.

Linear Frame Buffer and Texture Access: Voodoo2 Graphics supports linear frame buffer and texture memory
accesses for software ease and regular porting. Multiple color formats are supported for linear frame buffer writes,
and all pixels written may optionally be passed through the normal Voodoo2 Graphics 3D pixel pipeline for
fogging, lighting, alpha blending, dithering, etc. of linear frame buffer writes. All texture maps are downloaded to
local Voodoo2 Graphics texture memory through the texture memory access address space.

Triangle-based Rendering: Voodoo2 Graphics supports atriangle drawing primitive and supports full hardware
triangle setup. Triangles primitives may be passed from the CPU to Voodoo2 Graphics as independent, as part of
strip, or as part of afan. Only the parameter vertex information is required by the host CPU, as Voodoo2 Graphics
automatically calculates the parameter slope and gradient information required for proper triangle iteration.

Additional drawing primitives such as spans and lines are rendered as specia case triangles. Complex primitives
such as quadrilaterals must be decomposed into triangles before they can be rendered by Voodoo2 Graphics.

Gouraud-shaded Rendering: Voodoo2 Graphics supports Gouraud shading by providing RGBA iterators with
rounding and clamping. The host provides starting RGBA and DRGBA information, and Voodoo2 Graphics
automatically iterates RGBA values across the defined span or trapezoid.

Texture-mapped Rendering: Voodoo2 Graphics supports full-speed texture mapping for triangles. The host
provides starting texture S/W, T/W, /W information, and Voodoo2 Graphics automatically calculates their their
slopes D(S/'W), D(T/W), and D(L/W) required for triangle iteration. Voodoo2 Graphics automatically performs
proper iteration and perspective correction necessary for true-perspective texture mapping. During each iteration

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 16 Updated 12/1/99

Vioodoo? Graphics

3dfx

of triangle walking, a division is performed by 1/W to correct for perspective distortion. Texture image dimensions
must be powers of 2 and less than or equal to 256. Rectilinear and square texture bitmaps are supported.

Texture-mapped Rendering with Lighting: Texture-mapped rendering can be combined with Gouraud shading to
introduce lighting effects during the texture mapping process. The host provides the starting Gouraud shading
RGBA aswell as the starting texture S/W, T/W, /W , and Voodoo2 Graphics automatically calculates their slopes
DRGBA, D(S/W), D(T/W), and D(/W) required for triangle iteration. Voodoo2 Graphics automatically performs
the proper iteration and calculations required to implement the lighting models and texture lookups. A texel is
either modulated (multiplied by), added, or blended to the Gouraud shaded color. The selection of color
modulation or addition is programmable.

Texture Mapping Anti-aliasing: Voodoo2 Graphics alows for anti-aliasing of texture-mapped rendering with
support for texture filtering and mipmapping. Voodoo2 Graphics supports point-sampled, bilinear, and trilinear
texture filters. While point-sampled and bilinear are single pass operations, single Bruce Voodoo2 Graphics
graphics solutions require two-passes for trilinear texture filtering. Multiple Bruce Voodoo2 Graphics graphics
solutions support trilinear texture filtering as a single-pass operation. Note that regardless of the number of Bruce
ASICsin agiven Voodoo2 Graphics graphics solution, there is no performance difference between point-sampled
and bilinear filtered texture-mapped rendering.

In addition to supporting texture filtering, Voodoo2 Graphics also supports texture mipmapping. Voodoo2
Graphics automatically determines the mipmap level based on the mipmap equation, and selects the proper texture
image to be accessed. Additionally, the calculated mipmap LOD may be biased and/or clamped to allow software
control over the sharpness or “fuzziness’ of the rendered image. When performing point-sampled or bilinear
filtered texture mapping, dithering of the mipmap levels can also optionally be used to remove mipmap “banding”
during rendering. Using dithered mipmapping with bilinear filtering results in images almost indistinguishable
from full trilinear filtered images.

Texture Map Formats: VVoodoo2 Graphics supports a variety of 8-bit and 16-bit texture formats as listed below:

8-bit Texture Formats

16-bit Texture Formats

RGB(3-3-2)

Alpha(8)

Intensity(8)

Alpha-Intensity(4-4)

YAB(4-2-2)

Pal ettedRGB(8 expanded to RGB 8-8-8)

PalettedRGBA (8 expanded to ARGB 6-6-6-6)*

RGB(5-6-5)

ARGB(8-3-3-2)

ARGB(1-5-5-5)

ARGB(4-4-4-4)

Alpha-Intensity(8-8)

Alpha-PalettedRGB(8-8 expanded to RGB 8-8-8)
AYAB(8-4-2-2)

Voodoo2 Graphics includes an internal 512-entry texture palette, which can be downloaded directly from the host
CPU or viaacommand to load the palette directly from texture memory. Either during downloads or rendering,
software programs a palette offset register to control which portion of the texture palette is to be used.

Texture-space Decompression: Texture data compression is accomplished using a “narrow channel” YAB
compression scheme. 8-bit YAB format is supported. The compression is based on an algorithm which
compresses 24-bit RGB to a 8-bit YAB format with little lossin precision. The compression scheme is called
“YAB” because it effectively creates a unique color space for each individua texture map examples of potential
color spaces utilized include Y1Q, YUV, etc. ThisYAB compression algorithm is especially suited to texture
mapping, as textures typically contain very similar color components. The algorithm is performed by the host

CPU, and YAB compressed textures are passed to Voodoo2 Graphics The advantages of using compressed textures

are increased effective texture storage space and lower bandwidth requirements to perform texture filtering.

Copyright O 1996-1998 3Dfx Interactive, Inc.
Proprietary

Revision 1.16
Updated 12/1/99

B \Voodoo® Graphics
\J
3dfxX

Polygonal Anti-Aliasing:* [feature not present in Alphaversion] To eliminate the “jaggies’ on the edges of
triangles, Voodoo2 Graphics supports polygonal anti-aliasing. To use the anti-aliasing support in Voodoo2
Graphics, triangles must be sorted before rendering, either back-to-front or front-to-back. When front-to-back
triangle ordering is used, the standard OpenGL alpha-saturate algorithm is used to anti-alias the polygon edges.
When back-to-front triangle ordering is used, standard alpha-blending is used to partially blend the edges of the
triangles into the previously rendered scene. Regardless of which triangle ordering technique is used, the hardware
automatically determines the pixels on the edges of the rendered triangles which are special-cased and rendered
with less than full-intensity to smooth the triangle edges.

Depth-Buffered Rendering: VVoodoo2 Graphics supports hardware-accel erated depth-buffered rendering with
minimal performance penalty when enabled. With 2 MBytes of frame buffer memory, 640x480x16 resolution,
double buffered with a 16-bit Z-buffer is supported. The standard 8 depth comparison operations are supported.
To eliminate many of the Z-aliasing problems typically found on 16-bit Z-buffer graphics solutions, Voodoo2
Graphics alows the (1/W) parameter to be used as the depth component for hardware-accel erated depth-buffered
rendering. When the (/W) parameter is used for depth-buffering, al6-bit floating point format is supported. A
16-hit floating point (1/W)-buffer provides much greater precision and dynamic range than a standard 16-bit Z-
buffer, and reduces many of the Z-aliasing problems found on 16-bit Z-buffer systems.

To handle co-planar polygons, Voodoo2 Graphics also supports depth biasing. To guarantee that polygons which
are co-planar are rendered correctly, individua triangles may be biased with a constant depth value — this
effectively accomplishes the same function as stenciling used in more expensive graphics solutions but without the
additional memory costs.

Pixel Blending Operations: Voodoo2 Graphics supports a pha blending functions which allow incoming source
pixels to be blended with current destination pixels. An alpha channel (i.e. destination alpha) stored in offscreen
memory is only supported when depth-buffering is disabled. The alpha blending function is as follows:

Dnew U (Sxa) + (Dold xb)

where
Drew The new destination pixel being written into the frame buffer
S The new source pixel being generated
Dold The old (current) destination pixel about to be modified
a The source pixel alphafunction.
b The destination pixel apha function.

FOG: Voodoo2 Graphics supports a 64-entry lookup table to support atmospheric effects such as fog and haze.
When enabled, a 6-bit floating point representation of (1/W) is used to index into the 64-entry lookup table. The
output of the lookup table is an “apha’ value which represents the level of blending to be performed between the
static fog/haze color and the incoming pixel color. Low order bits of the floating point (/W) are used to blend
between multiple entries of the lookup table to reduce fog “banding.” The fog lookup table isoaded by the host
CPU, so various fog eguations, colors, and effects are supported.

Color Maodes: Voodoo2 Graphics supports 16-bit RGB (5-6-5) buffer displays only. Internally, Voodoo2 Graphics
utilizes a 32-bit ARGB 3D pixel pipeline for maximum precision, but the 24-bit internal RGB color is dithered to
16-bit RGB before being stored in the color buffers. The host may also transfer 24-bit RGB pixels to Voodoo2
Graphics using linear frame buffer accesses, and color dithering is utilized to convert the input pixels to native 16-
bit format with no performance penalty.

Chroma-Key and Chroma-Range Operation: Voodoo2 Graphics supports a chroma-key operation used for
transparent object effects. When enabled, an outgoing pixel is compared with the chroma-key register. If amatch

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 18 Updated 12/1/99

B \Voodoo® Graphics
\J
3dfx

is detected, the outgoing pixel isinvalidated in the pixel pipeline, and the frame buffer is not updated. In addition,
a superset of chroma-keying, known as chroma-ranging, may be used. Instead of matching outgoing pixels against
a single chroma-key color, chroma-ranging uses a range of colors for the comparison. If the outgoing pixel is
within the range specified by the chroma-range registers and chroma-ranging is enabled, then the frame buffer is
updated with the pixel.

Color Dithering Operations: All operations internal to Voodoo2 Graphics operate in native 32-bit ARGB pixel
mode. However, color dithering from the 24-bit RGB pixels to 16-bit RGB (5-6-5) pixelsis provided on the back
end of the pixel pipeline. Using the color dithering option, the host can pass 24-bit RGB pixels to Voodoo2
Graphics, which converts the incoming 24-bit RGB pixels to 16-bit RGB (5-6-5) pixels which are then stored in
the 16-bit RGB buffer. The 16-bit color dithering allows for the generation of photorealistic images without the
additional cost of atrue color frame buffer storage area.

2D BitBLT Engine: Voodoo2 Graphics includes an optimized 2D BitBLT engine used for accelerating standard
Windowsa GDI and DirectDraw primitives. Data can be transfered either from host-to-Screen or from Screen-to-
Screen. Solid rectangular fills and copies are supported, in addition to color expansion of host-supplied text/glyph
data. Chroma-ranging is supported for both source and destination pixels. All BitBLT operations may aso
optionally use the standard 16 Raster Operations (ROPs) to merge the source and destination pixels.

In addition to the standard BiBLT 2D engine, Voodoo2 Graphics supports the color expansion capabilities of
SGRAM* (SGRAM fill not implemented in Alpha version). When Voodoo2 Graphics is configured with
SGRAMSs, a special rectangle fill command is used to perform ultra-fast full-screen clears of the color and/or depth
buffers. When utilizing the color expansion capabilities of SGRAM, Voodoo2 Graphics performs screen-clears at
16 pixels per clock, resulting in 1.2 GPixels/sec peak fill rate — this results in afull-screen clear time of either the
color buffer or the depth buffer of approximately 260 usec at 640x480 resolution.

Programmable Video Timing: Voodoo2 Graphics uses a programmable video timing controller which allows for
very flexible video timing. Any monitor type may be used with Voodoo2 Graphics , with 76+ Hz vertical refresh
rates supported at 800x600 resolution, and 100+ Hz vertical refresh rates supported at 640x480 resolution. Lower
resolutions down to 320x200 are also supported.

Video Output Gamma Correction: Voodoo2 Graphics uses a programmable color lookup table to alow for
programmable gamma correction. The 16-bit dithered color data from the frame buffer is used an an index into the
gamma-correction color table -- the 24-bit output of the gamma-correction color table is then fed to the monitor or
Television.

Direct Monitor and Television Output:* (not present in Alpha version and may be ommitted from spec) Voodoo2
Graphics includes an embedded RAMDAC and NTSC/PAL encoder to alow direct connection to a standard PC
monitor or television. To eliminate the “flicker” typically associated with NTSC/PAL interlaced displays, Voodoo2
Graphics includes a programmable 3-tap vertical line filter for flicker reduction. While Voodoo2 Graphics can
generate signals for direct connection to either a PC monitor or atelevision, the same DAC is used for both, so
simultaneous PC-Monitor and Television output is not supported.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 19 Updated 12/1/99

B] \Voodoo® Graphics
\J
3dfx

4. Voodoo2 Graphics Address Space

Voodoo2 Graphics requires 16 Mbytes of memory mapped address space. Voodoo2 Graphics does not utilize 1/0
mapped memory. The memory mapped address space is shown below:

Address Description
0x000000-0x3fffff Voodoo2 Graphics memory mapped register set (4 MBytes)
0x400000-0x 7fffff Voodoo2 Graphics linear frame buffer access (4 MBytes)
0x800000-0xffffff VVoodoo?2 Graphics texture memory access (8 MBytes)

The physical memory address for Voodoo2 Graphics accesses is calculated by adding the Voodoo2 Graphics
address offset (0-16 MBytes) to the Voodoo2 Graphics base address register. The Voodoo2 Graphics base address
register, memBaseAddr, islocated in PCl configuration space. memBaseAddr is setup by the PCl System BIOS
during system power-on initialization and should not be modified by software. See section 5 for more information
on the memory mapped register set, section 6 for more information on the PCI configuration space, section 9 for
more information on linear frame buffer access, and section 10 for more information on texture memory access.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 20 Updated 12/1/99

B] \Voodoo® Graphics
\J
3dfxX

5. Memory Mapped Reqgister Set
A 4 Mbyte (22-bit) Voodoo2 Graphics memory mapped register address is divided into the following fields:

Alternate Byte Swizzle Wrap Chip Register Byte
Register Mapping Register
Accesses
1 bit (21) 1 bit (20) 6 bits (19:14) | 4 hits (13:10) 8 hits (9:2) 2 hits (1:0)

The Alternate Register Mapping bit (bit 21) of the memory mapped register address is used to select the alternate
register mapping (see below). When fbilnit3(0)=1 and bit 21 of the memory mapped register address is set, the
alternate register mapping is used. The Byte Swizzle Register Accesses bit (bit 20) of the memory mapped
register address is used to byte-swizzle the PCI data for both register reads and register writes. When
fbilnit0(3)=1 and bit 20 of the memory mapped register addressis set, then byte 3 of the PCI data is swapped with
byte 0, and byte 2 of the PCI data is swapped with byte 1. This byte-swizzling capability is used to support big-
endian host CPUs.

The wrap field aliases multiple 14-bit register maps. The wrap field is useful for processors such as the Digital’s
Alphaor Intel’s Pentium Pro which contain large write-buffers which collapse multiple writes to the same address
into a single write (an undesirable effect when programming Voodoo2 Graphics). By writing to different wraps,
software can guarantee that writes are not collapsed in the write buffer. Note that Voodoo2 Graphics functionality
isidentical regardless of which wrap is accessed.

The chip field selects one or more of the Voodoo2 Graphics chips (Chuck and/or Bruce) to be accessed. Each bitin
the chip field selects one chip for writing, with Chuck controlled by the Isb of the chip field, and Bruce#2
controlled by the msb of the chip field. Note the chip field value of 0x0 selects all chips. The following table
shows the chip field mappings:

Chip Field Voodoo2 Graphics Chip
Accessed

0000 Chuck + al Bruce chips
0001 Chuck
0010 Bruce #0
0011 Chuck + Bruce #0
0100 Bruce #1
0101 Chuck + Bruce #1
0110 Bruce #0 + Bruce #1
0111 Chuck + Bruce #0 + Bruce #1
1000 Bruce #2
1001 Chuck + Bruce #2
1010 Bruce #0 + Bruce #2
1011 Chuck + Bruce #0 + Bruce #2
1100 Bruce #1 + Bruce #2
1101 Chuck + Bruce #1 + Bruce #2
1110 Bruce #0 + Bruce #1 + Bruce #2
1111 Chuck + al Bruce chips

Note that Bruce #0 is always connected to Chuck in the system level diagrams of section 3, and Bruce #1 is
attached to Bruce #0, etc. By utilizing the different chip fields, software can precisely control the data presented to

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 21 Updated 12/1/99

“3dfy

Vioodoo? Graphics

individual chipswhich compose the Voodoo2 Graphics graphics subsystem. Note that for reads, the chip field is
ignored, and read data is always read from Chuck.

Theregister field selects the register to be accessed from the table below. All accesses to the memory mapped
registers must be 32-bit accesses. No byte (8-bit) or halfword/short (16-bit) accesses are allowed to the memory
mapped registers, so the byte (2-bit) field of all memory mapped register accesses must be 0x0. Asaresult, to
modify individual bits of a 32-bit register, the entire 32-bit word must be written with valid bitsin all positions.

The table below shows the Voodoo2 Graphics register set. The register set shown below is the address map when
the triangle registers are not remapped (fbil nit3(0)=0 or bit 21 of the memory mapped register addressis0). The
chip columnillustrates which registers are stored in which chips. For the registers which are stored in Bruce, the
% symbol specifies that the register is unconditionally written to Bruce regardless of the chip address. Similarly,
the * symbol specifies that the register is only written to a given Bruce if specified in the chip address. The R/W
column illustrates the read/write status of individual registers. Reading from aregister which is “write only”
returns undefined data. Also, reading from aregister that is Bruce specific returns undefined data.. Reads from all
other memory mapped registers only contain valid data in the bits stored by the registers, and undefined/reserved
bitsin a given register must be masked by software. The pipelined column indicates whether the graphics
processor must wait for the current command to finish before loading a particular register from the FIFO. A “no”
in the pipelined column means the graphics processor flushes the data pipeline before loading the register -- this
resultsin a small performance degradation when compared to those registers which do not need synchronization.
The FIFO column indicates whether awrite to a particular register is pushed onto the PCI bus FIFO. Care must
be taken when writing to those registers not pushed into the FIFO in order to prevent race conditions between
FIFOed and non-FIFOed registers. Also note that reads are not pushed into the PCI bus FIFO, and reading FIFOed
registers returns the current value of the register, irrespective of pending writes to the register present in the FIFO.

Register Name Address | Bits Chip R/ Pipe- Description
W lined?
/FIFO?
status 0x000(0) 31:.0 | Chuck R Yes/na | Voodoo2 Graphics Status
intrCtrl 0x004(4) 31:0 | Chuck R/W | Yes/No | Interrupt Status and Control
vertexAx 0x008(8) 15.0 | Chuck+Brucer | W Yes/Yes | Vertex A x-coordinate location (12.4 format)
vertexAy 0x00c(12) 15.0 | Chuck+Bruce® | W Yes/Yes | Vertex A y-coordinate location (12.4 format)
vertexBx 0x010(16) 15.0 | Chuck+Bruce® | W Yes/Yes | Vertex B x-coordinate location (12.4 format)
vertexBy 0x014(20) 15.0 | Chuck+Bruce® | W Yes/Yes | Vertex B y-coordinate location (12.4 format)
vertexCx 0x018(24) 15:.0 | Chuck+Bruce® | W Yes/Yes [Vertex C x-coordinate location (12.4 format)
vertexCy 0x01c(28) 15.0 | Chuck+Bruce® | W Yes/Yes | Vertex C y-coordinate location (12.4 format)
startR 0x020(32) 23:0 | Chuck \W Yes/Yes | Starting Red parameter (12.12 format)
startG 0x024(36) 23:0 | Chuck \W Yes/Yes | Starting Green parameter (12.12 format)
startB 0x028(40) 23:0 | Chuck \W Yes/Yes | Starting Blue parameter (12.12 format)
startZ 0x02c(44) 31:0 | Chuck \W Yes/Yes | Starting Z parameter (20.12 format)
startA 0x030(48) 23:0 | Chuck \W Yes/Yes | Starting Alpha parameter (12.12 format)
startS 0x034(52) 31.0 | Bruce \W Yes/Yes | Starting S\W parameter (14.18 format)
startT 0x038(56) 31.0 | Bruce \W Yes/Yes | Starting T/W parameter (14.18 format)
startw 0x03c(60) 31:0 | Chuck+Bruce \W Yes/Yes | Starting /W parameter (2.30 format)
dRdX 0x040(64) 23:0 | Chuck \W Yes/Yes | Changein Red with respect to X (12.12 format)
dGdX 0x044(68) 23:0 | Chuck \W Yes/Yes | Changein Green with respect to X (12.12 format)
dBdX 0x048(72) 23:0 | Chuck \W Yes/Yes | Changein Blue with respect to X (12.12 format)
dzdX 0x04c(76) 31:0 | Chuck \W Yes/Yes | Changein Z with respect to X (20.12 format)
dAdX 0x050(80) 23:0 | Chuck \W Yes/Yes [Changein Alphawith respect to X (12.12 format)

Copyright O 1996-1998 3Dfx Interactive, Inc.

Proprietary

22

Revision 1.16
Updated 12/1/99

Vioodoo? Graphics

L ¥

dSdX 0x054(84) 31.0 | Bruce \W Yes/Yes | Changein S/W with respect to X (14.18 format)
dTdX 0x058(88) 31.0 | Bruce \W Yes/Yes | Changein T/W with respect to X (14.18 format)
dwdX 0x05¢(92) 31:0 | Chuck+Bruce \W Yes/Yes [Changein /W with respect to X (2.30 format)
dRdY 0x060(96) 23:0 | Chuck \W Yes/Yes | Changein Red with respect to Y (12.12 format)
dGdY 0x064(100) | 23:0 [Chuck \W Yes/Yes | Changein Green with respect to Y (12.12 format)
dBdY 0x068(104) | 23:0 [Chuck \W Yes/Yes | Changein Blue with respect to Y (12.12 format)
dzdy 0x06c(108) | 31:0 [Chuck \W Yes/Yes | Changein Z with respect to Y (20.12 format)
dAdY 0x070(112) | 23:0 [Chuck \W Yes/Yes [Changein Alphawith respect to Y (12.12 format)
dsdy 0x074(116) | 31.0 | Bruce \W Yes/Yes | Changein S/W with respect to Y (14.18 format)
dTdy 0x078(120) | 31.0 | Bruce \W Yes/Yes | Changein T/W with respect to Y (14.18 format)
dwdy 0x07c(124) | 31:.0 | Chuck+Bruce \W Yes/Yes [Changein /W with respect to Y (2.30 format)
triangleCMD 0x080(128) | 31 Chuck+Bruce* | W Yes/Yes | Execute TRIANGLE command (floating point)
reserved 0x084(132) | nfa | n/a W na
fvertexAx 0x088(136) | 31.0 | Chuck+Brucer* | W Yes/Yes | Vertex A x-coordinate location (floating point)
fvertexAy 0x08c(140) | 31.0 [Chuck+Brucer | W Yes/Yes | Vertex A y-coordinate location (floating point)
fvertexBx 0x090(144) | 31.0 [Chuck+Brucer | W Yes/Yes | Vertex B x-coordinate location (floating point)
fvertexBy 0x094(148) | 31.0 | Chuck+Brucerx | W Yes/Yes | Vertex B y-coordinate location (floating point)
fvertexCx 0x098(152) | 31.0 [Chuck+Brucer | W Yes/Yes | Vertex C x-coordinate location (floating point)
fvertexCy 0x09¢c(156) | 31.0 | Chuck+Bruce®* | W Yes/Yes | Vertex C y-coordinate location (floating point)
fstartR 0x0a0(160) | 31:0 [Chuck \W Yes/Yes | Starting Red parameter (floating point)
fstartG 0x0a4(164) | 31:.0 [Chuck \W Yes/Yes | Starting Green parameter (floating point)
fstartB 0x0a8(168) | 31:0 [Chuck \W Yes/Yes | Starting Blue parameter (floating point)
fstartZ 0x0ac(172) | 31:0 [Chuck \W Yes/Yes | Starting Z parameter (floating point)
fstartA 0x0b0(176) | 31:0 [Chuck \W Yes/Yes | Starting Alpha parameter (floating point)
fstartS 0x0b4(180) | 31.0 | Bruce \W Yes/Yes | Starting S/\W parameter (floating point)
fstartT 0x0b8(184) | 31.0 | Bruce \W Yes/Yes | Starting T/W parameter (floating point)
fstartw 0xObc(188) | 31:0 | Chuck+Bruce \W Yes/Yes | Starting /W parameter (floating point)
fdRdX 0x0c0(192) | 31:0 [Chuck \W Yes/Yes | Changein Red with respect to X (floating point)
fdGdX 0x0c4(196) | 31:0 | Chuck w Yes/Yes | Changein Green with respect to X (floating
point)
fdBdX 0x0c8(200) | 31:0 [Chuck \W Yes/Yes | Changein Blue with respect to X (floating point)
fdzdX 0x0cc(204) | 31:0 [Chuck \W Yes/Yes | Changein Z with respect to X (floating point)
fdAdX 0x0d0(208) | 31:0 [Chuck \W Yes/Yes | Changein Alphawith respect to X (floating point)
fdSdX 0x0d4(212) | 31.0 | Bruce \W Yes/Yes | Changein S/W with respect to X (floating point)
fdTdX 0x0d8(216) | 31.0 | Bruce \W Yes/Yes | Changein T/W with respect to X (floating point)
fdwdX 0x0dc(220) | 31:0 | Chuck+Bruce \W Yes/Yes | Changein /W with respect to X (floating point)
fdRdY 0x0e0(224) | 31:0 [Chuck \W Yes/Yes | Changein Red with respect to Y (floating point)
fdGdy 0x0e4(228) | 31:0 | Chuck w Yes/Yes | Changein Green with respect to Y (floating
point)
fdBdY 0x0e8(232) | 31:.0 [Chuck \W Yes/Yes | Changein Blue with respect to Y (floating point)
fdzdy 0x0ec(236) | 31:0 [Chuck \W Yes/Yes | Changein Z with respect to Y (floating point)
fdAdY 0x0f0(240) | 31:0 [Chuck \W Yes/Yes | Changein Alphawith respect to Y (floating point)
fdsdy 0x0f4(244) | 31.0 | Bruce \W Yes/Yes | Changein S/W with respect to Y (floating point)
fdTdy 0x0f8(248) | 31.0 | Bruce \W Yes/Yes | Changein T/W with respect to Y (floating point)
fdwdy 0x0fc(252) 31:0 | Chuck+Bruce \W Yes/Yes | Changein /W with respect to Y (floating point)
ftriangleCMD 0x100(256) | 31 Chuck+Bruce® | W Yes/Yes | Execute TRIANGLE command (floating point)

Copyright O 1996-1998 3Dfx Interactive, Inc.

Proprietary

23

Revision 1.16
Updated 12/1/99

Vioodoo? Graphics

¥

fbzColorPath 0x104(260) | 29:0 | Chuck+Bruce® | R/W | Yes/Yes | Chuck Color Path Control
fogMode 0x108(264) | 7.0 Chuck R/W | Yes/Yes | Fog Mode Control
alphaMode 0x10c(268) | 31:0 [Chuck R/W | Yes/Yes | AlphaMaode Control
fbzMode 0x110(272) | 21:0 [Chuck R/W | No/Yes | RGB Buffer and Depth-Buffer Control
IfbMode 0x114(276) | 16:0 [Chuck R/W | No/Yes | Linear Frame Buffer Mode Control
clipLeftRight 0x118(280) | 31:0 [Chuck R/W | No/Yes | Left and Right of Clipping Register
clipLowYHighY 0x11c(284) | 31:0 [Chuck R/W | No/Yes | Top and Bottom of Clipping Register
nopCMD 0x120(288) | 1.0 Chuck+Bruce® | W No/Yes | Execute NOP command
fastfillCMD 0x124(292) | nfa | Chuck W No/Yes | Execute FASTFILL command
swapbufferCMD 0x128(296) | 9:.0 Chuck \W No/Yes | Execute SWAPBUFFER command
fogColor 0x12c(300) | 23:0 [Chuck \W No/Yes | Fog Color Vaue
zaColor 0x130(304) | 31:0 [Chuck \W No/Yes | Constant Alpha/Depth Value
chromaKey 0x134(308) | 23:0 | Chuck+Bruce*r | W No/Yes | ChromaKey Compare Value
chromaRange 0x138(312) | 27:.0 | Chuck+Bruce*r | W No/Yes | Chroma Range Compare Vauesmodes,enable
userlntrCMD 0x13c(316) | 9:.0 Chuck \W No/Yes | Execute USERINTERRUPT command
stipple 0x140(320) | 31:0 [Chuck R/W | No/Yes | Rendering Stipple Value
colorO 0x144(324) | 31:0 [Chuck R/W | No/Yes | Constant Color #0
colorl 0x148(328) | 31:.0 [Chuck R/W | No/Yes | Constant Color #1
fbiPixelsin 0x14¢(332) | 23:0 | Chuck R na Pixel Counter (Number pixels processed)
fbiChromaFail 0x150(336) | 23:0 [Chuck R na Pixel Counter (Number pixels failed Chroma test)
fbiZfuncFail 0x154(340) | 23:0 [Chuck R na Pixel Counter (Number pixelsfailed Z test)
fbiAfuncFall 0x158(344) | 23:0 [Chuck R na Pixel Counter (Number pixelsfailed Alpha test)
fbi Pixel sOut 0x15c(348) | 23:0 [Chuck R na Pixel Counter (Number pixels drawn)
fogTable 0x160(352) | 31:0 | Chuck w No/Yes | Fog Table

to

0x1dc(476)
cmdFifoBaseAddr 0x1e0(480) | 25:0 | Chuck R/W | (Wa)/No [CMDFIFO base address and size
cmdFifoBump 0x1e4(484) | 15:0 | Chuck R/W | (Wa)/No [CMDFIFO bump depth
cmdFifoRdPtr 0x1e8(488) | 31:0 | Chuck R/W | (Wa)/No [CMDFIFO current read pointer
cmdFifoAMin Oxlec(492) | 31:0 | Chuck R/W | (Wa)/No [CMDFIFO current minimum address
cmdFifoAMax 0x1f0(496) | 31:0 | Chuck R/W | (Wa)/No [CMDFIFO current maximum address
cmdFifoDepth 0x1f4(500) | 15:0 | Chuck R/W | (Wa)/No [CMDFIFO current depth
cmdFifoHoles 0x1f8(504) | 15:0 | Chuck R/W | (W& /No [CMDFIFO number of holes
reserved 0x1fc(508) | nfa | n/a n/a na
fhilnit4 0x200(512) | 12:0 | Chuck R/W | (Wa)/No | Chuck Hardware Initialization (register 4)
VRetrace 0x204(516) | 12:0 | Chuck R (Wa)/No | Vertical Retrace Counter
backPorch 0x208(520) | 24:0 | Chuck R/W | (Wa)/No | Video Backporch Timing Generator
videoDimensions 0x20c(524) | 26:0 | Chuck R/W | (Wa)/No [Video Screen Dimensions
fbilnit0 0x210(528) | 31:0 | Chuck R/W | (Wa)/No | Chuck Hardware Initialization (register 0)
fhilnitl 0x214(532) | 31:0 | Chuck R/W | (Wa)/No | Chuck Hardware Initialization (register 1)
fhilnit2 0x218(536) | 31:0 | Chuck R/W | (Wa)/No | Chuck Hardware Initiaization (register 2)
fbilnit3 0x21c¢(540) | 31:0 | Chuck R/W | (Wa)/No | Chuck Hardware Initiaization (register 3)
hSync 0x220(544) | 26:0 | Chuck w (n/a) /No | Horizontal Sync Timing Generator
vSync 0x224(548) | 28:0 | Chuck w (va)/No | Vertical Sync Timing Generator
clutData 0x228(552) | 29:0 [Chuck \W No/Yes | Video Color Lookup Table Initialization
dacData 0x22c¢(556) | 13:0 | Chuck w (va)/No | External DAC Initialization

Copyright O 1996-1998 3Dfx Interactive, Inc.

Proprietary

Revision 1.16
Updated 12/1/99

Vioodoo? Graphics

\J

¥

maxRgbDelta 0x230(560) | 23:0 | Chuck w (va)/No | Max. RGB difference for Video Filtering

hBorder 0x234(564) | 24:0 | Chuck w (/&) /No | Horizontal Border Color Control

vBorder 0x238(568) | 24:0 | Chuck w (/&) /No | Vertical Border Color Control

borderColor 0x23c(572) | 23:0 | Chuck w (a)/No | Video Border Color

hvRetrace 0x240(576) | 26:0 | Chuck R (va)/No | Horizontal and Vertical Retrace Counters
(synced)

fhilnit5 0x244(580) | 31:0 | Chuck R/W | (Wa)/No | Chuck Hardware Initialization (register 5)

fhilnit6 0x248(584) | 31:0 | Chuck R/W | (Wa)/No | Chuck Hardware Initialization (register 6)

fhilnit7 0x24c(588) | 31:0 | Chuck R/W | (Wa)/No | Chuck Hardware Initialization (register 7)

reserved 0x250(592) | nfa | n/a n/a na

reserved 0x254(596) | nfa | n/a n/a na

fbi SwapHistory 0x258(600) | 31:0 [Chuck R na Swap History Register

fbiTrianglesOut 0x25¢(604) | 23:0 [Chuck R na Triangle Counter (Number triangles drawn)

sSetupMode 0x260(608) | 19:0 [Chuck \W Yes/Yes | Triangle setup mode

SVX 0x264(612) | 31.0 | Chuck+Bruce* | W Yes/Yes | Triangle setup X

s\Vy 0x268(616) | 31.0 | Chuck+Bruce* | W Yes/Yes | Triangle setup Y

SARGB 0x26¢c(620) | 31.0 | Chuck+Bruce*r | W Yes/Yes | Triangle setup Alpha, Red, Green, Blue

sRed 0x270(624) | 31:0 [Chuck \W Yes/Yes | Triangle setup Red value

sGreen 0x274(628) | 31:0 [Chuck \W Yes/Yes | Triangle setup Green value

sBlue 0x278(632) | 31:0 [Chuck \W Yes/Yes | Triangle setup Blue value

sAlpha 0x27¢c(636) | 31:0 [Chuck \W Yes/Yes | Triangle setup Alphavalue

sVz 0x280(640) | 31:0 | Chuck W Yes/Yes | Triangle setup Z

sWhb 0x284(644) | 31.0 | Chuck+Bruce* | W Yes/Yes | Triangle setup Global W

sSWtmuO 0x288(648) | 31.0 | Bruce* \W Yes/Yes | Triangle setup Tmu0 & Tmul W

sSYWO0 0x28c(652) | 31.0 | Bruce* \W Yes/Yes | Triangle setup TmuO & Tmul SW

sT/WO 0x290(656) | 31.0 | Bruce* \W Yes/Yes | Triangle setup TmuO & Tmul T/W

sWtmul 0x294(660) | 31.0 | Bruce-1 \W Yes/Yes | Triangle setup Tmul only W

sSWtmul 0x298(664) | 31.0 | Bruce-1 \W Yes/Yes | Triangle setup Tmul only SW

sT/Wtmul 0x29¢c(668) | 31.0 | Bruce-1 \W Yes/Yes | Triangle setup Tmul only T/W

sDrawTriCMD 0x2a0(672) | 31.0 | Chuck+Bruce*r | W Yes/Yes | Triangle setup (Draw)

sBeginTriCMD 0x2a4(676) | 31:0 [Chuck \W Yes/Yes | Triangle setup Start New triangle

reserved 0x2a8(680) | nfa | n/a n/a na

reserved Ox2ac(684) | nfa | n/a n/a na

reserved 0x2b0(688) | nfa | n/a n/a na

reserved 0x2b4(692) | nfa | n/a n/a na

reserved 0x2b8(696) | nfa | n/a n/a na

reserved 0x2bc(700) | nfa | n/a n/a na

bltSrcBaseAddr 0x2c0(704) | 21:0 [Chuck R/W | Yes/Yes | BitBLT Source base address

bltDstBaseAddr 0x2c4(708) | 21:0 [Chuck R/W | Yes/Yes | BitBLT Destination base address

bItXY Strides 0x2c8(712) | 27:0 | Chuck R/W | Yes/Yes | BitBLT Source and Destination strides

bltSrcChromaRange | 0x2cc(716) | 31:.0 | Chuck R/W | Yes/Yes | BiBLT Source Chromakey range

bltDstChromaRange | 0x2d0(720) | 31:.0 | Chuck R/W | Yes/Yes | BitBLT Destination Chroma key range

bitClipX 0x2d4(724) | 27:0 | Chuck R/W | Yes/Yes | BitBLT Min/Max X clip values

bitClipY 0x2d8(728) | 27:0 | Chuck R/W | Yes/Yes | BitBLT Min/Max Y clip values

reserved 0x2dc(732)

bltSrcXY 0x2e0(736) | 26:0 [Chuck R/W | Yes/Yes | BitBLT Source starting XY coordinates

Copyright O 1996-1998 3Dfx Interactive, Inc.

Proprietary

Revision 1.16
Updated 12/1/99

Vioodoo? Graphics

¥

bItDstXY 0x2e4(740) | 31:0 [Chuck R/W | Yes/Yes | BitBLT Destination starting XY coordinates
bltSize 0x2e8(744) | 31:0 [Chuck R/W | Yes/Yes | BitBLT width and height
bltRop 0x2ec(748) | 15:0 [Chuck R/W | Yes/Yes | BitBLT Raster operations
bltColor 0x2f0(752) | 3L.0 [Chuck R/W | Yes/Yes | BitBLT and foreground background colors
reserved 0x2f4(756)
bltCommand 0x2f8(760) | 31:0 [Chuck R/W | Yes/Yes | BitBLT command mode
bltData 0x2fc(764) 31:0 | Chuck \W Yes/Yes | BitBLT datafor CPU-to-Screen BitBLTs
textureM ode 0x300(768) | 30:0 | Bruce \W Yes/Yes | Texture Mode Control
tLOD 0x304(772) | 27:0 | Bruce W Yes/Yes | Texture LOD Settings
tDetail 0x308(776) | 21.0 | Bruce W Yes/Yes | Texture LOD Settings
texBaseAddr 0x30c(780) | 18:0 | Bruce \W Yes/Yes | Texture Base Address
texBaseAddr 1 0x310(784) | 18:0 | Bruce \W Yes/Yes | Texture Base Address (supplemental LOD 1)
texBaseAddr 2 0x314(788) | 18:0 | Bruce \W Yes/Yes | Texture Base Address (supplemental LOD 2)
texBaseAddr 3 8 0x318(792) | 18:0 | Bruce \W Yes/Yes | Texture Base Address (supplemental LOD 3-8)
trexInit0 0x31c(796) | 31.0 | Bruce \W No/Yes | Bruce Hardware Initialization (register Q)
trexinitl 0x320(800) | 31.0 | Bruce \W No/Yes | Bruce Hardware Initialization (register 1
nccTabled 0x324(804) | 31.0 | Bruce w No/Yes | Narrow Channel Compression Table 0 (12

to or entries)

0x350(848) | 26:.0
nccTablel 0x354(852) | 31.0 | Bruce w No/Yes | Narrow Channel Compression Table 1 (12

to or entries)

0x380(896) | 26:0
reserved 0x384(900) | nfa | n/a n/a na

to

0x3fc(1020)
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 26 Updated 12/1/99

3dix

Vioodoo? Graphics

When fbiinit3(0)=1, the triangle parameter registers can be aliased to a different address mapping to improve PCI
bus throughput. When fbiinit3(0)=1 and the upper bit of the wrap field in the pci addressis Ox1 (pci_ad[21]=1),
the following table shows the addresses for the triangle parameter registers. Note that enabling triangle parameter
remapping (fbiinit3(0)=1) has no affect any registers not specified in the table below.

Register Name | Address | Bits Chip R/W Pipe- Description
lined?

/FIFO?

status 0x000(0) 31:0 | Chuck R/W Yes/ VVoodoo2 Graphics Status
Yes

reserved 0x004(4) n/a n/a n/a n/a

vertexAx 0x008(8) 15:0 | Chuck+Brucer | W Yes/ Vertex A x-coordinate location (12.4 format)
Yes

vertexAy 0x00c(12) 15:0 | Chuck+Brucer | W Yes/ Vertex A y-coordinate location (12.4 format)
Yes

vertexBx 0x010(16) 15:0 | Chuck+Brucer | W Yes/ Vertex B x-coordinate location (12.4 format)
Yes

vertexBy 0x014(20) 15:0 | Chuck+Brucer | W Yes/ Vertex B y-coordinate location (12.4 format)
Yes

vertexCx 0x018(24) 15:0 | Chuck+Brucer | W Yes/ Vertex C x-coordinate location (12.4 format)
Yes

vertexCy 0x01c(28) 15:0 | Chuck+Brucer | W Yes/ Vertex C y-coordinate location (12.4 format)
Yes

startR 0x020(32) 23:0 | Chuck W Yes/ Starting Red parameter (12.12 format)
Yes

dRdX 0x024(36) 23:0 | Chuck W Yes/ Change in Red with respect to X (12.12 format)
Yes

drRdY 0x028(40) 23:0 | Chuck W Yes/ Change in Red with respect to Y (12.12 format)
Yes

startG 0x02c(44) 23:0 | Chuck W Yes/ Starting Green parameter (12.12 format)
Yes

dGdX 0x030(48) 23:0 | Chuck W Yes/ Change in Green with respect to X (12.12 format)
Yes

dGdy 0x034(52) 23:0 | Chuck W Yes/ Change in Green with respect to Y (12.12 format)
Yes

startB 0x038(56) 23:0 | Chuck W Yes/ Starting Blue parameter (12.12 format)
Yes

dBdX 0x03c(60) 23:0 | Chuck W Yes/ Change in Blue with respect to X (12.12 format)
Yes

dBdY 0x040(64) 23:0 | Chuck W Yes/ Change in Blue with respect to Y (12.12 format)
Yes

startZ 0x044(68) 31:0 | Chuck W Yes/ Starting Z parameter (20.12 format)
Yes

dzZdXx 0x048(72) 31:0 | Chuck W Yes/ Change in Z with respect to X (20.12 format)
Yes

dzdy 0x04c(76) 31:0 | Chuck W Yes/ Changein Z with respect to Y (12.12 format)
Yes

startA 0x050(80) 23:0 | Chuck W Yes/ Starting Alpha parameter (12.12 format)
Yes

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 27 Updated 12/1/99

Vioodoo? Graphics

\J

 {

dAdX 0x0r;34(84) 23:0 | Chuck W Yes/ Change in Alphawith respect to X (12.12 format)
dAdY 0x058(88) 23:0 | Chuck W i:/ Change in Alphawith respect to Y (12.12 format)
startS 0x05¢(92) 31:0 | Bruce W i:/ Starting S/W parameter (14.18 format)
Yes
dsdX 0x060(96) 31:0 | Bruce W Yes/ Change in S’'W with respect to X (14.18 format)
dsdy 0x064(100) | 31:0 | Bruce W i:/ Change in S’'W with respect to Y (14.18 format)
startT 0x068(104) | 31:0 | Bruce W i:/ Starting T/W parameter (14.18 format)
dTdX 0x06¢(108) | 31:0 | Bruce W i:/ Change in T/W with respect to X (14.18 format)
dTdy 0x070(112) | 31:0 | Bruce W i:/ Change in T/W with respect to Y (14.18 format)
startw 0x074(116) | 31:0 | Chuck+Bruce | W i:/ Starting /W parameter (2.30 format)
dwdX 0x078(120) | 31:0 | Chuck+Bruce | W i:/ Change in /W with respect to X (2.30 format)
dwdy 0x07c(124) | 31:0 | Chuck+Bruce | W i:/ Change in /W with respect to Y (2.30 format)
Yes
triangleCMD 0x080(128) | 31 Chuck+Brucer | W Yes/ Execute TRIANGLE command (sign bit)
reserved 0x084(132) | n/a n/a W :/?
fvertexAx 0x088(136) | 31:0 | Chuck+Bruce» | W Yes/ Vertex A x-coordinate location (floating point)
fvertexAy 0x08c(140) | 31:0 | Chuck+Bruce» | W i:/ Vertex A y-coordinate location (floating point)
fvertexBx 0x090(144) | 31:0 | Chuck+Bruce» | W i:/ Vertex B x-coordinate location (floating point)
fvertexBy 0x094(148) | 31:0 | Chuck+Bruce» | W i:/ Vertex B y-coordinate location (floating point)
fvertexCx 0x098(152) | 31:0 | Chuck+Bruce» | W i:/ Vertex C x-coordinate location (floating point)
fvertexCy 0x09¢(156) | 31:0 | Chuck+Bruce» | W i:/ Vertex C y-coordinate location (floating point)
Yes
fstartR 0x0a0(160) | 31:0 | Chuck W Yes/ Starting Red parameter (floating point)
fdRdX 0x0a4(164) | 31:0 | Chuck W i:/ Change in Red with respect to X (floating point)
fdRdY 0x0a8(168) | 31:0 | Chuck W i:/ Change in Red with respect to Y (floating point)
fstartG 0x0ac(172) 31:0 | Chuck W izl Starting Green parameter (floating point)
fdGdX 0x0b0(176) | 31:0 | Chuck W i:/ Change in Green with respect to X (floating point)
fdGdY 0x0b4(180) | 31:0 | Chuck W i:/ Change in Green with respect to Y (floating point)
fstartB 0x0b8(184) | 31:.0 | Chuck W i:/ Starting Blue parameter (floating point)
Yes
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 28 Updated 12/1/99

Vioodoo? Graphics

\J

 \

fdBdX OXOrE)C(lSS) 31:0 | Chuck W Yes/ Change in Blue with respect to X (floating point)
Yes
fdBdY 0x0c0(192) | 31:0 | Chuck W Yes/ Change in Blue with respect to Y (floating point)
fstartz 0x0c4(196) | 31:.0 | Chuck W i:/ Starting Z parameter (floating point)
fdzdX 0x0c8(200) | 31:0 | Chuck W i:/ Change in Z with respect to X (floating point)
fdzdy 0x0cc(204) 31:0 | Chuck W i:/ Changein Z with respect to Y (floating point)
fstartA 0x0d0(208) | 31:.0 | Chuck W i:/ Starting Alpha parameter (floating point)
fdAdX 0x0d4(212) | 31:.0 | Chuck W i:/ Change in Alpha with respect to X (floating point)
fdAdY 0x0d8(216) | 31:.0 | Chuck W i:/ Change in Alphawith respect to Y (floating point)
fstartS 0x0dc(220) | 31:0 | Bruce W i:/ Starting /W parameter (floating point)
Yes
fdSdX 0x0e0(224) | 31:0 | Bruce W Yes/ Change in S’'W with respect to X (floating point)
fdsdy 0x0e4(228) | 31:0 | Bruce W i:/ Change in S’'W with respect to Y (floating point)
fstartT 0x0e8(232) | 31:.0 | Bruce W i:/ Starting T/W parameter (floating point)
fdTdX 0x0ec(236) 31:0 | Bruce W i:/ Change in T/W with respect to X (floating point)
fdTdy 0x0f0(240) 31:0 | Bruce W i:/ Change in T/W with respect to Y (floating point)
fstartw 0x0f4(244) 31:0 | Chuck+Bruce | W i:/ Starting /W parameter (floating point)
fdwdx 0x0f8(248) 31:0 | Chuck+Bruce | W i:/ Change in /W with respect to X (floating point)
fdwdy 0x0fc(252) 31:0 | Chuck+Bruce | W i:/ Change in /W with respect to Y (floating point)
Yes
ftriangleCMD 0x100(256) | 31 Chuck+Brucer | W Yes/ Execute TRIANGLE command (floating point)
Yes

5.1 statusRegister
The status register provides away for the CPU to interrogate the graphics processor about its current state and

FIFO availability. The status register is read only and writing to status has no effect.

Bit Description

5:0 PCI FIFO freespace (0x3f=FIFO empty). Default is Ox3f.

6 Vertical retrace (O=Vertical retrace active, 1=Vertical retrace inactive). Default is 1.

7 Chuck graphics engine busy (O=engine idle, 1=engine busy). Default isO.

8 Bruce busy (O=engine idle, 1=engine busy). Default isO.

9 VVoodoo2 Graphics busy (0=idle, 1=busy). Default isO.

11:10 Displayed buffer (O=buffer 0, 1=buffer 1, 2=auxiliary buffer, 3=reserved). Default isO.
2712 Memory FIFO freespace (Oxffff=FIFO empty). Default is Oxffff.

Copyright O 1996-1998 3Dfx Interactive, Inc.

Proprietary

29

Revision 1.16
Updated 12/1/99

Vioodoo? Graphics

i

30:28 Swap Buffers Pending. Default is 0xO.

31 reserved

Bits(5:0) show the number of entries available in the internal host FIFO. The internal host FIFO is 64 entries
deep. The FIFO is empty when bits(5:0)=0x3f. Bit(6) is the state of the monitor vertical retrace signal, and is used
to determine when the monitor is being refreshed. Bit(7) of statusis used to determine if the graphics engine of
Chuck isactive. Note that bit(7) only determinesif the graphics engine of Chuck is busy -- it does not include
information as to the status of the internal PCI FIFOs. Bit(8) of statusis used to determineif Bruce is busy. Note
that bit(8) of statusis set if any unit in Bruce isnot idle -- this includes the graphics engine and al internal Bruce
FIFOs. Bit(9) of status determinesif all unitsin the Voodoo2 Graphics system (including graphics engines,
FIFOs, etc.) areidle. Bit(9) is set when any internal unit in Voodoo2 Graphicsis active (e.g. graphicsis being
rendered or any FIFO is not empty). Bits(11:10) show which RGB buffer is used for monitor refresh. VVoodoo2
Graphics uses the values of bits(11:10) to determine the source of the RGB data that is sent to the monitor. When
the Memory FIFO is enabled, bits(27:12) show the number of entries available in the Memory FIFO. Depending
upon the amount of frame buffer memory available, a maximum of 65,536 entries may be stored in the Memory
FIFO. The Memory FIFO is empty when bits(27:12)=0xffff. Bits (30:28) of status track the number of outstanding
SWAPBUFFER commands. When a SWAPBUFFER command is received from the host cpu, bits (30:28) are
incremented -- when a SWAPBUFFER command compl etes, bits (30:28) are decremented.

5.2 intrCtrl Register

Theintr Ctrl register controls the interrupt capabilities of Voodoo2 Graphics. Bits 1:0 enable video horizontal
sync signal generation of interrupts. Generated horizontal sync interrupts are detected by the CPU by reading bits
7:6 of intrCtrl. Bits 3:2 enable video vertical sync signal generation of interrupts. Generated vertical sync
interrupts are detected by the CPU by reading bits 9:8 of intr Ctrl. Bit 4 of intr Ctrl enables generation of
interrupts when the frontend PCI FIFO isfull. Generated PCI FIFO Full interrupts are detected by the CPU by
reading bit 10 of intrCtrl. PCI FIFO full interrupts are genered when intr Ctrl bit 4 is set and the number of free
entries in the frontend PCI FIFO drops below the value specified in fbil nit0 bits(10:6). Bit 5 of intr Ctrl enables
the user interrupt command USERINTERRUPT generation of interrupts. Generated user interrupts are detected by
the CPU by reading bit 11 of intr Ctrl. The tag associated with a generated user interrupt is stored in bits 19:12 of
intrCtrl.

Generated interrupts are cleared by writing a 0 to the bit signaling a particular interrupt was generated and writing
altointerCtrl bit(31). For example, a PClI FIFO full generated interrupt is cleared by writing a O to bit 10 of
intrCtrl, and a generated user interrupt is cleared by writing a0 to bit 11 of intr Ctrl. For both cases, bit 31 of
intr Ctrl must be written with the value 1 to clear the external PCI interrupt. Care must be taken when clearing
interrupts not to accidentally overwrite the interrupt mask bits (bits 5:0) of intr Ctrl) which enable generation of
particular interrupts.

Note that writes to the intr Ctrl register are not pushed on the PCI frontend FIFO, so writesto intrCtrl are
processed immediately. SinceintrCtrl isnot FIFO’ ed, writes to intr Ctrl may be processed out-of-order with
respect to other queued writes in the PCI and memory-backed FIFOs. Also note that PCI configuration register
initEnable bit(20) must be set to 1 to generate external PCI interrupts.

Bit Description

0 Horizontal Sync (rising edge) interrupts enable (1=enable). Default isO.

1 Horizontal Sync (falling edge) interrupts enable (1=enable). Default isO.

2 Vertical Sync (rising edge) interrupts enable (1=enable). Default isO.

3 Vertical Sync (falling edge) interrupts enable (1=enable). Default isO.

4 PCI FIFO Full interrupts enable (1=enable). Default isO.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 30 Updated 12/1/99

Vioodoo? Graphics

Y
A

User Interrupt Command interrupts enable (1=enable). Default isO.

Horizontal Sync (rising edge) interrupt generated (1=interrupt generated).

Vertical Sync (rising edge) interrupt generated (1=interrupt generated).

5
6
7 Horizontal Sync (falling edge) interrupt generated (1=interrupt generated).
8
9

Vertical Sync (falling edge) interrupt generated (1=interrupt generated).

10 PCI FIFO Full interrupt generated (1=interrupt generated).

11 User Interrupt Command interrupt generated (1=interrupt generated).

19:12 User Interrupt Command Tag. Read only.

30:20 reserved

31 External pin pci_intavalue, active low (0=PCI interrupt is active, 1=PCl interrupt is
inactive)

5.3 vertex and fvertex Registers

The vertexAx, vertexAy, vertexBx, vertexBy, vertexCx, vertexCy, fvertexAx, fvertexAy, fvertexBx, fvertexBy,
fvertexCx, and fvertexCy registers specify the x and y coordinates of atriangle to be rendered. There are three
vertices in an Voodoo2 Graphics triangle, with the AB and BC edges defining the minor edge and the AC edge
defining the major edge. The diagram below illustrates two typical triangles:

(vertexAx, vertexAy) (vertexAx, vertexAy)

Minor Edge Minor Edge

(vertexBX, (vertexBX, Mzjor Edge

vertexBy) vertexBy)

Minor Edge Minor Edge

(vertexCx, vertexCy) (vertexCx, vertexCy)

The fvertex registers are floating point equivalents of the vertex registers. VVoodoo2 Graphics automatically
converts both the fvertex and vertex registersinto an internal fixed point notation used for rendering.

vertexAx, vertexAy, vertexBx, vertexBy, vertexCx, vertexCy

Bit Description

15:0 Vertex coordinate information (fixed point two’s complement 12.4 format)

fvertexAx, fvertexAy, fvertexBx, fvertexBy, fvertexCx, fvertexCy

Bit Description

31:.0 Vertex coordinate information (IEEE 32-bit single-precision floating point format)

54 startR, startG, startB, startA, fstartR, fstartG, fstartB, and fstartA Registers

The startR, startG, startB, startA, fstartR, fstartG, fstartB, and fstartA registers specify the starting color
information (red, green, blue, and alpha) of atriangle to be rendered. The start registers must contain the color
values associated with the A vertex of the triangle. The fstart registers are floating point equivalents of the start

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 31 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

registers. Voodoo2 Graphics automatically converts both the start and fstart registersinto an internal fixed point
notation used for rendering.

startR, startG, startB, startA

Bit Description

23.0 Starting Vertex-A Color information (fixed point two’s complement 12.12 format)

fstartR, fstartG, fstartB, fstartA

Bit Description
310 Starting Vertex-A Color information (IEEE 32-bit single-precision floating point
format)

55 startZ and fstartZ registers

The startZ and fstartZ registers specify the starting Z information of atriangle to be rendered. The startZ
registers must contain the Z values associated with the A vertex of the triangle. The fstartZ register isafloating
point equivalent of the startZ registers. Voodoo2 Graphics automatically converts both the startZ and fstartZ
registersinto an internal fixed point notation used for rendering.

startZ

Bit Description

31:.0 Starting Vertex-A Z information (fixed point two’s complement 20.12 format)
fstartZ

Bit Description

31:.0 Starting Vertex-A Z information (IEEE 32-bit single-precision floating point format)

5.6 startS, startT, fstartS, and fstartT Registers

The startS, startT, fstartS, and fstartT registers specify the starting S/W and T/W texture coordinate information
of atriangle to be rendered. The start registers must contain the texture coordinates associated with the A vertex
of thetriangle. Note that the Sand T coordinates used by Voodoo2 Graphics for rendering must be divided by W
prior to being sent to Voodoo2 Graphics (i.e. Voodoo2 Graphics iterates S'W and T/W prior to perspective
correction). During rendering, theiterated Sand T coordinates are (optionally) divided by the iterated W
parameter to perform perspective correction. The fstart registers are floating point equivalents of the start
registers. Voodoo2 Graphics automatically converts both the start and fstart registersinto an internal fixed point
notation used for rendering.

startS, startT
Bit Description
31:.0 Starting Vertex-A Texture coordinates (fixed point two's complement 14.18 format)

fstartS, fstartT

Bit Description
310 Starting Vertex-A Texture coordinates (IEEE 32-bit single-precision floating point
format)
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 32 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

5.7 startW and fstartW registers

The startW and fstartW registers specify the starting /W information of a triangle to be rendered. The startW
registers must contain the W values associated with the A vertex of the triangle. Note that the W value used by
Voodoo2 Graphics for rendering is actually the reciprocal of the 3D-geometry-calculated W value (i.e. Voodoo2
Graphics iterates 1/W prior to perspective correction). During rendering, the iterated Sand T coordinates are
(optionally) divided by the iterated W parameter to perform perspective correction. The fstartW register isa
floating point equivalent of the startW registers. VVoodoo2 Graphics automatically converts both the startW and
fstartW registersinto an internal fixed point notation used for rendering.

startw

Bit Description

31:.0 Starting Vertex-A W information (fixed point two's complement 2.30 format)
fstartw

Bit Description

31:.0 Starting Vertex-A W information (IEEE 32-bit single-precision floating point format)

5.8 dRdX, dGdX, dBdX, dAdX, fdRdX, fdGdX, fdBdX, and fdAdX Registers

The dRdX, dGdX, dBdX, dAdX, fdRdX, fdGdX, fdBdX, and fdAdX registers specify the change in the color
information (red, green, blue, and alpha) with respect to X of atriangle to be rendered. Asatriangleis rendered,
the d?dX registers are added to the the internal color component registers when the pixel drawn moves from left-
to-right, and are subtracted from the internal color component registers when the pixel drawn moves from right-to-
left. Thefd?dX registers are floating point equivalents of the d?dX registers. Voodoo2 Graphics automatically
converts both the d?dX and fd?dX registersinto an internal fixed point notation used for rendering.

dRdX, dGdX, dBdX, dAdX

Bit Description

23.0 Change in color with respect to X (fixed point two’s complement 12.12 format)

fdRdX, fdGdX, fdBdX, fdAdX

Bit Description

31:.0 Change in color with respect to X (IEEE 32-bit single-precision floating point format)

5.9 dZdX and fdZdX Registers

The dZdX and fdZdX registers specify the change in Z with respect to X of atriangle to be rendered. Asa
triangle is rendered, the dZdX register is added to the the internal Z register when the pixel drawn moves from
left-to-right, and is subtracted from the internal Z register when the pixel drawn moves from right-to-left. The
fdzdX registers are floating point equivalents of the dZdX registers. Voodoo2 Graphics automatically converts
both the dZdX and fdZdX registersinto an internal fixed point notation used for rendering.

dzdX

Bit Description

31:.0 Changein Z with respect to X (fixed point two’s complement 20.12 format)

fdzdX

Bit | Description |
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 33 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

| 31:0 | Changein Z with respect to X (IEEE 32-bit single-precision floating point format) |

5.10 dSdX, dTdX, fdSdX, and fdTdX Registers

The dXdX, dTdX, fdSdX, and fdTdX registers specify the change in the S'W and T/W texture coordinates with
respect to X of atriangle to be rendered. Asatriangleisrendered, the d?dX registers are added to the the internal
Sand T registers when the pixel drawn moves from left-to-right, and are subtracted from the internal S/'W and
T/W registers when the pixel drawn moves from right-to-left. Note that the delta S/'W and T/W values used by
Voodoo2 Graphics for rendering must be divided by W prior to being sent to Voodoo2 Graphics (i.e. Voodoo2
Graphics uses DS/W and DT/W). The d?dX registers are floating point equivalents of the fd?dX registers.
Voodoo2 Graphics automatically converts both the d?dX and fd?dX registers into an internal fixed point notation
used for rendering.

dSdX, dTdX

Bit Description

310 Changein Sand T with respect to X (fixed point two’s complement 14.18 format)
fdsdX, fdTdX

Bit Description

31:.0 Changein Z with respect to X (IEEE 32-bit single-precision floating point format)

5.11 dwdX and fdWdX Registers

The dWdX and fdWdX registers specify the change in /W with respect to X of atriangleto berendered. Asa
triangle is rendered, the dWdX register is added to the the internal /W register when the pixel drawn moves from
left-to-right, and is subtracted from the internal 1/W register when the pixel drawn moves from right-to-left. The
fdWdX registers are floating point equivalents of the dWdX registers. Voodoo2 Graphics automatically converts
both the dWdX and fdWdX registers into an internal fixed point notation used for rendering.

dwdx

Bit Description

31:.0 Change in W with respect to X (fixed point two’s complement 2.30 format)
fdwdX

Bit Description

31:.0 Change in W with respect to X (IEEE 32-bit single-precision floating point format)

5.12 dRdY, dGdY, dBdY, dAdY, fdRdY, fdGdY, fdBdY, and fdAdY Registers

ThedRdY, dGdY, dBdY, dAdY, fdRdY, fdGdY, fdBdY, and fdAdY registers specify the change in the color
information (red, green, blue, and alpha) with respect to Y of atriangle to be rendered. Asatriangleis rendered,
the d?dY registers are added to the the internal color component registers when the pixel drawn in a positive Y
direction, and are subtracted from the internal color component registers when the pixel drawn moves in a negative
Y direction. Thefd?dY registers are floating point equivalents of the d?dY registers. Voodoo2 Graphics
automatically converts both the d?dY and fd?dY registersinto an internal fixed point notation used for rendering.

dRdY, dGdY, dBdY, dAdY

Bit Description
23.0 Change in color with respect to Y (fixed point two’s complement 12.12 format)
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 34 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

fdrRdY, fdGdY, fdBdY, fdAdY

Bit Description

31:.0 Change in color with respect to Y (IEEE 32-bit single-precision floating point format)

5.13 dZdY and fdZdY Registers

ThedzdY and fdZdY registers specify the change in Z with respect to Y of atriangle to be rendered. Asa
triangle is rendered, the dZdY register is added to the the internal Z register when the pixel drawn movesin a
positive Y direction, and is subtracted from the internal Z register when the pixel drawn movesin a negative Y
direction. ThefdZdY registers are floating point equivalents of the dZdY registers. Voodoo2 Graphics
automatically converts both the dZdY and fdZdY registersinto an internal fixed point notation used for rendering.

dzdy

Bit Description

31:.0 Changein Z with respect to Y (fixed point two’s complement 20.12 format)
fdzdY

Bit Description

31:.0 Changein Z with respect to Y (IEEE 32-bit single-precision floating point format)

5.14 dsdY, dTdY, fdsdY, and fdTdY Registers

ThedYdY, dTdY, fdSdY, and fdTdY registers specify the change in the /W and T/W texture coordinates with
respect to Y of atriangleto be rendered. Asatriangleisrendered, the d?dY registers are added to the the interna
S/W and T/W registers when the pixel drawn movesin a positive Y direction, and are subtracted from the internal
S/W and T/W registers when the pixel drawn movesin anegative Y direction. Note that the delta S/'W and T/W
values used by Voodoo2 Graphics for rendering must be divided by W prior to being sent to Voodoo2 Graphics (i.e.
Voodoo2 Graphics uses DS/W and DT/W). The d?dY registers are floating point equivalents of the fd?2dY
registers. Voodoo2 Graphics automatically converts both the d?dY and fd?dY registersinto an internal fixed
point notation used for rendering.

dsdy, dTdY

Bit Description

31:.0 Changein Sand T with respect to Y (fixed point two’s complement 14.18 format)
fdsdy, fdTdY

Bit Description

31:.0 Changein Z with respect to Y (IEEE 32-bit single-precision floating point format)

5.15 dwdY and fdWdY Registers

The dWdY and fdWdY registers specify the change in /W with respect to Y of atriangle to be rendered. Asa
triangle is rendered, the dWdY register is added to the the internal 1/W register when the pixel drawn movesin a
positive Y direction, and is subtracted from the internal 1/W register when the pixel drawn movesin a negative Y
direction. ThefdWdY registers are floating point equivalents of the dWdY registers. Voodoo2 Graphics
automatically converts both the dWdY and fdWdY registersinto an internal fixed point notation used for
rendering.

dwdy
Bit | Description |
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 35 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

| 31:0 | Changein W with respect to Y (fixed point two's complement 2.30 format) |
fdwdy
Bit Description
31:.0 Change in W with respect to Y (IEEE 32-bit single-precision floating point format)

5.16 triangleCMD and ftriangleCM D Registers

ThetriangleCMD and ftriangleCM D registers execute the triangle drawing command. Writesto triangleCMD
or ftriangleCM D initiate rendering a triangle defined by the vertex, start, d?dX, and d?dY registers. Note that
the vertex, start, d?dX, and d?dY registers must be setup prior to writing to triangleCM D or ftriangleCMD.
The value stored to triangleCMD or ftriangleCM D is the area of the triangle being rendered -- this value
determines whether atriangle is clockwise or counter-clockwise geometrically. If bit(31)=0, then the triangle is
oriented in a counter-clockwise orientation (i.e. positive area). If bit(31)=1, then the triangleis oriented in a
clockwise orientation (i.e. negative ared). To calculate the area of atriangle, the following steps are performed:

1. Thevertices (A, B, and C) are sorted by the Y coordinate in order of increasing Y (i.e. Ay <= B.y <=C.y)
2. Theareaiscaculated as follows:
AREA = ((dxAB * dyBC) - (dxBC * dyAB)) /2
where
dxAB = A.x - B.X
dyBC=B.y-Cy
dxBC=B.x-Cx
dyAB=A.y-By

Note that Voodoo2 Graphics only requires the sign bit of the area to be stored in the triangleCM D and
ftriangleCM D registers -- bits(30:0) written to triangleCM D and ftriangleCM D are ignored.

triangleCMD

Bit Description

31 Sign of the area of the triangle to be rendered

ftriangleCM D

Bit Description

31 Sign of the area of the triangle to be rendered (IEEE 32-bit single-precision floating
point format)

5.17 fbzColorPath Register

The fbzColor Path register controls the color and alpha rendering pixel pipelines. Bitsin fbzColorPath control
color/alpha selection and lighting. Individual bits of fbzColor Path are set to enable modulation, addition, etc. for
various lighting effects including diffuse and specular highlights.

Bit Description
1:0 RGB Select (O=Iterated RGB, 1=Bruce Color Output, 2=Color 1 RGB, 3=Reserved)
3:2 Alpha Select (O=Iterated A, 1=Bruce Alpha Output, 2=Color1 Alpha, 3=Reserved)
4 Color Combine Unit control (cc_localselect mux control: O=iterated RGB, 1=Color0
RGB)
6:5 Alpha Combine Unit control (cca_localselect mux control: O=iterated alpha, 1=Color0
alpha, 2=clamped iterated Z, 3=clamped iterated W)
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 36 Updated 12/1/99

Vioodoo? Graphics

\J
A\

7 Color Combine Unit control (cc_localselect_override mux control: O=cc_localselect,
1=Texture alpha bit(7))

8 Color Combine Unit control (cc_zero other mux control: O=c_other, 1=zero)

9 Color Combine Unit control (cc_sub clocal mux control: O=zero, 1=c local)

12:10 Color Combine Unit control (cc_mselect mux control: O=zero, 1=c_local, 2=a_other,
3=a local, 4=texture alpha, 5=texture RGB, 6-7=reserved)

13 Color Combine Unit control (cc_reverse blend contral)

14 Color Combine Unit control (cc_add clocal control)

15 Color Combine Unit control (cc_add alocal control)

16 Color Combine Unit contral (cc_invert output control)

17 Alpha Combine Unit control (cca zero other mux control: O=a_other, 1=zero)

18 Alpha Combine Unit control (cca sub_clocal mux control: O=zero, 1=a local)

21:19 Alpha Combine Unit control (cca_mselect mux control: O=zero, 1=a local, 2=a_other,
3=a local, 4=texture apha, 5-7=reserved)

22 Alpha Combine Unit control (cca reverse blend control)

23 Alpha Combine Unit control (cca add clocal control)

24 Alpha Combine Unit control (cca add_alocal control)

25 Alpha Combine Unit control (cca invert output control)

26 Parameter Adjust (1=adjust parameters for subpixel correction)

27 Enable Texture Mapping (1=enable)

28 Enable RGBA, Z, and W parameter clamping (1=enable)

29 Enable anti-aliasing (1=enable)* (not implemented in Alpha version)

Note that the color channels are controlled separately from the alpha channel. There are two primary color
selection units: the Color Combine Unit(CCU) and the Alpha Combine Unit (ACU). Bits(1:0), bit(4), and
bits(16:8) of fbzColor Path control the Color Combine Unit. The diagram below illustrates the Color Combine
Unit controlled by the fbzColor Path register:

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 37 Updated 12/1/99

Voodoo? Graphics

colorl RGB
texture RGB Linear frame
. buffer RGB
Iterated RGB colorO RGB iterated RGB
chromaK ey, chromaRange)
01 rgbselect[1:0] 1 0 E texture alpha bit(0)
. cc_localselect
Optional -
Chroma-Key or cc_localselect_override
Chroma-Range c_other 0
Check c_local
0 1 cc_zero_other
18
Invalidate Pixel cc_sub_clocal ﬁ
" 8 08.0 a_other
texture alpha
18080 4 9 180 0 texture RGB
"/ L '
1234 cc_mselect[2:0]
19180

9 signed x 8|

| L
9 unsigned
multiply
cc_reverse_blend
Trunc. LSBs A 9180
No Round
a local

0 (9090

00 01 10 /_ {cc_add_clocal, cc_add_alocal}

8
"/
1 101.9.0

Clamp O-FF

cc_invert_output 8
\/I

8 Color

0.8
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 38 Updated 12/1/99

s T

. -l Voodoo? Graphics

Bits(3:2), hits(6:5), and hits(25:17) of fbzColor Path control the Alpha Combine Unit. The diagram below
illustrates the Alpha Combine Unit controlled by the fbzColor Path register:

colorl alpha
texture alpha

Linear frame color0 alpha
buffer alpha iterated Z(27:20), clamped
iterated W(39:32), clamped

iterated alpha

iterated alpha
Alpha-Mask Enable

012 :
aselect[1:0] cca_localselect[1:0]
Alpha-Mask
Check
a_other 0
a_local
0 1 cca_zero_other
0 148

cca_sub_clocal

a_other

a_local

texture alpha

cca_mselect[2:0]

9 signed x \ I; -cl>

9 unsigned
multiply

cca_reverse_blend

Trunc. LSBs A4 9 18.0

No Round 1

a_local

14 9 09.0

/__ {cca_add_clocal, cca_add_alocal}

1 101.9.0

Clamp O-FF

cca_invert_output 8

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 39 Updated 12/1/99

B Voodoo® Graphics
\)

Bit(26) of fbzColor Path enables subpixel correction for al parameters. When enabled, Voodoo2 Graphics
automatically subpixel corrects the incoming color, depth, and texture coordinate parameters for triangles not
aligned on integer spatial boundaries. Enabling subpixel correction decreases the on-chip triangle setup
performance from 7 clocks to 16 clocks, but as the triangle setup engine is separately pipelined from the triangle
rasterization engine, little if any performance penalty is seen when subpixel correction is enabled.

I mportant Note: When subpixel correction is enabled, the correction is performed on the start registers as they are
passed into the triangle setup unit from the PCI FIFO. Asaresult, the host must pass down new starting
parameter information for each new triangle -- if new starting parameter information is not passed down for a new
triangle, the starting parameters are subpixel corrected starting with the start registers already subpixel corrected
for the last rendered triangle [in effect the parameters are subpixel corrected twice, resulting in inaccuracies in the
starting parameter values|.

Bit(27) of fbzColorPath is used to enable texture mapping. If texture-mapped rendering is desired, then bit(27) of
fbzColor Path must be set. When bit(27)=1, then data is transfered from Bruce to Chuck. If texture mapping is
not desired (i.e. Gouraud shading, flat shading, etc.), then bit(27) may be cleared and no data is transfered from
Bruce to Chuck.

Bit(28) of fbzColorpath is used to enable RGBA, Z, and W parameter clamping. When fbzColor path bit(28)=1,
then the RGBA triangle parameters are be clamped to [0,0xff] inclusive during triangle rasterization. Note that
fbzColor path bit(28) has no effect on the RGBA triangle parameters during triangle setup or sub-pixel correction.
When fbzColor path bit(28)=0, then the RGBA parameters are allowed to wrap according to the following
formula:

if(rgbalterator[23:12] == Oxfff)
rgbad anped[7: 0] = 0xO;
el se if(rgbalterator[23:12] == 0x100)
rgbad anped[7: 0] = Oxff;
el se
rgbad anped[7:0] = rgbalterator[19:12];

When fbzColor path bit(28)=1, then the Z triangle parameter is clamped to [0,0xffff] inclusive during triangle
rasterization. Note that fbzColorpath bit(28) has no effect on the Z triangle parameter during triangle setup or
sub-pixel correction. Note also that the unclamped Z triangle iterator is used when performing floating point Z-
buffering (fozM ode bit(21)=1). When fbzColor path bit(28)=0, then the Z parameter is allowed to wrap according
to the following formula:

if(zlterator[31:12] == Oxfffff)
zd anped[15: 0] = 0xO0;
el se if(zlterator[31:12] == 0x10000)
zd anped[15: 0] = Oxffff;
el se
zd anped[15: 0] = zlterator[27:12];

When fbzColor path bit(28)=1, then the W triangle parameter is clamped to [0,0xff] inclusive for use in the Alpha
Combine Unit and the fog unit. Note that fbzColor path bit(28) has no effect on the W triangle parameter during
triangle setup or sub-pixel correction. Note also that the unclamped W triangle iterator is used when performing
floating point W-buffering (fbzM ode bit(21)=0). When fbzColor path bit(28)=0, then the W parameter used as
inputs to the ACU and fog unitsis allowed to wrap according to the following formula:

if(WMterator[47:32] == Oxffff)
wCl anped[7: 0] = 0xO;

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 40 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

else if(zlterator[47:32] == 0x0100)
wCl anped[7: 0] = Oxff;
el se
wCl anped[7: 0] = witerator[39: 32];

Bit(29) of fbzColorpath used to enable anti-aliasing. FIXME...

5.18 fogMode Register
The fogM ode register controls the fog functionality of Voodoo2 Graphics.

Bit Description

0 Enable fog (1=enable)

1 Fog Unit control (fogadd control: O=fogColor, 1=zero)

2 Fog Unit control (fogmult control: 0=Color Combine Unit RGB, 1=zero)

3 Fog Unit control (fogalpha control)

4 Fog Unit control (fogz contral)

5 Fog Unit control (fogconstant control: 0=fog multiplier output, 1=fogColor)
6 Fog Unit control (fogdither control, dither the fog blending component)

7 Fog Unit control (fogzones control, enable signed fog delta)

The diagram below shows the fog unit of Voodoo2 Graphics:

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 41 Updated 12/1/99

3dfx

Color Channel
(from Color
Combine Unit)

Voodoo? Graphics

Ny

fogColor

iterated w
(4. 12 floating point)

mantissa(9:2)
8

Z

¥ 6 {4 bits exponent,

, 6 {4 bits exponent,

mantissa(11:10)}] mantissa(11:10)}
64x8 RAM 64x8 RAM
(fog apha) (fog delta alpha)

(6.2 format) 8/

4

(6.0 format) 6 A 8(.8format)
8 unsigned x
14 0.1 6 unsigned
format, multipl
2nd Ish) Ry

Dither Matrix
bit(3)=y [0] xor x [O]
bit(2)=y [0]
bit(1)=y [1] xor x [1]

0 fog table alpha
9 signed x
9 unsigned
multiply
fogColor
fogconstant

8 Color before fog

fogenable

8 Fogged Color

1 (carry-out)

9 (1.8 format)

bit(0)=y [1]

(0.4 format) 4

fogdither

iterated alpha

iterated Z(27:20), clamped
iterated W(39:32), clamped

{fogz, fogal pha}

Bit(0) of fogM ode is used to enable fog and atmospheric effects. When fog is enabled, the fog color specified in
the fogColor register is blended with the source pixels as a function of the fogT able values and iterated W.

Copyright O 1996-1998 3Dfx Interactive, Inc.

Proprietary

42

Revision 1.16

Updated 12/1/99

“3dfy

Vioodoo? Graphics

Voodoo2 Graphics supports a 64-entry lookup table (fogTable) to support atmospheric effects such as fog and haze.
When enabled, the MSBs of a normalized floating point representation of (/W) is used to index into the 64-entry
fog table. The ouput of the lookup tableis an “alpha’ value which represents the level of blending to be performed
between the static fog/haze color and the incoming pixel color. 8 lower order bits of the floating point (/W) are

used to blend between multiple entries of the lookup table to reduce fog “banding.”

The fog lookup table is loaded

by the Host CPU, so various fog equations, colors, and effects can be supported.

The following table shows the mathematical equations for the supported values of bits(2:1) of fogM ode when

bits(5:3)=0:

Bit(0) - Enable | Bit(1) - fogadd | Bit(2) - fogmult | Fog Equation

Fog mux control mux control

0 ignored ignored Cout = Cin

1 0 0 Cout = Afog* Cfog + (1-Afog)*Cin
1 0 1 Cout = Afog* Cfog

1 1 0 Cout = (1-Afog)*Cin

1 1 1 Cout=0

where:

Cout = Color output from Fog block

Cin = Color input from Color Combine Unit Module
Cfog = fogColor register

AFog = aphavalue calculated from Fog table

Bits(4:3) of fogM ode allow other iterators to control the fog alpha. Setting fogM ode bits(4:3)=0x1 selects the
clamped integer part of the iterated alpha component to be used as the fog apha instead of the calculated fog alpha
from the fog table. Setting fogM ode bits(4:3)=0x2 selects the clamped high order integer bits of the iterated Z
component to be used as the fog alpha. Setting fogM ode bits(4:3)=0x3 selects the clamped low order integer bits
of theiterated W component to be used as the fog alpha. Bit(5) of fogM ode takes precedence over bits(4:3) and
enables a constant value(fogColor) to be added to incoming source color. Bit(6) of fogM ode dithers the fog
blending factors when for using the fog table. This minimizes fog “banding” visua artifacts. Bit(7) of fogM ode
allows signed values to be stored in the fog table. This allowsfog “zones’ to be implemented.

5.19 alphaMode Register
The alphaM ode register controls the apha blending and anti-aliasing functionality of Voodoo2 Graphics.

Bit Description

0 Enable alpha function (1=enable)

31 Alpha function (see table below)

4 Enable alpha blending (1=enable)

75 reserved

11:8 Source RGB alpha blending factor (see table below)

15:12 Destination RGB alpha blending factor (see table below)

19:16 Source alpha-channel apha blending factor (see table below)
23:20 Destination al pha-channel alpha blending factor (see table below)
31:24 Alphareference value

Bits(3:1) specify the alpha function during rendering operations. The alpha function and test pipeline is shown
below:

Revision 1.16
Updated 12/1/99

Copyright O 1996-1998 3Dfx Interactive, Inc.
Proprietary 43

B | Vioodoo? Graphics
\ 2
3dfx

Alphafrom Alpha
Combine Unit

alphaMode(31:24)
1 1
afunc_It afunc_eq
afunc_gt
AlphaTest I'>O
enable
Alphatest pass

When alphaM ode bit(0)=1, an alpha comparison is performed between the incoming source a pha and bits(31:24)
of alphaMode. Section 5.19.1 below further describes the apha function algorithm.

Bit(4) of alphaM ode enables alpha blending. When alpha blending is enabled, the blending function is performed
to combine the source color with the destination pixel. The blending factors of the source and destinations pixels
areindividually programmable, as determined by bits(23:8). Note that the RGB and alpha color channels may
have different alpha blending factors. Section 5.19.2 below further describes a pha blending.

5.19.1 Alphafunction

When the alphafunction is enabled (alphaM ode bit(0)=1), the following alpha comparison is performed:

AlphaS-c AlphaOP Al phaRef
where AlphaSc represents the alpha value of the incoming source pixel, and AlphaRef is the value of bits(31:24)
of alphaMode. A source pixel iswritten into an RGB buffer if the alpha comparison is true and writing into the
RGB buffer is enabled (fbzM ode bit(9)=1. If the apha function is enabled and the alpha comparison is false, the
fbiAfuncFail register isincremented and the pixel isinvalidated in the pixel pipeline and no drawing occurs to the
color or depth buffers. The supported al pha comparison functions (AlphaOPs) are shown below:

Value AlphaOP Function

0 never

1 less than

2 equal

3 less than or equal

4 greater than

5 not equal

6 greater than or equal

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 44 Updated 12/1/99

Vioodoo? Graphics

5.19.2 Alpha Blending

When alpha blending is enabled (alphaM ode bit(4)=1), incoming source pixels are blended with destination
pixels. The alphablending function for the RGB color componentsis as follows:
Dnew U (Sxa) + (Dold xb)

where
Drew The new destination pixel being written into the frame buffer
S The new source pixel being generated
Dold The old (current) destination pixel about to be modified
a The source pixel alpha blending function.
b The destination pixel apha blending function.

The alpha blending function for the alpha components is as follows:
Anew U (AS xad) + (Aold xbd)

where
Anew The new destination alpha being written into the alpha buffer
AS The new source alpha being generated

Aold

The old (current) destination alpha about to be modified

ad The source alpha al pha-blending function.
bd The destination alpha alpha-blending function.

Note that the source and destination pixels may have different associated al pha blending functions. Also note that
RGB color components and the a pha components may have different associated alpha blending functions. The
alpha blending factors of the RGB color components are defined in bits(15:8) of alphaM ode, while the alpha
blending factors of the alpha component is specified in bits(23:16) of alphaMode. The following table lists the
alpha blending functions supported for the RGB color components (stored in alphaM ode bits(15:8)):

Alpha Blending Function
(RGB Color Components)

Alpha Blending Function Pneumonic

Alpha Blending Function Description

0x0 AZERO Zero

Ox1 ASRC ALPHA Source alpha

0x2 A _COLOR Color

0x3 ADST ALPHA Destination alpha
0x4 AONE One

0x5 AOMSRC ALPHA 1 - Source alpha

0x6 AOM_COLOR 1- Color

0x7 AOMDST ALPHA 1 - Destination alpha
0x8-Oxe Reserved

Oxf (source a pha blending function)

ASATURATE

MIN(Source alpha, 1 - Destination
alpha)

Oxf (destination alpha blending function)

A_COLORBEFOREFOG

Color before Fog Unit

When the value Ox2 is selected as the destination alpha blending factor, the source pixel color is used as the
destination blending factor. When the value 0x2 is selected as the source alpha blending factor, the destination
pixel color is used as the source blending factor. Note also that the alpha blending function Oxf is different

depending upon whether it is being used as a source or destination alpha blending function. When the value Oxf is
selected as the destination alpha blending factor, the source color before the fog unit (“unfogged” color) is used as
the destination blending factor -- this alpha blending function is useful for multi-pass rendering with atmospheric
effects. When the value Oxf is selected as the source alpha blending factor, the a pha-saturate anti-aliasing

Copyright O 1996-1998 3Dfx Interactive, Inc.
Proprietary 45

Revision 1.16
Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

algorithm is selected -- this MIN function performs polygonal anti-aliasing for polygons which are drawn in front-
to-back order.

The following table lists the alpha blending functions supported for the Alpha color component (stored in
alphaM ode bits(23:16)):

Alpha Blending Function Alpha Blending Function Pneumonic Alpha Blending Function Description
(Alpha Color Component)

0x0 AZERO Zero

0x1-0x3 Reserved

0x4 AONE One

0x5-0xf Reserved

5.20 fbzM ode Register

The fbzM ode register controls frame buffer and depth buffer rendering functions of the Voodoo2 Graphics
processor. Bitsin fbzMode control clipping, chroma-keying, depth-buffering, dithering, and masking.

Bit Description

0 Enable clipping rectangle (1=enable)

1 Enable chroma-keying (1=enable)

2 Enable stipple register masking (1=enable)

3 Floating point depth buffer Select (0=Use integer Z-value for depth buffering, 1=Use
floating point value for depth buffering [either Z or W, controlled by fbzM ode bit(21)])

4 Enable depth-buffering (1=enable)

75 Depth-buffer function (see table below)

8 Enable dithering (1=enable)

9 RGB buffer write mask (O=disable writes to RGB buffer)

10 Depth/alpha buffer write mask (O=disable writes to depth/al pha buffer)

11 Dither algorithm (0=4x4 ordered dither, 1=2x2 ordered dither)

12 Enable Stipple pattern masking (1=enable)

13 Enable Alpha-channel mask (1=enable alpha-channel masking)

15:14 Draw buffer (O=Front Buffer, 1=Back Buffer, 2-3=Reserved)

16 Enable depth-biasing (1=enable)

17 Rendering commands Y origin (O=top of screen is origin, 1=bottom of screen is origin)

18 Enable alpha planes (1=enable)

19 Enable alpha-blending dither subtraction (1=enable)

20 Depth buffer source compare select (O=normal operation, 1=zaColor[15:0])

21 Depth float select (O=iterated W is used for floating point depth buffering, 1=iterated Z
is used for floating point depth buffering)

Bit(0) of fbzM ode is used to enable the clipping register. When set, clipping to the rectangle defined by the
clipLeftRight and clipBottomT op registersinclusive is enabled. When clipping is enabled, the bounding clipping
rectangle must always be less than or equal to the screen resolution in order to clip to screen coordinates. Also
note that if clipping is not enabled, rendering may not occur outside of the screen resolution. Bit(1) of fozModeis
used to enable the color compare check (chroma-keying). Chroma-keying is enabled by setting fbzM ode bit(1)=1
and chromaRange bit(28)=0. When chroma-keying is enabled, any source pixel matching the color specified in
the chromakK ey register is not written to the RGB buffer. If chroma-ranging is enabled (fbzM ode bit(1)=1 and
chromaRange hit(28)=1) then any source pixel matching the color criteria controlled by chromaRange bits(27:24)

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 46 Updated 12/1/99

B Voodoo® Graphics
\)

and specified in the chromaRange and chromakK ey registersis not written to theRGB buffer. The chroma-key
and chroma-range color compares are performed immediately after texture mapping lookup, but before the color
combine unit and fog in the pixel datapath.

Bit(2) of fbzM ode is used to enable stipple register masking. When enabled, bit(12) of fbzM ode is used to
determine the stipple mode -- bit(12)=0 specifies stipple rotate mode, while bit(12)=1 specifies stipple pattern
mode.

When stipple register masking is enabled and stipple rotate mode is selected, bit(31) of the stipple register is used
to mask pixelsin the pixel pipeline. For all triangle commands and linear frame buffer writes through the pixel
pipeline, pixels areinvalidated in the pixel pipelineif stipple bit(31)=0 and stipple register masking is enabled in
stipple rotate mode. After anindividual pixel is processed in the pixel pipeline, the stipple register is rotated from
right-to-left, with the value of bit(0) filled with the value of bit(31). Note that the stipple register is rotated
regardless of whether stipple masking is enabled (bit(2) in fbzM ode) when in stipple rotate mode.

When stipple register masking is enabled and stipple pattern mode is selected, the spatial <x,y> coordinates of a
pixel processed in the pixel pipeline are used to lookup a 4x8 monochrone pattern stored in the stipple register --
the resultant lookup value is used to mask pixelsin the pixel pipeline. For all triangle commands and linear frame
buffer writes through the pixel pipeline, a stipple bit is selected from the stipple register as follows:
switch(pixel_Y[1:0]) {
case O: stipple Y _sal[7:0] = stipple[7:0];
case 1: stipple Y _sal[7:0] = stipple[15:8];
case 2: stipple Y _sd[7:0] = stipple[23:16];
case 3: stipple_Y_sal[7:0] = stipple[31:24];
}
switch(pixel _X[2:0] {
case O: stipple_mask_bit = stipple Y _sal[7];
case 1: stipple_mask_bit = stipple Y _sel[6];
case 2: stipple_mask_bit = stipple Y _sel[5];
case 3: stipple_mask_bit = stipple Y _sel[4];
case 4: stipple_mask_bit = stipple Y _sel[3];
case 5: stipple_mask_bit = stipple Y _sel[2];
case 6: stipple_mask_hit = stipple Y _seal[1];
case 7: stipple_mask_bit = stipple Y _seal[Q];
}
If the stipple_mask_bit=0, the pixel isinvalidated in the pixel pipeline when stipple register masking is enabled
and stipple pattern mode is selected. Note that when stipple pattern mode is selected the stipple register is never
rotated.

Bits(4:3) specify the depth-buffering function during rendering operations. The depth buffering pipeline is shown
below:

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 47 Updated 12/1/99

Vioodoo? Graphics

3dfy

iterated W[47:0],
unclamped

iterated Z[31:0], unclamped
treat as 4.28 value, line up

decimal points with 16.32 w-term
and zero extended to 48 bits 1

48

iterated W[47:0], unclamped
iterated Z[27:12], clamped

0 depthfloat_select

48 floatSel

if(jw-iter[47:32]) {
mant = 0, exp = Oxf, underflow = 1
} elseif(!] w-iter[31:16]) {
mant = 1, exp = Oxf, underflow = 0
}else{
exp = find_first_one(w=iter[31:16])
mant = (w-iter[30:16] << exp), underflow = 0

}

if(IfloatSel[47:32]) {
mant = 0, exp = Oxf, underflow = 1
} elseif(!| floatSel[31:16]) {
mant = 1, exp = Oxf, underflow = 0
}else{
exp = find_first_one(floatSel[31:16])
mant = (floatSel[30:16] << exp), underflow = 0
}

16 (integer only)

exponent 4 12 mantissa

underflow

wfloat format:
1.<mant>* 2%exp

12 mantissa

exponent 4

To adder logic

zaColor[15:0]

cin=1

zbias enable

1. Sign extend 16-bit zaColor to 18 bits
2. Convert 16-bit depth to 18-bit
{ underflow,underflow,depth}
3. Add 18-bit values
4. Clamp to O-FFFF

To Fog Unit
old Depth
(from Depth Buffer)
i
1 1
zfunc_It zfunc_eq

zfunc_gt
Depth Buffer o
enable

l Depth test pass

Bit(4) of fbzM ode is used to enable depth-buffering. When depth buffering is enabled, a depth comparison is
performed for each source pixel as defined in bits(7:5). When bit(3)=0, the z iterator is used for the depth buffer
comparison. When bit(3)=1, a floating point representation of either the w iterator or the z iterator is used for the
depth buffer comparison. When bit(3)=1 enabling floating point depth-buffering, fbzM ode bit(21) selects whether

Copyright O 1996-1998 3Dfx Interactive, Inc.

Proprietary

Revision 1.16

48 Updated 12/1/99

B \Voodoo® Graphics
\J
3dix

to use the unclamped w iterator or the unclamped z iterator as the input to the fixed-to-float generation circuitry.
When converting from fixed-point format to floating point format, the inverse of the normalized iterator is used for
the depth-buffer comparison. Thisin effect implements a floating-point depth buffering scheme utilizing a 4-bit
exponent and a 12-bit mantissa. The inverted mantissais used so that the same depth buffer comparisons can be
used as with atypical integer z-buffer. Section 5.20.1 below further describes the depth-buffering algorithm.

Bit(8) of fbzM ode enables 16-bit color dithering. When enabled, native 24-bit source pixels are dithered into 16-
bit RGB color values with no performance penalty. When dithering is disabled, native 24-bit source pixels are
converted into 16-bit RGB color values by bit truncation. When dithering is enabled, bit(11) of fbzM ode defines
the dithering algorithm -- when bit(11)=0 a 4x4 ordered dither algorithm is used, and when bit(11)=1 a 2x2
ordered dither algorithm is used to convert 24-bit RGB pixels into 16-bit frame buffer colors.

Bit(9) of fbzM ode enables writes to the RGB buffers. Clearing bit(9) invalidates all writes to the RGB buffers, and
thus the RGB buffers remain unmodified for all rendering operations. Bit(9) must be set for normal drawing into
the RGB buffers. Similarly, bit(10) enables writes to the depth-buffer. When cleared, writes to the depth-buffer are
invalidated, and the depth-buffer state is unmodified for al rendering operations. Bit(10) must be set for normal
depth-buffered operation.

Bit(13) of fbzM ode enables the alpha-channel mask. When enabled, bit(0) of the incoming apha value is used to
mask writes to the color and depth buffers. If alpha channel masking is enabled and bit(0) of the incoming alpha
valueis 0, then the pixel isinvalidated in the pixel pipeline, the fbiAfuncFail register isincremented, and no
drawing occurs to the color or depth buffers. If alpha channel masking is enabled and bit(0) of the incoming alpha
valueis 1, then the pixel is drawn normally subject to depth function, alpha blending function, alphatest, and
color/depth masking.

Bits(15:14) of fbzM ode are used to select the RGB draw buffer for graphics drawing. For typical 3D-rendered
applications, drawing is only performed into a back buffer. However, some applications may desire to write into
the buffer that is being displayed by the monitor (the front buffer). Bit(16) of fbzMode is used to enable the Depth
Buffer bias. When bit(16)=1, the calculated depth value (irrespective of Z or 1/W type of depth buffering selected)
is added to bits(15:0) of zaColor. Depth buffer biasing is used to elimate aliasing artifacts when rendering co-
planar polygons.

Bit(17) of fbzM ode is used to define the origin of the Y coordinate for rendering operations (FASTFILL and
TRIANGLE commands) and linear frame buffer writes when the pixel pipeline is bypassed for linear frame buffer
writes (IfbM ode bit(8)=0). Note that bit(17) of fbzM ode does not affect linear frame buffer writes when the pixel
pipelineis bypassed for linear frame buffer writes (IfbM ode bit(8)=0), asin this situation bit(13) of IfbM ode
specifiesthe Y origin for linear frame buffer writes. Also note that fbzM ode bit(17) is never used to determine the
Y origin for linear frame buffer reads, as IfbM ode bit(13) aways specifiesthe Y origin for linear frame buffer
reads. When cleared, the Y origin (Y=0) for all rendering operations and linear frame buffer writes when the pixel
pipeline is enabled is defined to be at the top of the screen. When bit(17) is set, the Y origin is defined to be at the
bottom of the screen.

Bit(18) of fbzM ode is used to enable the destination alpha planes. When set, the auxiliary buffer is used as
destination alpha planes. Note that if bit(18) of fbzM ode is set that depth buffering cannot be used, and thus bit(4)
of fbzM ode (enable depth buffering) must be set to 0x0.

Bit(19) of fbzM ode is used to enable dither subtraction on the destination color during alpha blending. When
dither subtraction is enabled (fbzM ode bit(19)=1), the dither matrix used to convert 24-bit color to 16-bit color is
subtracted from the destination color before applying the al pha-blending algorithm. Enabling dither subtraction is
used to enhance image quality when performing a pha-blending.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 49 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

Bit(20) of fbzM ode is used to select the source depth value used for depth buffering. When fbzM ode bit(20)=0,
the source depth value used for the depth buffer comparison is either iterated Z or iterated W (as selected by
fbzM ode bit(3)) and may be biased (as controlled by fbzM ode bit(16)). When fbzM ode bit(20)=1, the constant
depth value defined by zaColor[15:0] is used as the source depth value for the depth buffer comparison.
Regardless of the state of fbzM ode bit(20), the biased iterated Z/W is written into the depth buffer if the depth
buffer function passes.

Bit(21) of fbzM ode is used to select either the w iterator or the z iterator to be used for floating point depth
buffering. Floating point depth buffering is enabled when fbzM ode bit(4)=1. When fbzM ode bit(21)=0, then the
unclamped w iterator is converted to a 4.12 floating point representation and used for depth buffering. When
fbzM ode bit(21)=1, then the unclamped z iterator is converted into a4.12 floating point format and used for
depth buffering.

5.20.1 Depth-buffering function

When the depth-buffering is enabled (fbzM ode bit(4)=1), the following depth comparison is performed:
DEPTHsrc DepthOP DEPTHdst

where DEPTHsrc and DEPTHdst represent the depth source and destination values respectively. A source pixel is

written into an RGB buffer if the depth comparison is true and writing into the RGB buffer is enabled (fbzM ode

bit(9)=1). The source depth value iswritten into the depth buffer if the depth comparison is true and writing into

the depth buffer is enabled (fbzM ode bit(10)=1). The supported depth comparison functions (DepthOPs) are

shown below:

<
o
c
)

DepthOP Function

never

less than

equal

less than or equal

greater than

not equal

greater than or equal

N[OOI W[IN[F|O

always

5.21 IfbMode Register
The IfbM ode register controls linear frame buffer accesses.

Bit Description

3:0 Linear frame buffer write format (see table below)

54 Linear frame buffer write buffer select (O=front buffer, 1=back buffer, 2-3=reserved).

7:6 Linear frame buffer read buffer select (O=front buffer, 1=back buffer, 2=depth/alpha
buffer, 3=reserved).

8 Enable VVoodoo2 Graphics pixel pipeline-processed linear frame buffer writes (1=enable)

10:9 Linear frame buffer RGBA lanes (see tables below)

11 16-bit word swap linear frame buffer writes (1=enable)

12 Byte swizzle linear frame buffer writes (1=enable)

13 LFB access Y origin (O=top of screen is origin, 1=bottom of screen is origin)

14 Linear frame buffer write access W select (O=LFB selected, 1=zacolor[15:0]).

15 16-bit word Swap linear frame buffer reads (1=enable)

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 50 Updated 12/1/99

Vioodoo? Graphics

Byte swizzle linear frame buffer reads (1=enable) |

The following table shows the supported VVoodoo2 Graphics linear frame buffer write formats:

Value Linear Frame Buffer Write Format

16-bit formats

0 16-bit RGB (5-6-5)

1 16-bit RGB (x-5-5-5)

2 16-bit ARGB (1-5-5-5)

3 Reserved
32-hit formats

4 24-hit RGB (x-8-8-8)

5 32-hit ARGB (8-8-8-8)

7:6 Reserved

11:8 Reserved

12 16-bit depth, 16-bit RGB (5-6-5)

13 16-bit depth, 16-bit RGB (x-5-5-5)

14 16-bit depth, 16-bit ARGB (1-5-5-5)

15 16-bit depth, 16-bit depth

When accessing the linear frame buffer, the cpu accesses information from the starting linear frame buffer (LFB)
address space (see section 4 on Voodoo2 Graphics address space) plus an offset which determines the <x,y>
coordinates being accessed. Bits(3:0) of IfbM ode define the format of linear frame buffer writes. Bits(5:4) of
IfbM ode select which buffer is written when performing linear frame buffer writes (either front or back buffer).
Bits(7:6) of IfbM ode select which buffer is read when performing linear frame buffer reads. Note that for linear
frame buffer reads, values from the depth/alpha buffer can be read by setting bits(7:6)=0x2.

When writing to the linear frame buffer, IfbM ode bit(8)=1 specifies that LFB pixels are processed by the normal
Voodoo2 Graphics pixel pipeline -- thisimplies each pixel written must have an associated depth and a pha value,
and is also subject to the fog mode, alphafunction, etc. If bit(8)=0, pixelswritten using LFB access bypass the
normal VVoodoo2 Graphics pixel pipeline and are written to the specified buffer unconditionally and the values
written are unconditionally written into the color/depth buffers except for optional color dithering [depth function,
alphablending, aphatest, and color/depth write masks are all bypassed when bit(8)=0]. If bit(8)=0, then only the
buffers that are specified in the particular LFB format are updated. Also note that if IfbM ode bit(8)=0 that the
color and Z mask hitsin fbzM ode(bits 9 and 10) are ignored for LFB writes. For example, if LFB modes 0-2, or 4
are used and hit(8)=0, then only the color buffers are updated for LFB writes (the depth buffer is unaffected by all
LFB writes for these modes, regardless of the status of the Z-mask bit fbzM ode bit 10). However, if LFB modes
12-14 are used and hit(8)=0, then both the color and depth buffers are updated with the LFB write data,
irrespective of the color and Z mask bitsin fbzMode. If LFB mode 15 is used and bit(8)=0, then only the depth
buffer is updated for LFB writes (the color buffers are unaffected by all LFB writesin this mode, regardless of the
status of the color mask bitsin fbzM ode).

If IfbM ode bit(8)=0 and a LFB write format is selected which contains an a pha component (formats 2, 5, and 14)
and the alpha buffer is enabled, then the alpha component is written into the alpha buffer. Conversely, if the alpha
buffer is not enabled, then the alpha component of LFB writes using formats 2, 5, and 14 when bit(8)=0 are
ignored. Note that anytime LFB formats 2, 5, and 14 are used when bit(8)=0 that blending and/or chroma-keying
using the alpha component is not performed since the pixel-pipeline is bypassed when bit(8)=0.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 51 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

If IfbM ode bit(8)=0 and LFB write format 14 is used, the component that isignored is determined by whether the
alpha buffer is enabled -- If the alpha buffer is enabled and LFB write format 14 is used with bit(8)=0, then the
depth component isignored for al LFB writes. Conversaly, if the alpha buffer is disabled and LFB write format is
used with bit(8)=0, then the alpha component isignored for all LFB writes.

If IfbM ode bit(8)=1 and a LFB write access format does not include depth or alphainformation (formats 0-5), then
the appropriate depth and/or aphainformation for each pixel written is taken from the zaColor register. Note that
if bit(8)=1 that the LFB write pixels are processed by the normal Voodoo2 Graphics pixel pipeline and thus are
subject to the per-pixel operations including clipping, dithering, alpha-blending, alpha-testing, depth-testing,
chroma-keying, fogging, and color/depth write masking.

Bits(10:9) of IfbM ode specify the RGB channel format (color lanes) for linear frame buffer writes. The table
below shows the Voodoo2 Graphics supported RGB lanes:

Value RGB Channel Format
0 ARGB
1 ABGR
2 RGBA
3 BGRA

Bit(11) of IfbM ode defines the format of 2 16-bit data types passed with a single 32-bit writes. For linear frame
buffer formats 0-2, two 16-bit data transfers can be packed into one 32-bit write -- bit(11) defines which 16-bit
shorts correspond to which pixels on screen. The table below shows the pixel packing for packed 32-bit linear
frame buffer formats 0-2:

IfbM ode bit(11) Screen Pixel Packing
0 Right Pixel(host data 31:16), Left Pixel(host data 15:0)
1 Left Pixel(host data 31:16), Right Pixel(host data 15:0)

For linear frame buffer formats 12-14, bit(11) of IfbM ode defines the bit locations of the 2 16-bit data types passed.
The table below shows the data packing for 32-bit linear frame buffer formats 12-14:

IfbM ode bit(11) Screen Pixel Packing
0 Z value(host data 31:16), RGB value(host data 15:0)
1 RGB value(host data 31:16), Z value(host data 15:0)

For linear frame buffer format 15, bit(11) of IfbM ode defines the bit locations of the 2 16-bit depth values passed.
The table below shows the data packing for 32-bit linear frame buffer format 15:

IfbM ode bit(11) Screen Pixel Packing
0 Z Right Pixel(host data 31:16), Z Left Pixel(host data 15:0)
1 Z left Pixel(host data 31:16), Z Right Pixel(host data 15:0)

Note that bit(11) of IfbModeisignored for linear frame buffer writes using formats 4 or 5.

Bit(12) of IfbM ode is used to enable byte swizzling. When byte swizzling is enabled, the 4-bytes within a 32-bit
word are swizzled to correct for endian differences between Voodoo2 Graphics and the host CPU. For little endian
CPUs (e.g. Intel x86 processors) byte swizzling should not be enabled, however big endian CPUs (e.g. PowerPC
processors) should enable byte swizzling. For linear frame buffer writes, the bytes within aword are swizzled prior

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 52 Updated 12/1/99

B] \Voodoo® Graphics
\J
3dfx

to being modified by the other control bits of IfbMode. When byte swizzling is enabled, bits(31:24) are swapped
with bits(7:0), and bits(23:16) are swapped with bits(15:8). Note the status of bit(12) of IfbM ode has no affect on
linear frame buffer reads.

Very Important Note: The order of swapping and swizzling operations for LFB writesis asfollows. byte
swizzling is performed first on all incoming LFB data, as defined by [fbM ode bit(12) and irrespective of the LFB
dataformat. After byte swizzling, 16-bit word swapping is performed as defined by IfbM ode bit(11). Note that
16-bit word swapping is never performed on LFB data when dataformats 4 and 5 are used. Also note that 16-bit
word swapping is performed on the LFB data that was previously optionally swapped. Finaly, after both swizzling
and 16-bit word swapping are performed, the individual color channels are selected as defined in IfbM ode
bits(10:9). Note that the color channels are selected on the LFB data that was previously swizzled and/or swapped

Bit(13) of IfbM ode is used to define the origin of the Y coordinate for all linear frame buffer reads and linear
frame buffer writes when the pixel pipelineis bypassed (IfbM ode bit(8)=0). Note that bit(13) of IfbM ode does not
affect rendering operations (FASTFILL and TRIANGLE commands) -- bit(17) of fbzM ode defines the origin of
the Y coordinate for rendering operations. Note also that if the pixel pipelineis enabled for linear frame buffer
writes (IfbM ode bit(8)=1), then fbzM ode bit(17) is used to determine the location of the Y origin. For linear
frame buffer reads, however, IfbM ode bit(13) is always used to determine the Y origin, regardless of the setting of
IfbM ode bit(8). When cleared, the Y origin (Y=0) for al linear frame buffer accessesis defined to be at the top of
the screen. When bit(13) is set, the Y origin for all linear frame buffer accesses is defined to be at the bottom of
the screen.

Bit(14) of IfbM ode is used to select the W component used for LFB writes processed through the pixel pipeline. If
bit(14)=0, then the M SBs of the fractional component of the 48-bit W value passed to the pixel pipeline for LFB
writes through the pixel pipeline is the 16-bit Z value associated with the LFB write. [Note that the 16-bit Z value
associated with the LFB write is dependent on the LFB format, and is either passed down pixel-by-pixel from the
CPU, or is set to the constant zaColor (15:0)]. If bit(14)=1, then the MSBs of the fractional component of the 48-
bit W value passed to the pixel pipeline for LFB writesis zacolor (15:0). Regardless of the setting of bit(14), when
LFB writes go through the pixel pipeline, al other bits except the 16 M SBs of the fractional component of the W
value are set to 0x0. Note that bit(14) isignored if LFB writes bypass the pixel pipeline.

5.21.1 Linear Frame Buffer Writes

Linear frame buffer writes -- format O:

When writing to the linear frame buffer with 16-bit format O (RGB 5-6-5), the RGB channel format specifies the
RGB ordering within a 16-bit word. If the Voodoo2 Graphics pixel pipelineis enabled for LFB accesses (IfbM ode
bit(8)=1), then alpha and depth information for LFB format O is taken from the zaColor register. The following
table shows the color channels for 16-bit linear frame buffer access format O:

RGB Channd 16-bit Linear frame RGB Channd
Format Value buffer access bits

0 15.0 Red (15:11), Green(10:5), Blue(4:0)

1 15.0 Blue (15:11), Green(10:5), Red(4:0)

2 15.0 Red (15:11), Green(10:5), Blue(4:0)

3 15.0 Blue (15:11), Green(10:5), Red(4:0)

Linear frame buffer writes -- format 1:
When writing to the linear frame buffer with 16-bit format 1 (RGB 5-5-5), the RGB channel format specifies the
RGB ordering within a 16-bit word. If the Voodoo2 Graphics pixel pipelineisenabled for LFB accesses (IfbM ode

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 53 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

bit(8)=1), then alpha and depth information for LFB format 1 is taken from the zaColor register. The following
table shows the color channels for 16-bit linear frame buffer access format 1:

RGB Chann€ 16-bit Linear frame RGB Channd
Format Value buffer access bits
0 15.0 Ignored(15), Red (14:10), Green(9:5), Blug(4:0)
1 15.0 Ignored(15), Blue (14:10), Green(9:5), Red(4:0)
2 15.0 Red (15:11), Green(10:6), Blue(5:1), Ignored(0)
3 15.0 Blue (15:11), Green(10:6), Red(5:1), Ignored(0)

Linear frame buffer writes -- format 2:

When writing to the linear frame buffer with 16-bit format 2 (ARGB 1-5-5-5), the RGB channel format specifies
the RGB ordering within a 16-bit word. If the Voodoo2 Graphics pixel pipelineis enabled for LFB accesses
(IfbM ode bit(8)=1), then depth information for LFB format 2 is taken from the zaColor register. Note that the 1-
bit alpha value passed when using LFB format 2 is bit-replicated to yield the 8-bit alpha used in the pixel pipeline.
The following table shows the color channels for 16-bit linear frame buffer access format 2:

RGB Channd 16-bit Linear frame RGB Channd
Format Value buffer access bits
0 15.0 Alpha(15), Red (14:10), Green(9:5), Blug(4:0)
1 15.0 Alpha(15), Blue (14:10), Green(9:5), Red(4:0)
2 15.0 Red (15:11), Green(10:6), Blueg(5:1), Alpha(0)
3 15.0 Blue (15:11), Green(10:6), Red(5:1), Alpha(0)

Linear frame buffer writes-- format 3:
Linear frame buffer format 3 is an unsupported format.

Linear frame buffer writes -- format 4:

When writing to the linear frame buffer with 24-bit format 4 (RGB x-8-8-8), the RGB channel format specifies the
RGB ordering within a 24-bit word. Note that the alpha/A channel isignored for 24-bit access format 4. Also
note that while only 24-bits of datais transfered for format 4, all data access must be 32-bit aligned -- packed 24-
bit writes are not supported by Voodoo2 Graphics. If the Voodoo2 Graphics pixel pipeline is enabled for LFB
accesses (IfbM ode bit(8)=1), then alpha and depth information for LFB format 4 is taken from the zaColor
register. The following table shows the color channels for 24-bit linear frame buffer access format 4:

RGB Channd 24-bit Linear frame RGB Channd
Format Value buffer access bits
(aligned to 32-bits)
0 31.0 Ignored(31:24), Red (23:16), Green(15:8), Blue(7:0)
1 31.0 Ignored(31:24), Blue(23:16), Green(15:8), Red(7:0)
2 31.0 Red(31:24), Green(23:16), Blug(15:8), Ignored(7:0)
3 31.0 Blue(31:24), Green(23:16), Red(15:8), Ignored(7:0)

Linear frame buffer writes -- format 5:

When writing to the linear frame buffer with 32-bit format 5 (ARGB 8-8-8-8), the RGB channel format specifies
the ARGB ordering within a 32-bit word. If the Voodoo2 Graphics pixel pipelineis enabled for LFB accesses
(IfbM ode bit(8)=1), then depth information for LFB format 5 is taken from the zaColor register. The following
table shows the color channels for 32-bit linear frame buffer access format 5.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 54 Updated 12/1/99

Vioodoo? Graphics

RGB Channd 24-bit Linear frame RGB Channd
Format Value buffer access bits
(aligned to 32-bits)
0 31.0 Alpha(31:24), Red (23:16), Green(15:8), Blueg(7:0)
1 31.0 Alpha(31:24), Blue(23:16), Green(15:8), Red(7:0)
2 31.0 Red(31:24), Green(23:16), Blue(15:8), Alpha(7:0)
3 31.0 Blue(31:24), Green(23:16), Red(15:8), Alpha(7:0)

Linear frame buffer writes -- formats 6-11:
Linear frame buffer formats 6-11 are unsupported formats.

Linear frame buffer writes -- format 12:

When writing to the linear frame buffer with 32-bit format 12 (Depth 16, RGB 5-6-5), the RGB channel format
specifies the RGB ordering within the 32-bit word. If the Voodoo2 Graphics pixel pipelineis enabled for LFB
accesses (IfbM ode bit(8)=1), then alphainformation for LFB format 12 is taken from the zaColor register. Note
that the format of the depth value passed when using LFB format 12 must precisely match the format of the type of
depth buffering being used (either 16-bit integer Z or 16-hit floating point 1/W). The following table shows the 16-
bit color channels within the 32-bit linear frame buffer access format 12:

RGB Channd 16-bit Linear frame RGB Channd
Format Value buffer access bits

0 15.0 Red (15:11), Green(10:5), Blue(4:0)

1 15.0 Blue (15:11), Green(10:5), Red(4:0)

2 15.0 Red (15:11), Green(10:5), Blue(4:0)

3 15.0 Blue (15:11), Green(10:5), Red(4:0)

Linear frame buffer writes -- format 13:

When writing to the linear frame buffer with 32-bit format 13 (Depth 16, RGB x-5-5-5), the RGB channel format
specifies the RGB ordering within the 32-bit word. If the Voodoo2 Graphics pixel pipelineis enabled for LFB
accesses (IfbM ode bit(8)=1), then alphainformation for LFB format 13 is taken from the zaColor register. Note
that the format of the depth value passed when using LFB format 13 must precisely match the format of the type of
depth buffering being used (either 16-bit integer Z or 16-hit floating point 1/W). The following table shows the 16-
bit color channels within the 32-bit linear frame buffer access format 13:

RGB Channd 16-bit Linear frame RGB Channd
Format Value buffer access bits
0 15.0 Ignored(15), Red (14:10), Green(9:5), Blug(4:0)
1 15.0 Ignored(15), Blue (14:10), Green(9:5), Red(4:0)
2 15.0 Red (15:11), Green(10:6), Blue(5:1), Ignored(0)
3 15.0 Blue (15:11), Green(10:6), Red(5:1), Ignored(0)

Linear frame buffer writes -- format 14:

When writing to the linear frame buffer with 32-bit format 14 (Depth 16, ARGB 1-5-5-5), the RGB channel format
specifies the RGB ordering within the 32-bit word. Note that the format of the depth value passed when using LFB
format 14 must precisely match the format of the type of depth buffering being used (either 16-bit integer Z or 16-
bit floating point 1/W). Also note that the 1-bit alpha value passed when using LFB format 14 is bit-replicated to
yield the 8-bit alpha used in the pixel pipeline. The following table shows the 16-bit color channels within the 32-
bit linear frame buffer access format 14:

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 55 Updated 12/1/99

Vioodoo? Graphics

RGB Channd 16-bit Linear frame RGB Channd
Format Value buffer access bits
0 15.0 Alpha(15), Red (14:10), Green(9:5), Blug(4:0)
1 15.0 Alpha(15), Blue (14:10), Green(9:5), Red(4:0)
2 15.0 Red (15:11), Green(10:6), Blueg(5:1), Alpha(0)
3 15.0 Blue (15:11), Green(10:6), Red(5:1), Alpha(0)

Linear frame buffer writes -- format 15:

When writing to the linear frame buffer with 32-bit format 15 (Depth 16, Depth 16), the format of the depth values
passed must precisely match the format of the type of depth buffering being used (either 16-bit integer Z or 16-bit
floating point /W). If the Voodoo2 Graphics pixel pipelineis enabled for LFB accesses (IfbM ode bit(8)=1), then
RGB color information is taken from the color 1 register, and alphainformation for LFB format 15 is taken from
the zaColor register.

5.21.2 Linear Frame Buffer Reads

When reading from the linear frame buffer, all data returned isin 16/16 format, with two 16-bit pixels returned for
every 32-bit doubleword read. The RGB channel format of the 16-bit pixels read is defined by the rgb channel
format field of [fbM ode bits(12:9). The alpha/depth buffer can also be read by selecting IfbM ode bits(7:6)=0x2.
The mapping of the screen space pixels to the two 16-bit words within a 32-bit read are defined by IfbM ode bit(15)
as shown in the following table:

IfbM ode bit(15) Screen Pixel Packing
0 Right Pixel(host data 31:16), Left Pixel(host data 15:0)
1 Left Pixel(host data 31:16), Right Pixel(host data 15:0)

The value of bit(16) of IfbM ode a so affects the byte positioning of linear frame buffer reads -- if bit(16)=1, then
the LFB read data output from the 16-bit word swap logic is byte-swizzled. Note that byte swizzling (if enabled) is
performed after 16-bit word swapping (if enabled) for linear frame buffer reads. Also note that byte swizzling
and/or word swapping are performed on reads from the depth/al pha buffer (selected when IfbM ode bits(7:6)=0x2)
if either or both are enabled. The value of bit(13) of IfbM ode selects the position of the Y origin for all linear
frame buffer reads. The order of frame buffer read data formatting isillustrated below:

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 56 Updated 12/1/99

B Voodoo® Graphics
\)

Data from Frame Buffer

64

Color Buffer/
Depth Buffer select [“@— |foMode(7:6)

32

Color Lane Select <
(for colors only) IfbM 0de(10:9)

32

16-bit Word Swap |-a—— 1fbM ode(15)

32

ByteSwizzle |«a— IfoMode(16)

32

Datato CPU

See section 9 for more information on linear frame buffer accesses.

5.22 clipLeftRight and clipLowYHighY Registers

The clip registers specify a rectangle within which all drawing operations are confined. If apixel to be drawn lies
outside the clip rectangle and clipping is enabled (fbzM ode(0)=1), then it is not written into the RGB or depth
buffers. Note that the specified clipping rectangle defines avalid drawing area in both the RGB and depth/alpha
buffers. The valuesin the clipping registers are given in pixel units, and the valid drawing rectangle isinclusive of
the clipleft and clipLowY register values, but exclusive of the clipRight and clipHighY register values.

clipLowY must be less than clipHighY, and clipL eft must be less than clipRight. The clip registers can be
enabled by setting bit(0) in the fbzM ode register. When clipping is enabled, the bounding clipping rectangle must
always be less than or equal to the screen resolution in order to clip to screen coordinates. Also note that if
clipping is not enabled, rendering must not be specified to occur outside of the screen resolution.

Important Note: The clipLowYHighY register is defined such that y=0 always resides at the top of the monitor
screen. Changing the value of the Y origin bits (fbzM ode bit(17) or IfbM ode bit(13)) has no affect on the
clipLowYHighY register orientation. Asaresult, if theY origin is defined to be at the bottom of the screen (by
setting one of the Y origin bits), care must be taken in setting the clipLowYHighY register to ensure proper
functionality. In the case wheretheY origin is defined to be at the bottom of the screen, the value of
clipLowYHighY isusually set as the number of scan linesin the monitor resolution minus the desired Y clipping
values.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 57 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

The clip registers are also used to define a rectangular region to be drawn during a FASTFILL command. Note
that when clipLowYHighY is used to specify arectangular region for the FASTFILL command, the orientation of
the Y origin (top or bottom of the screen) is defined by the status of fbzM ode bit(17). See section 7 and the
fastfill CM D register description for more information on the FASTFILL command.

clipL eftRight Register

Bit Description

11:0 Unsigned integer specifying right clipping rectangle edge
15:12 reserved

27:16 Unsigned integer specifying left clipping rectangle edge
31:28 reserved

clipLowYHighY Register

Bit Description

11:0 Unsigned integer specifying high Y clipping rectangle edge
15:12 reserved

27:16 Unsigned integer specifying low Y clipping rectangle edge
31:28 reserved

5.23 nopCMD Register

Writing any data to the nopCM D register executes the NOP command. Executing a NOP command forces
completion of all commands and flushes the graphics pipeline, regardless of the data written to nopCMD. Bit O of
nopCMD is used to optionaly clear the fbiPixelsIn, fbiChromaFail, fbiZfuncFail, fbiAfuncFail, and
fbiPixelsOut registers. Setting nopCM D bit(0)=1 clears the aforementioned registersl and flushes the graphics
pipeline. Setting nopCM D bit(0)=0 does not modify the values of the aforementioned registers but flushes the
graphics pipeline. Similarly, setting nopCM D bit(1)=1 clears the fbiTrianglesOut register.

Bit Description

0 Clear fbiPixelsln, fbiChromaFail, fbiZfuncFail, fbiAfuncFail, and fbiPixelsOut
registers (1=clear registers)

1 Clear fhiTrianglesOut register (1=clear register)

5.24 fastfillCMD Register

Writing any data to the fastfill register executes the FASTFILL command. The FASTFILL command is used to
clear the RGB and depth buffers as quickly as possible. Prior to executing the FASTFILL command, the
clipLeftRight and clipLowYHighY are loaded with a rectangular area which is the desired areato be cleared.
Note that clip registers define arectangular area which isinclusive of the clipL eft and clipLowY register values,
but exclusive of the clipRight and clipHighY register values. The fastfillCMD register is then written to initiate
the FASTFILL command after the clip registers have been loaded. FASTFILL optionally clears the color buffers
with the RGB color specified in the color 1 register, and also optionally clears the depth buffer with the depth value
taken from the zaColor register. Note that since color 1 is a 24-bit value, either dithering or bit truncation must be
used to trandlate the 24-bit value into the native 16-bit frame buffer -- dithering may be employed optionally as
defined by bit(8) of fbzM ode. Disabling clearing of the color or depth buffers is accomplished by modifying the
rgb/depth mask bits(10:9) in fbzM ode. This alowsindividual or combined clearing of the RGB and depth buffers.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 58 Updated 12/1/99

B] \Voodoo® Graphics
\J
3dfx

5.25 swapbufferCMD Register
Writing to the swapbuffer CM D register executes the SWAPBUFFER command:

Bit Description

0 Synchronize frame buffer swapping to vertical retrace (1=enable)
81 Swap buffer interval

9 Disable buffer swapping (1=do not swap buffers)

If the data written to swapbuffer CM D hit(0)=0, then the frame buffer swapping is not synchronized with vertical
retrace. If frame buffer swapping is not synchronized with vertical retrace, then visible frame “tearing” may occur.
If swapbuffer CMD bit(0)=1 then the frame buffer swapping is synchronized with vertical retrace. Synchronizing
frame buffer swapping with vertical retrace eliminates the aforementioned frame “tearing.” When a

swapbuffer CMD isreceived in the front-end PCI host FIFO, the swap buffers pending field in the status register is
incremented. Conversely, when an actual frame buffer swapping occurs, the swap buffers pending field in the
status register (bits(30:28)) is decremented. The swap buffers pending field allows software to determine how
many SWAPBUFFER commands are present in the Voodoo2 Graphics FIFOs. Bits(8:1) of swapbuffer CMD are
used to specify the number of vertical retraces to wait before swapping the color buffers. Aninternal counter is
incremented whenever a vertical retrace occurs, and the color buffers are not swapped until the internal vertical
retrace counter is greater than the value of swapbuffer CMD bits(8:1) -- After a swap occurs, the internal vertical
retrace counter is cleared. Specifying values other than zero for bits(8:1) are used to maintain constant frame rate.
Note that if vertical retrace synchronization is disabled for swapping buffers (swapbuffer CM D(0)=0), then the
swap buffer interval field isignored.

When triple buffering is enabled (fbil nit2(4)=1), three color buffers are used to improve overall rendering
performance. When triple buffering is enabled and a SWAPBUFFER command is executed, Voodoo2 Graphics
begins rendering into a third buffer instead of waiting for vertical retrace. Sincetimeis not spent waiting for
vertical retrace to occur, overall rendering performance is improved. But similar to when only two color buffers
are used, Voodoo2 Graphics only changes the front buffer pointer during active vertical retrace (to eliminate visua
tearing). If rendering to the third buffer has completed before the first SWAPBUFFER command has changed the
front buffer pointer and a new SWAPBUFFER command is executed, then the hardware automatically waits for
vertical retrace before continuing execution — this allows up to 2 fully-rendered buffers to be queued and waiting to
be displayed when using triple buffering. Note that syncing to vertical retrace must be enabled and the swapbuffer
interval must be 0x0 when using triple buffering (swapbuffer CM D(8:0=0x1).

Bit 9 of swapbuffer CMD is used to disable swapping of the front and back buffer pointers for the SWAPBUFFER
command. Normally, bit 9 of swapbuffer CMD is set to 0 and the front and back buffer pointers are swapped upon
execution of a SWAPBUFFER command. However, simultaneoudly setting bits 0 and 9 of swapbuffer CM D
allows an application to force the hardware to wait for vertical retrace before continuing execution, but without
actually swapping buffers. Note that bit 9 of swapbuffer CM D must be 0 when using triple buffering.

5.26 fogColor Register

The fogColor register is used to specify the fog color for fogging operations. Fog is enabled by setting bit(0) in
fogMode. See the fogM ode and fogT able register descriptions for more information fog.

Bit Description

7:0 Fog Color Blue

15:8 Fog Color Green

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 59 Updated 12/1/99

B] \Voodoo® Graphics
\J
3dfx

23:16 Fog Color Red

31:24 reserved

5.27 zaColor Register

The zaColor register is used to specify constant alpha and depth values for linear frame buffer writes, FASTFILL
commands, and co-planar polygon rendering support. For certain linear frame buffer access formats, the alpha and
depth values associated with a pixel written are the values specified in zaColor. Seethe IfbM ode register
description for more information. When executing the FASTFILL command, the constant 16-bit depth value
written into the depth buffer is taken from bits(15:0) of zaColor. When fbzM ode bit(16)=1 enabling depth-
biasing, the constant depth value required is taken from zaColor bits(15:0).

Bit Description
15:0 Constant Depth
23:16 reserved

31:24 Constant Alpha

5.28 chromaKey Register

The chromaKey register is used for chroma-keying and chroma-ranging operations. For chroma-keying, the
chromakK ey register specifies a color which is compared with all pixelsto be written into the RGB buffer. If a
color match is detected between an outgoing pixel and the chromaK ey register, and chroma-keying is enabled
(fbzM ode bit(1)=1 and chromaRange bit(28)=0), then the pixel is not written into the frame buffer. An outgoing
pixel is still written into the RGB buffer if chroma-keying/ranging is disabled or the chromaK ey color does not
equal the outgoing pixel color.

For chroma-ranging, the chromaK ey register specifies the lower limit color for the chroma-range operation.
Chroma-ranging is enabled by setting fbzM ode bit(1)=1 and chromaRange bit(28)=1. See the chromaRange
register description for more information on chroma-ranging functionality.

Note that the alpha color component of an outgoing pixel isignored in the chroma-key and chroma-range color
compare circuits. The chroma-key and chroma-range comparisons are performed immediately after texture
lookup, but before lighting, fog, or alpha blending. See the description of the fbzColor Path register for further
information on the location of the chroma-key and chroma-range comparison circuitry. The format of chromaK ey
is a24-hit RGB color.

Bit Description

7.0 Chroma-key Blue
15:8 Chroma-key Green
23:16 Chroma-key Red
31:24 reserved

5.29 chromaRange Register

The chromaRange register specifies a 24-bit RGB color value which is compared to all pixelsto be written to the
color buffer. If chroma-keying is enabled (fbzM ode[1]) and chroma-ranging is enabled (chromaRange[28]), the
outgoing pixel color is compared to a color range formed by the colors of the chromaK ey and chromaRange
registers.

Each RGB color component of the chromaK ey and chromaRange registers defines a chroma range for the color
component The color component range includes the lower limit color from the chromaK ey register and the upper

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 60 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

limit color from the chromaRange register. Software must program the lower limits less-than or equal to the
upper limits.

Each RGB color component chromaRange mode defines the color component range as inclusive or exclusive.
Inclusive ranges prohibit colors within the range and exclusive ranges prohibit colors outside of the range.

Prohibited colors are blocked from the frame buffer based on the chromaRange mode. This mode may be set to
“intersection” or “union”. The intersection mode blocks pixels prohibited by all of the color components and the
union mode blocks pixels prohibited by any of the color components

Bit Description

7:0 Chroma-Range Blue Upper Limit

15:8 Chroma-Range Green Upper Limit

23:16 Chroma-Range Red Upper Limit

24 Chroma-Range Blue Mode (O=inclusive; 1=exclusive)
25 Chroma-Range Green Mode (O=inclusive; 1=exclusive)
26 Chroma-Range Red Mode (O=inclusive; 1=exclusive)
27 Chroma-Range Block Mode (O=intersection; 1=union)
28 Chroma-Range Enable (0=disable; 1=enable)

31:29 reserved

5.30 userintrCMD Register
Writing to the user Intr CM D register executes the USERINTERRUPT command:

Bit Description
0 Generate USERINTERRUPT interrupt (1=generate interrupt)
1 Wait for interrupt generated by USERINTERRUPT (visiblein intrCtrl bit(11)) to be

cleared before continuing (1=stall graphics engine until interrupt is cleared)

9:2 User interrupt Tag

If the data written to userIntr CM D bit(0)=1, then a user interrupt is generated (intr Ctrl bit(11) isset to 1). If the
data written to user Intr CM D bit(1)=1, then the graphics engine stalls and waits for the USERINTERRUPT
interrupt to be cleared before continuing processing additional commands. If the data written to user IntrCMD
bit(1)=0, then the graphics engine will not stall and will continue to process additional commands without waiting
for the USERINTERRUPT to be cleared. Software may also use combinations of intrCtrl bits(1:0) to generate
different functionality.

The tag associated with a user interrupt is written to userIntr CMD bits 9:2. When a user interrupt is generated,
the respective tag associated with the user interrupt is read from Intr Ctr| bits 19:12.

If the USERINTERRUPT command does not stall the graphics engine (user I ntr CM D(1)=0), then a potential race
condition occurs between multiple USERINTERRUPT commands and software user interrupt processing. In
particular, multiple USERINTERRUPT commands may be generated before software is able to process the first
interrupt. Irrespective of how many user interrupts have been generated, the user interrupt tag field in intr Ctrl
(bits 19:12) always reflects the tag of last USERINTERRUPT command processed. As aresult of this behavior,
early tags from multple USERINTERRUPT commands may be lost. To avoid this behavior, software may force a
single USERINTERRUPT command to be executed at atime by writing user Intr CM D(1:0)=0x3 and cause the
graphics engineto stall until the USERINTERRUPT interrupt is cleared.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 61 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

Note that bit 5 of intr Ctrl must be set to 1 for user interrupts to be generated — writes to user Intr CM D when
intr Ctrl1(5)=0 do not generate interrupts or cause the processing of commands to wait on clearing of the
USERINTERRUPT command (regardless of the data written to userIntr CM D), and are thus in effect “dropped.”

5.31 stipple Register

The stipple register specifies a mask which is used to enable individual pixel writes to the RGB and depth buffers.
See the stipple functionality description in the fbzM ode register description for more information.

Bit Description

31:.0 stipple value

5.32 colorO Register

The color O register specifies constant color values which are used for certain rendering functions. In particular,
bits(23:0) of colorO are optionally used as the ¢_local input in the color combine unit. In addition, bits(31:24) of
color0 are optionally used as the c_local input in the apha combine unit. See the fbzColor Path register
description for more information.

Bit Description

7.0 Constant Color Blue
15:8 Constant Color Green
23:16 Constant Color Red
31:24 Constant Color Alpha

5.33 colorl Register

The color 1 register specifies constant color values which are used for certain rendering functions. In particular,
bits(23:0) of color 1 are optionally used as the ¢_other input in the color combine unit selected by bits(1:0) of
fbzColorPath. The alpha component of color 1(bits(31:24)) are optionally used as the a_other input in the apha
combine unit selected by bits(3:2) of fbzColorPath. The color 1 register bits(23:0) are also used by the FASTFILL
command as the constant color for screen clears. Also, for linear frame buffer write format 15(16-bit depth, 16-bit
depth), the color for the pixel pipelineistaken from color 1 if the pixel pipeline is enabled for linear frame buffer
writes (IfbM ode hit(8)=1).

Bit Description

7.0 Constant Color Blue
15:8 Constant Color Green
23:16 Constant Color Red
31:24 Constant Color Alpha

5.34 fbiTrianglesOut Register

The fbiTriangles register is a 24-bit counter which isincremented for each triangle processed by the Voodoo2
Graphics triangle walking engine. Triangles which are backface culled in the triangle setup unit do not increment
fbiTrianglesOut. fbiTrianglesOut is reset to 0x0 on power-up reset, and is also reset to OxO when a‘1’ iswritten
to nopCMD hit(2).

Bit Description
23.0 Rendered triangles (total number of triangles rendered by the Voodoo2 Graphics
triangle rendering engine)
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 62 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

5.35 fbiPixelsln Register

The fbiPixelsIn register is a 24-bit counter which isincremented for each pixel processed by the Voodoo2 Graphics
triangle walking engine. fbiPixelsln isincremented irrespective if the triangle pixel is actually drawn or not as a
result of the depth test, alphatest, etc. fbiPixelsin isused primarily for statistical information, and in essence
allows software to count the number of pixelsin a screen-space triangle. fbiPixelsln is reset to 0x0 on power-up
reset, and is also reset to 0x0 when a“1’ iswritten to nopCM D hit(0).

Bit Description

23.0 Pixel Counter (number of pixels processed by Voodoo2 Graphics triangle engine)

5.36 fbiChromaFail Register

The fbiChromaFail register is a 24-bit counter which is incremented each time an incoming source pixel (either
from the triangle engine or linear frame buffer writes through the pixel pipeline) isinvalidated in the pixel pipeline
because of the chroma-key color match test. If an incoming source pixel color matches the chomakK ey register,
fbiChromaFail isincremented. fbiChromaFail isreset to OxO on power-up reset, and is also reset to 0x0 when a
‘1’ iswritten to nopCMD bit(0).

Bit Description

23.0 Pixel Counter (number of pixelsfailed chroma-key test)

5.37 fbiZfuncFail Register

The fbiZfuncFail register is a 24-bit counter which is incremented each time an incoming source pixel (either
from the triangle engine or linear frame buffer writes through the pixel pipeline) isinvalidated in the pixel pipeline
because of afailureinthe Z test. The Z test is defined and enabled in the fbzM ode register. fbiZfuncFail is reset
to 0x0 on power-up reset, and is also reset to O0xO when a‘1’ iswritten to nopCMD bit(0).

Bit Description

23.0 Pixel Counter (number of pixelsfailed Z test)

5.38 fbiAfuncFail Register

The fbiAfuncFail register is a 24-bit counter which is incremented each time an incoming source pixel (either
from the triangle engine or linear frame buffer writes through the pixel pipeline) isinvalidated in the pixel pipeline
because of afailurein the alphatest. The alphatest is defined and enabled in the alphaM ode register. The
fbiAfuncFail register is also incremented if an incoming source pixel isinvalidated in the pixel pipeline as aresult
of the alpha masking test (bit(13) in fbzM ode). fbiAfuncFail isreset to 0x0 on power-up reset, and is also reset to
0x0 when a“‘1’ iswritten to nopCM D hit(0).

Bit Description

23.0 Pixel Counter (number of pixelsfailed Alphatest)

5.39 fbiPixelsOut Register

The fbiPixelsOut register is a 24-bit counter which isincremented each time a pixel iswritten into a color buffer
during rendering operations (rendering operations include triangle commands, linear frame buffer writes, and the
FASTFILL command). Pixelstracked by fbiPixelsOut are therefore subject to the chroma-test, Z test, Alphatest,
etc. that are part of the regular Voodoo2 Graphics pixel pipeline. fbiPixelsOut is used to count the number of

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 63 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

pixels actually drawn (as opposed to the number of pixels processed counted by fbiPixelsin). Note that the RGB
mask (fbzM ode bit(9) isignored when determining fbiPixelsOut. fbiPixelsOut is reset to 0x0 on power-up reset,
and is also reset to OxO when a*1’ iswritten to nopCM D hit(0).

Bit Description

23.0 Pixel Counter (number of pixels drawn to color buffer)

5.40 fbiSwapHistory Register

The fbiSwapHistory register keeps track of the number of vertical syncs which occur between executed swap
commands. fbiSwapHistory logs thisinformation for the last 8 executed swap commands. Upon completion of a
swap command, fbiSwapHistory bits (27:0) are shifted left by four bits to form the new fbiSwapHistory bits
(31:4), which maintains a history of the number of vertical syncs between execution of each swap command for the
last 7 frames. Then, fbiSwapHistory bits(3:0) are updated with the number of vertical syncs which occurred
between the last swap command and the just completed swap command or the value Oxf, whichever is less.

Bit Description

3.0 Number of vertical syncs between the second most recently completed swap command
and the most recently completed swap command, or the value Oxf, whichever is less for
Frame N.

7:4 Vertical sync swapbuffer history for Frame N-1

11:8 Vertical sync swapbuffer history for Frame N-2

15:12 Vertical sync swapbuffer history for Frame N-3

19:16 Vertical sync swapbuffer history for Frame N-4

23:20 Vertical sync swapbuffer history for Frame N-5

2724 Vertical sync swapbuffer history for Frame N-6

31:28 Vertical sync swapbuffer history for Frame N-7

5.41 fogTable Register

The fogT able register is used to implement fog functions in Voodoo2 Graphics. The fogT able register is a 64-
entry lookup table consisting of 8-bit fog blending factors and 8-bit Dfog blending values. The Dfog blending
values are the difference between successive fog blending factors in fogT able and are used to blend between
fogTable entries. Note that the Dfog blending factors are stored in 6.2 format, while the fog blending factors are
stored in 8.0 format. For most applications, the 6.2 format Dfog blending factors have the two L SBs set to 0x0,
with the six M SBs representing the difference between successive fog blending factors. Also note that as a result of
the 6.2 format for the Dfog blending factors, the difference between successive fog blending factors cannot exceed
63. When storing the fog blending factors, the sum of each fog blending factor and Dfog blending factor pair must
not exceed 255. When loading fogT able, two fog table entries must be written concurrently in a 32-bit word. A
total of 32 32-bit PCI writes are required to load the entire fogT able register.

fogTableln] (0£n £ 31)

Bit Description

7.0 FogTable[2n] DFog blending factor

15:8 FogTable[2n] Fog blending factor

23:16 FogTable[2n+1] DFog blending factor

31:24 FogTable[2n+1] Fog blending factor

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 64 Updated 12/1/99

B] \Voodoo® Graphics
\J
3dfx

5.42 vRetrace Register

The vRetrace register is used to determine the position of the monitor vertical refresh beam. The vRetrace
register allows software to read the status of the internal vSyncOff counter used for vertical video timing. The
VRetrace register allows an application to determine the amount of time before the next vertical sync. Note that
VRetraceisread only. Also note that the value of vRetrace is 0x0 when vertical sync is active, which is
determined by bit(6) of the status register. vRetraceis provided for software compatibility with Voodoo Graphics,
but it is suggested that the hvRetr ace register be used instead to simultaneously query the status of both the
horizontal and vertical refresh beams. See section 13 for more information on video timing.

Bit Description

12:0 internal vSyncOff counter value (read only)

5.43 hvRetrace Register

The hvRetrace register is used to determine the position of the monitor horizontal and vertical refresh beams. Bits
(12:0) of hvRetrace are used to allow software to read the status of the internal vSyncOff counter used for vertical
video timing. hvRetrace bits(12:0) allow an application to determine the amount of time before the next vertical
sync. Note that the value of hvRetrace bits(12:0) is 0xO when vertical sync is active, which is determined by bit(6)
of the status register

Bits (26:16) of hvRetrace are used to alow software to determine the horizontal refresh beam position. Horizontal
sync is active (i.e. the horizontal refresh beam is being pulled back towards the left edge of the monitor) when
hvRetrace bits(26:16) are less than the value of the hSyncOn field of the hSync register (bits (8:0)). Horizontal
syncisinactive (i.e. valid data is being displayed on the monitor) when hvRetr ace bits(26:16) are greater than the
value of the hSyncOn field of the hSync register. The following psuedo-code illustrates the functionality of the
hRetrace counter value:

hSyncOn = GET(hSync_Regi ster) & Ox1ff;
hBackporch = GET(backPorch_Regi ster) & Ox1ff;
xDi mensi oi n = GET(vi deoDi mensi ons_Regi ster) & Ox7ff;
hRetrace = (CGET(hvRetrace_Register) >> 16) & Ox7ff;
i f(hRetrace < hSyncOn)

/1 Horizontal Sync is active...
el se if((hRetrace < (hSyncOn + hBackPorch)) ||

(hRetrace >= (hSyncOn + hBackPorch + xDi mension)))

/1 Horizontal Sync is inactive, but within horizontal bl anking
el se

Xpi xel Bei ngDi spl ayed = hRetrace - hSyncOn - hBackporch;

If syncing reads from hvRetrace is enabled (fbiinit5 bit(15)=1), then reading from hvRetrace will cause afull
handshake to occur between the PCI controller and the video control unit to guarantee valid, stable values are
returned to software. See section 13 for more information on video timing.

Bit Description

12:0 internal vSyncOff counter value (read only)

15:13 reserved

26:16 internal hRetrace counter value (read only)

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 65 Updated 12/1/99

3dix

Vioodoo? Graphics

5.44 hSync Register

The hSync register specifies the timing values used to generate the horizontal sync (hsync) signal. See section 13
for more information on video timing.

Bit Description

8.0 Horizontal sync on (internal hSyncOn register)
157 reserved

26:16 Horizontal sync off (internal hSyncOff register)

5.45 vSync Register

The vSync register specifies the timing values used to generate the vertical sync (vsync) signal. See section 13 for
more information on video timing.

Bit Description

12:0 Vertical sync on (internal vSyncOn register)
15:12 reserved

28:16 Vertical sync off (internal vSyncOff register)

5.46 backPorch Register

The backPor ch register specifies the timing values used to define the video backporch area. See section 13 for
more information on video timing.

Bit Description

8.0 Horizontal backporch (internal hBackPor ch register)
15:8 reserved

24:16 Vertical backporch (internal vBackPor ch register)

5.47 videoDimensions Register

The videoDimensions register specifies the dimensions used to generate video timing values. See section 13 for
more information on video timing.

Bit Description

10:0 X (width) dimension (internal xXWidth register)
15:10 reserved

26:16 Y (height) dimension (internal yHeight register)

5.48 maxRgbDelta Register

FIXME

Bit Description

7.0 Maximum blue delta for video filtering
15:8 Maximum green delta for video filtering
23:16 Maximum red delta for video filtering

Copyright O 1996-1998 3Dfx Interactive, Inc.

Proprietary

66

Revision 1.16
Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

5.49 hBorder Register

The hBorder register specifies the timing values used to generate the horizontal border color area. See section 13
for more information on video timing.

Bit Description

8.0 Horizontal backporch border color (internal hBackColor register)
157 reserved

24:16 Horizontal frontporch border color (internal hFrontColor register)

5.50 vBorder Register

The vBorder register specifies the timing values used to generate the vertical border color area. See section 13 for
more information on video timing.

Bit Description

8.0 Vertical backporch border color (internal vBackColor register)
157 reserved

24:16 Vertical frontporch border color (internal vFrontColor register)

5.51 borderColor Register

The border Color register specifies the color value output in the border color area. See section 13 for more
information on video timing.

Bit Description

7.0 Video border color (blue)
15:8 Video border color (green)
23:16 Video border color (red)

5.52 fbilnitO Register

The fbil nitO register is used for hardware initialization and configuration of the Chuck chip. Writesto fbilnitO are
ignored unless PCI configuration register initWrEnable bit(0)=1. Writesto fbilnit0 are not put into the PCI bus
FIFO and are written immediately, so care must be taken when writing to fbil nitO if dataisin the PCI bus FIFO or
the graphics engineis busy. Also, writesto fbil nit registers must not occur within a PCI burst, as all writesto
fbilnit registers must be single cycle writes only.

Bit Description
Miscellaneous Control

0 VGA passthrough (controls external pinsvga pass and vga _pass n). Default valueis
the value of fb_addr_a[4] at the deassertion of pci_rst

1 Chuck Graphics Reset (O=run, 1=reset). Default isO.

2 Chuck FIFO Reset (O=run, 1=reset). Default is 0. [resets PCl FIFO and the PCI data
packer]

3 Byte swizzle incoming register writes (1=enable). [Register byte datais swizzled if
fbilnit0[3]=1 and pci_address[20]=1]. Default isO.
FIFO Control

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 67 Updated 12/1/99

B | Vioodoo? Graphics
3dh
A
4
5

Stall PCI enable for High Water Mark (O=disable, 1=enable). Default is 1.
reserved

10:6 PCI FIFO Empty Entries Low Water Mark. Valid values are 0-31. Default is 0x10.

11 Linear frame buffer accesses stored in memory FIFO (1=enable). Default isO.

12 Texture memory accesses stored in memory FIFO (1=enable). Default isO.

13 Memory FIFO enable (O=disable, 1=enable). Default isO.

24:14 Memory FIFO High Water Mark (bits [15:5]). Default is 0xO.

30:25 Memory FIFO Write Burst High Water Mark (Range 0-63 -- must be greater than
fbiinit4[7:2]). Default is 0xO0.

31 reserved

5.53 fbilnitl Register

The fbilnit1 register is used for hardware initialization and configuration of the Chuck chip. Writesto fbilnitl are
ignored unless PCI configuration register initWrEnable bit(0)=1. Writesto fbilnit1 are not put into the PCI bus
FIFO and are written immediately, so care must be taken when writing to fbil nit1 if dataisin the PCI bus FIFO or
the graphics engineis busy. Also, writesto fbil nit registers must not occur within a PCI burst, as all writesto
fbilnit registers must be single cycle writes only.

Bit Description
PCI Bus Controller Configuration
0 PCI Device Function Number (O=pass-thru Voodoo2 Graphics only, 1=combo board

with VGA dev #0 and Voodoo2 Graphics dev#1). Default value is the value of
fb_addr_a[3] at the deassertion of pci_rst. Read only.

1 Wait state cycles for PCI write accesses (0=no ws, 1=one ws). Defaultis 1.

2 Reserved. Hardwired to 0. Read only. (old multi-CV G configuration detect)

3 Enable linear frame buffer reads (1=enable). Default is0. This bit isincluded so that
Voodoo2 Graphics potentially won't hang the system during random reads during
powerup.

Video Controller Configuration (1)

74 Number of 32x32 video tilesin X/Horizontal dimension (bits 4:1). Default is0x0. The
6-bit number of tilesin the X dimension is formed by {fbil nit1[24], fbil nit1[7:4],
fbil nit6[30]}.

8 Video Timing Reset (O=run, 1=reset). Defaultis 1.

9 Software override of HSYNC/V SYNC (O=normal operation, 1=software override).
Default isO.

10 Software override HSYNC value. Default is 0.

11 Software override VSYNC value. DefaultisO.

12 Software blanking enable (O=normal operation, 1=Always blank monitor). Default is 1.

13 Drive video timing data outputs (O=tristate, 1=drive outputs). Default isO.

14 Drive video timing blank output (O=tristate, 1=drive output). Default isO.

15 Drive video timing hsync/vsync outputs (O=tristate, 1=drive outputs). Default isO.

16 Drive video timing dclk output (O=tristate, 1=drive output). Default isO.

17 Video timing vclk input select (O=vid_clk_2x, 1=vid_clk_slave, 2=dac_data[16]). Input
select is {fbilnit5[13], fbilnit1[17]}. DefaultisO.

19:18 Vid_clk_2x delay select (O=no delay, 1=4 ns, 2=6 ns, 3=8 ns). Default isO.

21:20 Video timing vclk source select (O=vid_clk_dlave, 1=vid_clk_2x [divided by 2],
2,3=vid_clk_2x_sel). Default is 2.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 68 Updated 12/1/99

Enable 24 Bits-per-pixel video output (1=enable). Default isO.

B | Vioodoo? Graphics
3dh
A
22
23

Enable scan-line interleaving (1=enable). Default isO.

24 Number of 32x32 video tilesin X/Horizontal dimension (bit 5). Default is0x0. The 6-
bit number of tilesin the X dimension isformed by {fbil nit1[24], fbilnit1[7:4],
fbil nit6[30]}.

25 Enable video edge detection filtering (1=enable). Default isO.

26 Invert vid_clk 2x (O=pass-thru vid_clk_2x, 1=invert vid clk_2x). Default isO.

28:27 Vid_clk 2x_sdl delay select (O=no delay, 1=4 ns, 2=6 ns, 3=8 ns). Default isO.

30:29 Vid _clk delay select (O=no delay, 1=4 ns, 2=6 ns, 3=8 ns). Default isO.

31 Disable fast Read-Ahead-Write to Read-Ahead-Read turnaround (1=disable). Default is
0.

5.54 fbilnit2 Register

The fbilnit2 register is used for hardware initialization and configuration of the Chuck chip. Writesto fbilnit2 are
ignored unless PCI configuration register initWrEnable bit(0)=1. Writesto fbilnit2 are not put into the PCI bus
FIFO and are written immediately, so care must be taken when writing to fbil nit2 if dataisin the PCI bus FIFO or
the graphics engineis busy. Also, writesto fbil nit registers must not occur within a PCI burst, as all writesto
fbilnit registers must be single cycle writes only.

Bit Description
DRAM Memory Controller Configuration

0 Disable video dither subtraction (1=disable). Default is 0xO0.

1 DRAM banking configuration (0=128Kx16 banking, 1=256Kx16 banking)

32 reserved

4 Triple Buffering Enable (1=enable). Default is 0x0. Bit included for binary
compatibility with Voodoo Graphics only. Use fbil nit5[10:9] for buffer memory
allocation.

5 Enable fast RAS read cycles [bring RAS high early on reads] (1=enable). Default is
0x0.

6 Enable generated dram OE signal (1=enable). Default is Ox1.

7 Enable fast Read-Ahead -Write turnaround [bit(6) must be set]. (1=enable). Default is
0x0.

8 Enable pass-through dither mode [For 8 BPP apps only] (1=enable). Default is 0xO0.

10:9 Swap buffer algorithm (O=based on dac_vsync, 1=based on dac_data[0], 2=based on

pci_fifo stall, 3=based on dli_syncin/di_syncout). Default is 0xO0.

Video/DRAM Controller Configuration (2)

19:11 Video Buffer Offset (=150 for 640x480, =247 for 832x608). Default is 0x0.
20 Enable DRAM banking (1=enable). Default isO.
21 Enable DRAM Read Ahead FIFO (1=enable). Default is 0xO0.
DRAM Refresh Control
22 Refresh Enable (O=disable, 1=enable). Default is 0.
31:23 Refresh | oad Value. (Internal 14-bit counter 5L SBs are 0x0). Default is 0x100.
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 69 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

5.55 fbilnit3 Register

The fbil nit3 register is used for hardware initialization and configuration of the Chuck chip. Writesto fbilnit3 are
ignored unless PCI configuration register initWrEnable bit(0)=1. Writesto fbilnit3 are not put into the PCI bus
FIFO and are written immediately, so care must be taken when writing to fbil nit3 if dataisin the PCI bus FIFO or
the graphics engineis busy. Also, writesto fbil nit registers must not occur within a PCI burst, as all writesto
fbilnit registers must be single cycle writes only.

Bit Description
Miscellaneous Control
0 Triangle register address remapping (0O=use normal register mapping, 1=use aliased

register mapping). [Alternate register mapping is used when fbil nit3(0)=1 and
pci_address[21]=1]. Default is 0xO0.

5:1 Video FIFO threshold. Default is OxO.

6 Disable Texture Mapping (O=normal, 1=disable Trex-to-Chuck Interface). Default is
0x0.

7 reserved

Chuck power-on configuration bits

10:8 Generic power-on strapping pins. Default value is the value of fb_addr_a[2:0] at the
deassertion of pci_rst. Read only

11 VGA_PASS reset value. Default value is the value of fb_addr_a[4] at the deassertion of
pci_rst. Read only

12 Hardcode PCI base address 0x10000000 (1=enable, 0O=normal operation). Default value

isthevalue of fb_addr_a[5] at the deassertion of pci_rst

Bruce interface configuration bits

16:13 fbi-to-trex bus clock delay selections (0-15). Default is 0x2.

21:17 trex-to-fbi bus FIFO full threshold (0-31). Default is Oxf.

Y Origin Definition bits

31:22 Y Origin Swap subtraction value (10 bits). Default is 0xO.

5.56 fbilnit4 Register

The fbilnit4 register is used for hardware initialization and configuration of the Chuck chip. Writesto fbilnit4 are
ignored unless PCI configuration register initWrEnable bit(0)=1. Writesto fbilnit4 are not put into the PCI bus
FIFO and are written immediately, so care must be taken when writing to fbil nit4 if dataisin the PCI bus FIFO or
the graphics engineis busy. Also, writesto fbil nit registers must not occur within a PCI burst, as all writesto
fbilnit registers must be single cycle writes only.

Bit Description
Miscellaneous Control

0 Wait state cycles for PCI read accesses (0=1 ws, 1=2 ws). Defaultis1.

1 Enable Read-ahead logic for linear frame buffer reads (1=enable). Default isO.

7:2 Memory FIFO low water mark for PCI FIFO. [Dump PCI FIFO contents to memory if
PCI FIFO freespace falls below thislevel]. Default isO.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 70 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

17:8 Memory FIFO row start (base row address for beginning of memory FIFO). Default is
0.

27:18 Memory FIFO row rollover (row value when FIFO counters rollover). Default isO.

29 reserved

31:29 Video clocking delay control (Chuck revision 5 only). Default isO.

5.57 fbilnit5 Register

The fbil nit5 register is used for hardware initialization and configuration of the Chuck chip. Writesto fbilnit5 are
ignored unless PCI configuration register initWrEnable bit(0)=1. Writesto fbilnit5 are not put into the PCI bus
FIFO and are written immediately, so care must be taken when writing to fbil nit5 if dataisin the PCI bus FIFO or
the graphics engineis busy. Also, writesto fbil nit registers must not occur within a PCI burst, as all writesto
fbilnit registers must be single cycle writes only.

Bit Description
Chuck power -on configuration bits

0 Disable pci_stop functionality (O=normal operation, 1=disable pci_stop). Default value
isthevalue of fb_addr_b[Q] at the deassertion of pci_rst.

1 PCI Slave device is 66 MHz capable (0=33 MHz capable, 1=66 MHz capable). Default
valueisthe value of fb_addr_b[1] at the deassertion of pci_rst. Read only.

2 dac_data output width (0=16-bit, 1=24-bit). Default value is the value of fb_addr_b[2]
at the deassertion of pci_rst. Read only.

3 dac_data[17]/GPIO_0 output value (dac_data[17] is only driven when

fb_addr_b[2]=0 at the deassertion of pci_rst). Default value isthe value of
fb_addr_b[3] at the deassertion of pci_rst.

4 dac_data[18]/GPIO_1 control. (dac_data[18] is only driven when fb_addr_b[2]=0 at
the deassertion of pci_rst). GPIO_1 is controlled by fbil nit5[4] and fbil nit5[27].
When fbil nit5[27]=0, then GPIO_1 is driven with the input value of
dac_data[23]/GPIO_3. When fbil nit5[27]=1, then GPI1O_1 is driven with the value
specified by fbilnit5[4]. Default value of fbil nit5[4] isthe value of fb_addr_b[4] at the
deassertion of pci_rst.

85 Generic power-on strapping pins. Default value isthe value of fb_addr_b[8:5] at the
deassertion of pci_rst. Read only

Miscellaneous Control

10:9 Color/Aux buffer memory allocation (0=2 color buffers/1 aux buffer, 1=3 color buffers/0
aux buffers, 2=3 color buffers/1 aux buffer, 3=reserved). Default is 0x0.

11 Drivevid_clk_slave output (O=tristate, 1=drive output). Default isO.

12 Drive dac_data[16] output (O=tristate, 1=drive output). Do not set to 1 when 24-bit dac
data output is enabled (fbil nit5[25]=1).

13 Video timing vclk input select (O=vid_clk_2x, 1=vid _clk_save, 2=dac_data[16]). Input
select is {fbilnit5[13], fbilnit1[17]}. DefaultisO.

14 Multi-CV G configuration detect (0=one Voodoo2 Graphics configuration, 1=two

Voodoo2 Graphics configuration). Default value is the value of dli_syncin at the
deassertion of pci_rst. Read only.

15 Synchronize reads from hRetr ace and vRetr ace registers across video clock boundry
(1=enable). Default isO.

16 Horizontal border color enable, right edge (1=enable). Default isO.

17 Horizontal border color enable, left edge (1=enable). Default isO.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 71 Updated 12/1/99

B | Vioodoo? Graphics
3dfy
8

1 Vertical border color enable, bottom edge (1=enable). Default isO.

19 Vertical border color enable, top edge (1=enable). Default isO.

20 Scan double video out in horizontal dimension (1=enable). Default isO.

21 Scan double video out in vertical dimension (1=enable). Default isO.

22 Enable gamma correction for 16-bit video output (1=enable). Default is 0.

23 Invert dac_hsync output to dac (0= hsync is active low, 1=hsync is active high). Default
isO.

24 Invert dac_vsync output to dac (0= vsync is active low, 1=vsync is active high). Default
isO.

25 Enable full 24-bit dac_data[23:0] output (1=enable, O=double-pump 24-bit data on
dac_data[15:0]). DefaultisO.

26 Interlaced video output (1=enable). Default isO.

27 dac_data[18]/GPIO_1 control. (dac_data[18] is only driven when fb_addr_b[2]=0 at
the deassertion of pci_rst). GPIO_1 is controlled by fbil nit5[4] and fbil nit5[27].
When fbil nit5[27]=0, then GPIO_1 is driven with the input value of
dac_data[23]/GPIO_3. When fbil nit5[27]=1, then GPI1O_1 is driven with the value
specified by fbil nit5[4]. The default value of fbilnit5[27] isO.

29:28 reserved. Default is Ox0.

31:30 Triangle rasterization unit mode control. Default is 0xO.

5.58 fbilnit6 Register

The fbil nit6 register is used for hardware initialization and configuration of the Chuck chip. Writesto fbilnit6 are
ignored unless PCI configuration register initWrEnable bit(0)=1. Writesto fbilnit6 are not put into the PCI bus
FIFO and are written immediately, so care must be taken when writing to fbil nit6 if dataisin the PCI bus FIFO or
the graphics engineis busy. Also, writesto fbil nit registers must not occur within a PCI burst, as all writesto
fbilnit registers must be single cycle writes only.

Bit Description
Miscellaneous Control

2.0 Video window active counter. Used when swap agorithm is Ox1 or Ox2
(fbilnit2[10:9]=0x1 or 0x2). Default is 0xO0.

7:3 Video window drag counter. Used when swap algorithm is Ox1 or 0x2
(fbilnit2[10:9]=0x1 or 0x2). Default is 0xO0.

8 Scanline Interleave sync master (0=Slave, 1=Master). Used when swap algorithm is
0x3 (fbil nit2[10:9]=0x3). Default is 0x0.

10:9 dac_data[22]/GPIO_2 output value (0,1=tristate, 2=drive 0, 3=drive 1). dac_data[22]

isonly controlled by fbilnit6[10:9] when fb_addr_b[2]=0 at the deassertion of pci_rst.
Default value is 0x0. Reading fbilnit6[10] or fbil nit6[9] returns the logic value present
on the dac_data[22] signal pin.

12:11 dac_data[23]/GPIO_3 output value (0,1=tristate, 2=drive 0, 3=drive 1). dac_data[23]
isonly controlled by fbil nit6[12:11] when fb_addr_b[2]=0 at the deassertion of
pci_rst. Default valueis 0x0. Reading fbil nit6[12] or fbil nit6[11] returns the logic
value present on the dac_data[23] signal pin.

14:13 di_syncin output value (0,1=tristate, 2=drive 0, 3=drive 1). Default is 0x0. Reading
fbilnit6[15] or fbil nit6[14] returns the logic value present on the sli__syncin signal pin.
16:15 di_syncout output value (O=internal sli_syncout signal, 1=tristate, 2=drive 0, 3=drive

1). Default is0x0. Reading fbilnit6[16] or fbil nit6[15] returns the logic value present
on the di_syncout signal pin.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 72 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

18:17 dac_rd output value (O=internal dac_rd signal, 1=tristate, 2=drive 0, 3=drive 1).
Default is0x0. Reading fbilnit6[18] or fbilnit6[17] returns the logic value present on
the dac rd signal pin.

20:19 dac_wr output value (O=internal dac_wr signal, 1=tristate, 2=drive 0, 3=drive 1).
Default is 0x0. Reading fbil nit6[20] or fbilnit6[19] returns the logic value present on
the dac_wr signal pin.

2721 PCI FIFO Empty Entries Low Water Mark used to generate pci_fifo_rdy_n (output on
dac data[21]). Valid values are 0-64. Default is OxO.

29:28 vga_pass _n output value (0,1=internal vga_pass n signal, 2=drive 0, 3=drive 1).
Default is0x0. vga _pass nisonly driven when fb_addr_b[2]=0 at the deassertion of
pci_rst).

30 Number of 32x32 video tilesin the X/Horizontal dimension (bit 0). Default is0x0. The

6-bit number of tilesin the X dimension is formed by {fbil nit1[24], fbil nit1[7:4],
fbil nit6[30]}.

31 reserved

5.59 fbilnit7 Register

The fbilnit7 register is used for hardware initialization and configuration of the Chuck chip. Writesto fbilnit7 are
ignored unless PCI configuration register initWrEnable bit(0)=1. Writesto fbilnit7 are not put into the PCI bus
FIFO and are written immediately, so care must be taken when writing to fbil nit7 if dataisin the PCI bus FIFO or
the graphics engineis busy. Also, writesto fbil nit registers must not occur within a PCI burst, as all writesto
fbilnit registers must be single cycle writes only.

Bit Description
Miscellaneous Control

7.0 Generic power-on strapping pins. Default value is the value of fb_data[63:56] at the
deassertion of pci_rst. Read only

8 CMDFIFO enable (1=enable). Defaultis0. Note: fbiinit7 bit(8) is mutually exclusive
with fbiinit0 bit(13) (memory FIFO enable).

9 CMDHF FO offscreen memory store (O=execute CMDFIFO stream out of internal FIFOs
only, 1=execute CMDFIFO using offscreen memory). Default isO.

10 Disable internal CMDFIFO hole counting logic (1=disable). Default isO. If set,

requires software to manually “bump” the CMDFIFO depth with writes to the
cmdFifoDepth register

15:11 CMDFIFO read fetch threshold (range 0-31). Default isO.

16 Synchronize writes to CMDFIFO registers across graphics clock boundry (1=enable).
Default isO.

17 Synchronize reads from CMDFIFO registers across graphics clock boundry (1=enable).
Default isO.

18 Reset PCI packer (O=normal operation, 1=reset PCI packer). Default isO.

19 Enable chromaK ey and chr omaRange writes to Bruce (1=enable). Default isO.

26:20 CMDFIFO PCI timeout counter value (range 0-127). Default is 0x0.

27 Enable bursting of consecutive texture memory writes across FT Bus (1=enable).
Default isO.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 73 Updated 12/1/99

Vioodoo? Graphics

“3dfy

5.60 cmdFifoBaseAddr Register

The cmdFifoBaseAddr register is used to control the hardware CMDFIFO. cmdFifoBaseAddr isused to store
the starting page (or row address) and the ending page of where the CMDFIFO is stored in physical memory.
Writes to cmdFifo registers must not occur within a PCl burst, as all writes to cmdFifo registers must be single
cycle writes only.

Bit Description

9:0 CMDFIFO base address, specified in pages (row address). Default is 0xO0.
15:10 reserved

25:16 CMDFIFO end address, specified in pages (row address). Default is 0xO.

5.61 cmdFifoBump Register

The cmdFifoBump register accesses the internal CMDFIFO bump register. Writes to cmdFifo registers must not
occur within a PCI burst, as all writes to cmdFifo registers must be single cycle writes only.

Bit Description

15:0 Internal CMDFIFO bump register

5.62 cmdFifoRdPtr Register

The cmdFifoRdPtr register accesses the internal CMDFIFO read pointer. Writes to cmdFifo registers must not
occur within a PCI burst, as al writes to cndFifo registers must be single cycle writes only.

Bit Description

31:.0 Internal CMDFIFO read pointer

5.63 cmdFifoAMin Register

The cmdFifoAMin register accesses the internal CMDFIFO minimum address register. Writesto cmdFifo
registers must not occur within a PCl burst, as all writes to cmdFifo registers must be single cycle writes only.

Bit Description

31:0 Internal CMDFIFO minimum address register

5.64 cmdFifoAMax Register

The cmdFifoAM ax register accesses the internal CMDFIFO maximum address register. Writes to cmdFifo
registers must not occur within a PCl burst, as all writes to cmdFifo registers must be single cycle writes only.

Bit Description

31:.0 Internal CMDFIFO maximum address register

5.65 cmdFifoDepth Register

The cmdFifoDepth register accesses the internal CMDFIFO depth register. Writes to cmdFifo registers must not
occur within a PCI burst, as al writes to cndFifo registers must be single cycle writes only.

Bit | Description |

Revision 1.16
Updated 12/1/99

Copyright O 1996-1998 3Dfx Interactive, Inc.
Proprietary 74

B | Vioodoo? Graphics
\ 2
3dfx

| 15:0 | Internal CMDFIFO depth register |

5.66 cmdFifoHoles Register

The cmdFifoHoles register accesses the internal CMDFIFO number of holesregister. Writes to cmdFifo registers
must not occur within a PCI burst, as all writes to cmdFifo registers must be single cycle writes only.

Bit Description
15:0 Internal CMDFIFO number of holes register

5.67 clutData Register

The clutData register is used the load values into the internal video Color Lookup table used for video gamma
correction.

Bit Description

7.0 Blue color component to be written to video Color Lookup Table
15:8 Green color component to be written to video Color Lookup Table
23:16 Red color component to be written to video Color Lookup Table
29:24 Index of video Color Lookup Table to be written (Range 0-32 only).

The Chuck internal Color Lookup table is used for gamma correction of 16-bit RGB values during video refresh.
The 16-bit RGB values read from the frame buffer are used to index into the internal video Color Lookup table.
The output of the video Color Lookup tableis then fed to an external DAC. The video Color Lookup Table is stored
internally as a 33x24 RAM. As RGB values are input from memory, the 5 MSBs of a particular color channel are
used to index into the Color Lookup Table. The 3 LSBs of a particular color channel are then used to linearly
interpolate between multiple video Color Lookup Table entries. Asaresult of the linear interpolation performed,
smooth transitions from one Color Lookup Table index to surrounding indices results. Using linear interpolation, a
much smaller video Color Lookup Table (33 entries) can be used instead of afull Color Lookup Table (256 entries).
Asaresult of the linear interpolation, however, al entries stored in the videoColor Lookup Table must be
monotonically increasing.

To modify an entry in the Color Lookup Table, writes are performed to the clutData register. The index of the
Color Lookup Table entry to be modified is stored in the data passed to the clutData register.

I mportant Note: When writingto clutData to modify the contents of the video Color Lookup Table, the video unit
must be running (fbil nit1(8)=0). Writing to clutData when the video unit is reset (fbil nit1(8)=1) will result in
undefined behavior.

5.68 dacData Register
The dacData register provides a means to writing to the registers of the external DAC.

Bit Description

7:0 External DAC register write data

10:8 External DAC register address, bits(2:0)

11 External DAC read command (1=read external DAC, O=write external DAC)

13:12 External DAC register address, bits(4:3)

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 75 Updated 12/1/99

B] \Voodoo® Graphics
\J
3dfx

Reads and writes to the external DAC are only alowed when the memory busisidle, asthe external DAC register
bus is time-multiplexed with the memory data lines. Thus, software must guarantee that there are no conflicts
between the memory controller and external DAC accesses. This can be accomplished in two ways: (1) resetting
the video control unit (fbiinit1 bit(8)=1), flushing the pixel pipeline with a NOP command, and waiting for the
graphics subsystem to be idle (status(9)=1), or (2) waiting for VSYNC to be active, flushing the pixel pipeline, and
waiting for the graphics subsystem to beidle. Once there are no internal resources requesting the memory
controller, accesses to the external DAC can be safely performed.

Writes to the external DAC are performed by writing the dacData register with bits(7:0) specifying the register
data, bits (13:12, 10:8) specifying the register address, and bit(11) cleared to 0. Bit(11) of dacData must be cleared
to 0 when performing external DAC writes. Reads from the external DAC are performed by writing to the
dacData register with the register address specified in bits (13:12, 10:8) and bit(11) set to 1. Bit(11) of dacData
must be set to 1 when performing external DAC reads. The data read from the External DAC is stored in an
internal register of Chuck, and is read by setting bit(2) in the PCI Configuration register initEnable and reading
from the fbiinit2 register. When fbiinit2/fbiinit3 address remapping is enabled (PCI Configuration register
initEnable bit(2)=1), reading from fbiinit2 bits (7:0) returns the last value read from the external DAC (fbiinit2
bits(31:8) are undefined when address remapping is enabled). Note that reading from the external DAC is atwo-
step process: first the read is initiated by writing to the dacData register with bit(11) set to 1; then the read datais
read by the CPU by reading from fbinit2 bits(7:0) with fbiinit2/fbinit3 address remapping is enabled.

FIXME —what are registers for internal RAMDAC, PLLs, and NTSC/ENCODER??

5.69 sSetupMode Register

The sSetupMaode register provides away for the CPU to only setup required parameters. When a Bit is set, that
parameter will be calculated in the setup process, otherwise the value is not passed down to the triangle, and the
previous value will be used. Also the definition of the triangle strip is defined in bits 19:16, where bit 16 defines
fan. Culling is enabled by seting bit 17 to avalue of “1”, whereas bit 18 defines the culling sign. Bit 19 disables
the ping pong sign inversion that happens during triangle strips.

@
=

Description

Setup Red, Green, and Blue

Setup Alpha

Setup Z

Setup Wb

Setup WO

Setup SOand TO

Setup W1

N[OOI W[IN[F|O

SetupSland T1

=
g
0]

reserved

=Y
(o2}

Strip mode (O=strip, 1=fan)

[
~

Enable Culling (O=disable, 1=enable)

=Y
(o]

Culling Sign (O=positive sign, 1=negative sign)

=
©

Disable ping pong sign correction during triangle strips (O=normal, 1=disable)

5.70 Triangle Setup Vertex Registers

The sVx, sVy registers specify the x and y coordinates of a triangle strip to be rendered. A triangle strip, once the
initial triangle has been defined, only requiresanew X and Y to render consecutive triangles. The diagram below
illustrates how triangle strips are sent over to Voodoo2 Graphics:

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 76 Updated 12/1/99

B | Vioodoo? Graphics
3db
A.
D1

D3 D3
D2
D5
5
6
1
D4 D1
D2
R R
Triangle Strip Triangle Fan

Triangle
Strips and triangle fans are implemented in Voodoo2 Graphics by common vertex information and 2 triangle
commands. Vertex information iswritten to Voodoo2 Graphics for a current vertex and are followed by awrite to
either the sBeginTriCMD or the sDrawTriCMD . For example, to render the triangle strip in the above figure,
parameters X, Y, ARGB, W0, S\W, T/W for vertex R would be written followed by awrite to sBeginTriCMD.
Vertex D1's parameters would next be written followed by awrite to the sDrawTriCMD. After D2's data has been
sent, and the 2" write to sDrawTriCMD has been completed Voodoo2 Graphics will begin to render triangle 1. As
triangle 1 is being rendered, data for vertex D3 will be sent down followed by another write to sDrawTriCMD, thus
launching another triangle. Triangle fans are very similar to triangle strips. Instead of changing all three vertices,
only thelast 2 get modified. Triangle fans start with a sBeginTriCMD just as the triangle strip did, and send down
sDrawTriCMD for every new vertex. To select triangle fan or triangle strip, you must write bit O of the triangle
setup mode register.

SVx Register

Bit Description

31:.0 Vertex coordinate information (IEEE 32 bit single-precision floating point format)
sVy Register

Bit Description

31:0 Vertex coordinate information (IEEE 32 bit single-precision floating point format)

5.71 sARGB Register
The ARGB register specify the color at the current vertex in a packed 32 bit value.

Bit Description
31:24 Alpha Color
23:16 Red Color
15:8 Green Color
7.0 Blue Color

5.72 sWb Register
The Wb register isaglobal /W that is sent to both the FBI and all TMUs.

Bit Description
31:.0 Global 1/W. (IEEE 32 bit single-precision floating point format).
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 77 Updated 12/1/99

B Vioodoo? Graphics
\ 2
3dfx

5.73 sS'WO0 Register
The S'WO register isthe S coordinate of the current vertex divided by W, for all TMUs.

Bit Description

31:.0 Texture S coordinate (IEEE 32 bit single-precision floating point format)

5.74 sT/WO Register
The T/W register sthe T coordinate of the current vertex divided by W, for all TMUs.

Bit Description

31:.0 Texture T coordinate (IEEE 32 bit single-precision floating point format)

5.75 sVz Register
The Vz register isthe Z value at the current vertex.

Bit Description

310 Vertex coordinate information (IEEE 32 hit single-precision floating point format)

5.76 sWtmuO Register
The sWtmuO register is all the TMUs local /W value for the current vertex.

Bit Description

31:.0 Texture local YW. (IEEE 32 hit single-precision floating point format)

5.77 sWtmul Register
The sWitmul register isTMUZ2’slocal /W value for the current vertex.

Bit Description

31:.0 Texture local YW. (IEEE 32 hit single-precision floating point format)

5.78 sS\Wtmul Register
The sS'Wtmul register is TMU21's local W value for the current vertex.

Bit Description

31:.0 Texture local YW. (IEEE 32 hit single-precision floating point format)

5.79 sT/Wtmul Register
The sT/Wtmul register is TMU1’slocal T/W value for the current vertex.

Bit Description

31:.0 Texture local YW. (IEEE 32 hit single-precision floating point format)

5.80 sAlpha Register
the sAlpharegister is the separated alpha value for the current vertex.

Bit Description
31:.0 Alphavalue at vertex (0.0 - 255.0). (IEEE 32 bit single-precision floating point format)
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 78 Updated 12/1/99

B Vioodoo? Graphics
\ 2
3dfx

5.81 sRed Register
the sRed register is the separated red value for the current vertex.

Bit Description

31:.0 Red value at vertex (0.0 - 255.0). (IEEE 32 hit single-precision floating point format)

5.82 sGreen Register
The sGreen register is the separated green value for the current vertex.

Bit Description

31:.0 Green value at vertex (0.0 - 255.0). (IEEE 32 bit single-precision floating point format)

5.83 sBlue Register
The sBlue register is the separated blue value for the current vertex.

Bit Description

310 Blue value at vertex (0.0 - 255.0). (IEEE 32 hit single-precision floating point format)

5.84 sDrawTriCMD Register
The DrawTriCMD registers starts the draw process.

Bit Description

0 Draw triangle

5.85 sBeginTriCMD Register

A write to thisregister begins a new triangle strip starting with the current vertex. No actual drawing is
performed.

Bit Description

0 Begin New triangle

5.86 textureM ode Register

The textureM ode register controls texture mapping functionality including perspective correction, texture
filtering, texture clamping, and multiple texture blending.

Bit Name Description

0 tpersp_st Enable perspective correction for Sand T iterators (O=linear interploation of S,T, force
W to 1.0, 1=perspective correct, S'W, T/W)

1 tminfilter Texture minification filter (O=point-sampled, 1=bilinear)

2 tmagfilter Texture magnification filter (O=point-sampled, 1=bilinear)

3 tclampw Clamp when W is negative (O=disabled, 1=force S=0, T=0 when W is negative)

4 tloddither Enable Level-of-Detail dithering (O=no dither, 1=dither)

5 tncesel ect Narrow Channel Compressed (NCC) Table Select (O=table 0, 1=table 1)

6 tclamps Clamp S Iterator (O=wrap, 1=clamp)

7 tclampt Clamp T lterator (O=wrap, 1=clamp)

11:8 tformat Texture format (see table below)
Texture Color Combine Unit control (RGB):

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 79 Updated 12/1/99

“3dfy

Vioodoo? Graphics

12 tc_zero other Zero Other (O=c_other, 1=zero)

13 tc sub clocal Subtract Color Local (0=zero, 1=c_local)

16:14 | tc_mselect Mux Select (0=zero, 1=c local, 2=a_other, 3=a_local, 4=LOD, 5=LOD _frac, 6-
7=reserved)

17 tc reverse blend Reverse Blend (O=normal blend, 1=reverse blend)

18 tc add clocal Add Color Loca

19 tc add alocal Add AlphaLocal

20 tc_invert_output Invert Output
Texture Alpha Combine Unit control (A):

21 tca_zero other Zero Other (0O=c_other, 1=zero)

22 tca_sub clocal Subtract Color Local (O=zero, 1=c local)

25:23 | tca_mselect Mux Select (0O=zero, 1=c local, 2=a_other, 3=a_local, 4=LOD, 5=LOD _frac, 6-
7=reserved)

26 tca reverse blend | Reverse Blend (O=normal blend, 1=reverse blend)

27 tca_add clocal Add Color Loca

28 tca_add alocal Add AlphaLocal

29 tca_invert output | Invert Output

30 trilinear Enable trilinear texture mapping (O=point-sampled/bilinear, 1=trilinear)

31 seq 8 downld Sequential 8-bit download (O=even 32-bit word addresses, 1=sequential addresses)

tpersp_st bit of textur eM ode enables perspective correction for Sand T iterators. Note that thereis no
performance penalty for performing perspective corrected texture mapping.

tminfilter, tmagfilter bits of textureM ode specify the filtering operation to be performed. When point sampled
filtering is selected, the texel specified by <s;t> is read from texture memory. When bilinear filtering is selected,
the four closet texels to a given <s,t> are read from memory and blended together as a function of the fractional
components of <st>. tminfilter is referenced when LOD>=L ODmin, otherwise tmagfilter is referenced.

tclampw bit of textureM ode is used when projecting textures to avoid projecting behind the source of the
projection. If thisbitisset, S, T are each forced to zero when W is negative. Though usually desireable, it is not
necessary to set this bit when doing projected textures.

tloddither bit of textureM ode enables Level-of-Detail (LOD) dither. Dithering the LOD calculation is useful when
performing texture mipmapping to remove the LOD bands which can occur from with mipmapping without
trilinear filtering. This adds an average of 3/8 (.375) to the LOD value and needs to compensated in the amount of

lodbias.

tnceselect bit of textureM ode selects the NCC lookup table to be used when decompressing 8-bit NCC textures.

tclamps, tclampt bits of textureM ode enable clamping of the Sand T texture iterators. When clamping is
enabled, the Siterator is clamped to [0, texture width) and the T iterator is clamped to [0, texture height). When
clamping is disabled, S coordinates outside of [0, texture width) are allowed to wrap into the [0, texture width)
range using bit truncation. Similarly when clamping is disabled, T coordinates outside of [0, texture height) are
allowed to wrap into the [0, texture height) range using bit truncation.

tformat field of textureM ode specifies the texture format accessed by Bruce. Note that the texture format field is
used for both reading and writing of texture memory. The following table shows the texture formats and how the
texture data is expanded into 32-bit ARGB color:

Copyright O 1996-1998 3Dfx Interactive, Inc.

Proprietary

Revision 1.16
80 Updated 12/1/99

3

Vioodoo? Graphics

tforma Texture format 8-bit Alpha 8-bit Red 8-bit Green 8-bit Blue
t Value
0 8-bit RGB (3-3-2) Oxff {r[2:0],r[2:0],r[2:1]} {g[2:0],9[2:0],9[2:1]} {b[1:0],b[1:0],b[1:0],b[1:0]}
1 8-bit YIQ (4-2-2) Oxff ncc _red[7:0] ncc _green[7:0] ncc _blue[7:0]
2 8-bit Alpha a[7:0] a[7:0] a[7:0] a[7:0]
3 8-bit Intensity Oxff i [7:0] i[7:0] i[7:0]
4 8-bit Alpha, Intensity (4-4) {a[3:0],a[3:0]} {i[3:0],i[3:0]} {i[3:0],i[3:0]} {i[3:0],i[3:0]}
5 8-bit Palette to RGB Oxff paletter[7:0] palette g[7:0] palette b[7:0]
6 8-hit Palette to RGBA {palette r[7:2], {palette r[1:0], {palette g[3:0], {palette b[5:0],
palette r[7:6]} palette g[7:4], palette b[7:6], palette_b[5:4]}
palette r[1:0]} palette g[3:2]}
7 Reserved
8 16-bit ARGB (8-3-3-2) a[7:0] {r[2:0],r[2:0],r[2:1]} {g[2:0],9[2:0],9[2:1]} {b[1:0],b[1:0],b[1:0],b[1:0]}
9 16-bit AY1Q (8-4-2-2) a7:0] ncc _red[7:0] ncc _green[7:0] ncc _blue[7:0]
10 16-bit RGB (5-6-5) Oxff {r[4:0],r[4:2]} {g[5:0],r[5:4]} {b[4:0],b[4:2]}
11 16-bit ARGB (1-5-5-5) {a[0],a[0],a[0],a[0], {r[4:0],r[4:2]} {9[4:0],9[4:2]} {b[4:0],b[4:2]}
2[0],80],2[0],2[0]}
12 16-bit ARGB (4-4-4-4) {a[3:0},a[3:0]} {r[3:0},r[3:01} {g[3:0},0[3:01} {b[3:0},b[3:0]}
13 16-hit Alpha, Intensity (8-8) a[7:0] i[7:0] i[7:0] i[7:0]
14 16-hit Alpha, Palette (8-8) a7:0] paletter[7:0] palette g[7:0] palette b[7:0]
15 Reserved

where a, r, g, b, and i(intensity) represent the actual values read from texture memory. YIQ texture and palette
formats are detailed later in the nccTable description and pal ette description.

There are three Texture Color Combine Units (RGB) and one Texture Alpha Combine Unit(A), al four are
identical, except for the bit fields that control them. Thetc_* fields of textureM ode control the Texture Color
Combine Units; thetca_* fields control the Texture Alpha Combine Units. The diagram below illustrates the
Texture Color Combine Unit/Texture Alpha Combine Unit:

Copyright O 1996-1998 3Dfx Interactive, Inc.
Proprietary

81

Revision 1.16
Updated 12/1/99

\Voodoo? Graphics

tc/tca_c_other

Blend with Incoming Color

tc/tca reverse blend

0
¢ local
0 1 tc/tca zero other For trilinear:
0 8 0: odd TREX
1: even TREX

tc/tca sub _c local S 0 1 7

8 0.8.0

trilinear_enable

Y LODB[0]

U

a other
a local

detail factor
LODB_frac[7:0]

[0,0x100]

tc/tca_ mselect[2:0]

9 180

9 signed x
9 unsigned
multiply

Trunc. LSBs 9 1.80 8 alpha_inv
No Round

+1
a local

0 9 090

00 01 10/__ {tc/tca_add_c_local, tc/tca_add_a local}
18

"/

101.9.0

tc/tca_invert_output 8

\/I

Combinedin
common unit

8 Color Unique for ar,g,b
0.8

tc_ prefix appliesto R,G and B channels. tca_ prefix appliesto A channel.

5.87 tLOD Register
The tLOD register controls the texture mapping LOD calculations.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 82 Updated 12/1/99

Vioodoo? Graphics

Description

Minimum LOD. (4.2 unsigned)

lodmax Maximum LOD. (4.2 unsigned)

17:12 | lodbias LOD Bias. (4.2 signed)

18 lod_odd LOD odd (O=even, 1=o0dd)

19 lod_tsplit Textureis Split. (O=texture contains all LOD levels, 1=odd or even levels only, as
controlled by lod_odd)

20 lod_s is wider | Sdimension iswider, for rectilinear texture maps. Thisis adon’t care for square
textures. (1=Siswider than T).

22:21 | lod_aspect Aspect ratio. Equal to 2*n. (00 is square texture, others are rectilinear: 01 is
2x1/1x2, 10 is 4x1/1x4, 10 is 8x1/1x8)

23 lod_zerofrac LOD zero frac, useful for bilinear when even and odd levels are split across two
Bruces (O=normal LOD frac, 1=force fraction to 0)

24 tmultibaseaddr | Use multiple texbaseAddr registers

25 tdata swizzle Byte swap incoming texture data (bytes 0<->3, 1<->2).

26 tdata swap Short swap incoming texture data (shorts 0<->1).

27 tdirect write Enable raw direct texture memory writes (1=enable). seq 8 downld must equal 0.

lodbias is added to the calculated LOD value, then it is clamped to the range [lodmin, min(8.0, lodmax)]. Note
that whether the LOD is clamped to lodmin is used to determine whether to use the minification or magnification
filter, selected by the tminfilter and tmagfilter bits of textureM ode:

L OD bias. clam
LODmin LODmax
- I I
0 | | 8 LOD
256x256 x1
-——0
tmagfilter >
tminfilter

The tdata_swizzle and tdata_swap bitsin tL OD are used to modify incoming texture data for endian dependencies.
The tdata_swizzle bit causes incoming texture data bytes to be byte order reversed, such that bits(31:24) are
swapped with bits(7:0), and bits(23:16) are swapped with bits(15:8). Short-word swapping is performed after byte
order swizzling, and is selected by the tdata_swap bit in tLOD. When enabled, short-word swapping causes the
post-swizzled 16-hit shorts to be order reversed, such that bits(31:16) are swapped with bits(15:0). The following
diagram shows the data manipulation functions perfomed by the tdata_swizzle and tdata_swap bits:

Revision 1.16
Updated 12/1/99

Copyright O 1996-1998 3Dfx Interactive, Inc.
Proprietary 83

B \Voodoo® Graphics
\J
3dfx

Incoming Texture Data

32

y

3 2 1 0 (Bytes 0-3)
8 8 8 8
A
L AN AN
VDTV T\
01/ _NO01Z NT0Z_ST tdata_swizzle
8 8 1 8 8
1 0 (Shorts 0-1)
16
16 e
0T 10 tdata_swap
16 16

Texture Memory Texture Memory
Data[31:16] Data[15:0]

5.88 tDetail Register
The tDetail register controls the detail texture.

Bit Name Description
7:0 detail _max Detail texture LOD clamp (8.0 unsigned)
13:8 detail _bias Detail texture bias (6.0 signed)
16:14 | detail scale Detail texture scale shift left
17 rgb_tminfilter RGB texture minification filter (O=point-sampled, 1=bilinear)
18 rgb_tmagfilter RGB texture magnification filter (O=point-sampled, 1=bilinear)
19 a_tminfilter Alphatexture minification filter (O=point-sampled, 1=bilinear)
20 a_tmagfilter Alphatexture magnification filter (O=point-sampled, 1=bilinear)
21 rgb_a separate filter | O=tminfilter and tmagfilter (in textureMode) define the filter for
RGBA
1=rgb_tminfilter/rgb_tmadfilter define the filter for RGB and
a_tminfilter/a_tmagfilter define the filter for Alpha

detail _factor is used in the Texture Combine Unit to blend between the main texture and the detail texture.
detail_factor (0.8 unsigned) = max(detail_max, ((detail_bias - LOD) << detail_scal€))

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 84 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

When rgb_a_separate filter isset, rgh_tminfilter and rgb_tmadfilter are used for RGB filtering and a_tminfilter
and a_tmadfilter are used for Alphafiltering. When rgb_a separate filter is cleared, tminfilter and tmagfilter (in
textureM ode) are used for RGBA filtering.

5.89 texBaseAddr, texBaseAddr 1, texBaseAddr 2, and texBaseAddr 38 Registers

The texBaseAddr register specifies the starting texture memory address for accessing atexture, at a granularity of
8 bytes. It isused for both texture writes and rendering. Calculation of the texbaseaddr is described in the Texture
Memory Access section 10. Selection of the base address is a function of tmultibaseaddr and LODBI.

Bit Name Description

18:0 | texbaseaddr Texture Memory Base Address, tmultibaseaddr==0 or LODBI==0
18:0 | texbaseaddrl Texture Memory Base Address, tmultibaseaddr==1 and LODBI==1
18:0 | texbaseaddr? Texture Memory Base Address, tmultibaseaddr==1 and L ODBI==2
18:0 | texbaseaddr38 Texture Memory Base Address, tmultibaseaddr==1 and LODBI>=3

5.90 trexinitO Register

The trexinitO register is used for hardware initialization and configuration of the Bruce chip(s). FIXME. See
Bruce spec.

591 trexinitl Register

Thetrexinitl register is used for hardware initialization and configuration of the Bruce chip(s). FIXME. See
Bruce spec.

5.92 nccTable0 and nccTablel/Palette Registers

The nccTable0 and nccTablel registers contain two Narrow Channel Compression (NCC) tables used to store
lookup values for compressed textures (used in Y1Q and AYIQ texture formats as specified in tformat of
textureMode). These registers are also used to write the pal ette.

5.92.1 NCC Table

Two tables are stored so that they can be swapped on a per-triangle basis when performing multi-pass rendering,
thus avoiding a new download of the table. Use of either nccTableO or nccTablel is selected by the Narrow
Channel Compressed (NCC) Table Select bit of textureMode. nccTable0 and nccTablel are stored in the format
of the table below, and are write only.

nccTable Address | Bits | Contents

o

310 | {Y3[7:0], Y2[7:0], Y1[7:0], YO[7:0]}

310 | {Y7[7:0], Y6[7:0], Y5[7:0], YA[7:0]}

310 | {YD[7:0], Ya[7:0], Y9[7:0], Y8[7:0]}

310 | {Yf[7:0], Ye[7:0], Yd[7:0], YC[7:0]}

26:0 | {10 r[8:0], 10 g[8:0], [0_b[8:0]}

26:0 | {11 r[8:0], I1 g[8:0], [1 b[8:0]}

26:0 | {12 r[8:0], 12 g[8:0], [2_b[8:0]}

26:0 | {13 r[8:0], I3 g[8:0], I3 b[8:0]}

26:0 | {QO r[8:0], Q0 g[8:0], Q0_b[8:0]}

OO |N|O|OA[W[N]|F

26:0 | {Q1 1[8:0], Q1 g[8:0], Q1 b[8:0]}

=Y
o

26:0 | {Q2 1[8:0], Q2 g[8:0], Q2 b[8:0]}

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 85 Updated 12/1/99

Vioodoo? Graphics

\J

26:0 | {Q3 r[8:0], Q3 g[8:0], Q3 b[8:0]} |
Undefined MSB’s must be written as 0's, or the writes may be interpreted as palette writes.

The following figure illustrates how compressed textures are decompressed using the NCC tables:

nccTable register From Memory Data Alignment

Select
+ 4y + 21 iZQ
2x16)x8 Lookup 2x4)x27 Lookup 2x4)x27 Lookup
RAM RAM RAM

8 27 27

5.92.2 8-Bit Palette

The 8-bit palette is used for 8-bit P and 16-bit AP modes. The palette is|oaded with register writes. During

rendering, four texels are looked up simultaneously, each an independent 8-bit address.

Palette Write

The palette is written through the NCC table O | and Q register space when the MSB of the register write datais
set. The NCC tables are not written when the | or Q NCC table register space is addressed and MSB of the register

write datais set to 1 -- Instead the data is stored in the texture pal ette.

Copyright O 1996-1998 3Dfx Interactive, Inc.
Proprietary 86

Revision 1.16
Updated 12/1/99

B | Voodoo? Graphics
\J
3dfx

Palette L oad M echanism

Register
Address LSB of P Register Write Data
31 0

nccTable0 10 P[0]=0 1 P[7:1] R[7:0] G[7:0] B[7:0]
nccTableO 11 P[0]=1 1 P[7:1] R[7:0] G[7:0] B[7:0]
nccTableO 12 P[0]=0 1 P[7:1] R[7:0] G[7:0] B[7:0]
nccTableO 13 P[0]=1 1 P[7:1] R[7:0] G[7:0] B[7:0]
nccTabled Q0 P[0]=0 1 P[7:1] R[7:0] G[7:0] B[7:0]
nccTabled Q1 P[0]=1 1 P[7:1] R[7:0] G[7:0] B[7:0]
nccTabled Q2 P[0]=0 1 P[7:1] R[7:0] G[7:0] B[7:0]
nccTabled Q3 P[0]=1 1 P[7:1] R[7:0] G[7:0] B[7:0]

Note that the even addresses alias to the same location, as well as the odd ones. It is recommended that
the table be written as 32 sets of 8 so that PCI bursts can be 8 transfers long.

5.93 bltCommand Register

The bltCommand register controls the 2D BitBLT engine. Features of the BitBLT engine, including command
specification, chroma-range operations, color formats, and memory mapping specifications are defined in
bltCommand. See section XXX for more information about using the BitBLT engine.

Bit Description

2.0 BitBLT command (see table below)

5:3 Source color format (see table below)

7:6 Source color format RGB ordering/lanes (see table below)

8 Byte swizzle incoming CPU Source color data (1=enable)

9 16-bit word swap incoming CPU Source color data (1=enable)
10 Enable Source color-range function (1=enable)

11 reserved

12 Enable Destination color-range function (1=enable€)

13 reserved

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 87 Updated 12/1/99

Vioodoo? Graphics

Y
A

14 Memory mapping for Source istiled (O=linear, 1=32x32 tiles)

15 Memory mapping for Destination is tiled (O=linear, 1=32x32 tiles)
16 Enable 2D BitBL T clipping rectangle (1=enable)

17 Transparent monochrome (1=transparent)

30:18 reserved

31 Begin BitBLT operation execution

Bits(2:0) of bltCommand specify the BitBLT command to be executed. The table below shows the supported
BitBLT commands:

bltCommand(2:0) Command

0 Screen-to-Screen BitBLT

1 CPU-to-screen BitBLT

2 BitBLT Rectangle Fill

3 SGRAM fill (uses SGRAM-specific color expansion)
7-4 Reserved

A Screen-to-Screen BitBLT command is used to transfer data from frame buffer memory to frame buffer memory.
The Source and Destination regions for Screen-to-Screen BitBLTs may be on-screen or off-screen, and different
memory mappings and configurations (ie. strides, tiled memory, linear memory, etc.) are independently selectable
for each region. Both the Source and Destination color format must be 16 bits-per-pixel for all Screen-to-Screen
BLT operations. Datais stored into the Destination memory region at a maximum rate of one pixel per 2 clocks.

A CPU-to-Screen BitBLT command is used to transfer data from the Host/System memory to frame buffer memory.
For CPU-to-Screen BitBLTs, data is passed by the CPU through the bltData register, and, as a function of the
Source color format, converted into the 16 bits-per-pixel Destination frame buffer. The memory mapping and
configuration of the Destination memory region is programmable. Data is stored into the Destination memory
region at a maximum rate of one pixel per clock.

A BitBLT Rectangle Fill command is used to fill the Destination frame buffer memory with a constant value. The
memory mapping and configuration of the Destination memory region is programmable. Using the BitBLT
Rectangle Fill, the data value specified by bltColor bits(15:0) is stored into the Destination memory region at a
maximum rate of one pixel per clock. When using the SGRAM fill command (which uses the SGRAM color
expansion capability, selectable by bltCommand bits(2:0)=3), only entire pages may be filled with a constant value
(i.e. block regions smaller than an entire SGRAM page cannot be cleared using the SGRAM fill command).
SGRAM fills also bypass any selected clipping or chroma-range tests, and do not use ROPs — data is always written
into the frame buffer. Setting up a SGRAM fill command consists of setting the starting row address (or page
number) of the SGRAM page in bltDstXY hits(24:16), the starting column address (or page offset) in bltDstXY
bits(8:0), the number of complete pagesto fill in bltSize(24:16), and the number of columnsto fill in bltSize(8:0).
When using the SGRAM fill command, the data value specified by bltColor bits(15:0) is stored into the
Destination memory region at a maximum rate of 16 pixels per clock.

The BitBLT engine only supports 16BPP (5-6-5 RGB) Destination color format. Bits(5:3) of bltCommand specify
the format of the Source data for Screen-to-Screen and CPU-to-Screen BLTs. The table below shows the Source
color formats supported:

bltCommand(5:3) Sour ce Color Format
0 1 BPP (monochrome, “ standard” format)
1 1 BPP (monochrome, “byte-packed” format)
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 88 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

16 BPP (5-6-5 RGB)

24 BPP (8-8-8 RGB, undithered)

24 BPP (8-8-8 RGB, 2x2 ordered dithered)
24 BPP (8-8-8 RGB, 4x4 ordered dithered)
-6 Reserved

N~ {wN

For Screen-to-Screen BLTS, only 16BPP Source color format is supported, and so the values of bltCommand
bits(5:3) are ignored for Screen-to-Screen BLTs. BItCommand bits(5:3) are also ignored for Rectangle Fills. For
CPU-to-Screen BLTs, all color formats specified in the table above are supported. For monochrome data formats, a
single 32-bit CPU Source word can generate up to 32 16 BPP Destination pixels generated by the BitBLT engine.
For the 16-bit Source color format, a single 32-bit Source word can generate up to 2 pixels generated by the BitBLT
engine. There are three 24-bit Source color formats: 2x2 dithered, 4x4 dithered and undithered. For the
undithered 24-bit Source color format, data must be transferred from the CPU as unpacked, 32-bit words for each
24-bit Source pixel to be displayed. The 24-bit data is then converted into the 16 BPP Destination pixel format by
bit truncation. For the dithered 24-bit Source color format, data is transferred from the CPU as packed, 32-bit
words for each 24-bit Source pixel, and the 24 BPP Source pixel is converted into the 16 BPP Destination pixel
format using either a 2x2 or 4x4 ordered dithering algorithm.

Bitg(7:6) of bltCommand specify the RGB channel format (or “color lanes’) for the CPU Source data for CPU-to-
Screen BLTs. The table below shows the supported RGB lanes for CPU Source BLT data:

bltCommand(7:6) | RGB Channel Format
0 ARGB
1 ABGR
2 RGBA
3 BGRA

The values of bltCommand bits(7:6) are ignored for Screen-to-Screen BLTs and Rectangle Fills. The following
table illustrates the relationship between the color ordering of the Source data and the desired color format:

bltCommand(7:6) bltCommand(5:3) RGB Channelswithin Source BLT Data

(RGB Color Format) | Source Color Format

0 (ARGB) 2 (16-hit, 5-6-5) Red (15:11), Green(10:5), Blue(4:0)

1 (ABGR) 2 (16-hit, 5-6-5) Blue (15:11), Green(10:5), Red(4:0)

2 (RGBA) 2 (16-hit, 5-6-5) Red (15:11), Green(10:5), Blue(4:0)

3(BGRA) 2 (16-hit, 5-6-5) Blue (15:11), Green(10:5), Red(4:0)

0 (ARGB) 3,4,5 (24-hit, 8-8-8) Ignored(31:24), Red (23:16), Green(15:8), Blue(7:0)
1 (ABGR) 3,4,5 (24-hit, 8-8-8) Ignored(31:24), Blug(23:16), Green(15:8), Red(7:0)
2 (RGBA) 3,4,5 (24-hit, 8-8-8) Red(31:24), Green(23:16), Blue(15:8), Ignored(7:0)
3(BGRA) 3,4,5 (24-hit, 8-8-8) Blue(31:24), Green(23:16), Red(15:8), Ignored(7:0)

The RGB color format field in bltCommand (bits(7:6) has no affect on functionality when the CPU Source color
format is monochrome data (bltCommand(5:3)=0 or bltCommand(5:3)=1).

Bit(8) of bltCommand enables byte swizzling of the CPU Source BLT data for CPU-to-Screen BLTs. When
bit(8)=1, then the byte formed by bits(31:24) is exchanged with the byte formed by bits(7:0) of the 32-bit Source
BLT data, and the byte formed by bits(23:16) is exchanged with the byte formed by bits(15:8). Bit 9 of
bltCommand enables 16-bit word swapping. When bit(9)=1, then the 16-bit word formed by bits(31:16) of the 32-

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 89 Updated 12/1/99

B \Voodoo® Graphics
\J
3dix

bit Source BLT datais exchanged with the 16-bit word formed by bits(15:0) of the data. The values of
bltCommand hit(8) and bit(9) are ignored for Screen-to-Screen BitBLTs, Rectangle Fills, and SGRAM fills.

The order of 16-bit word swapping and byte swizzling operations for CPU-to-Screen BLTsis asfollows: byte
swizzling is performed first on all incoming CPU Source BLT data, as defined by bltCommand bit(8) and
regardless of the Source BLT color format (bltCommand(5:3)). After byte swizzling, 16-bit word swapping is
performed as defined by blitCommand bit(9) and regardless of the Source BLT color format. Note that 16-bit word
swapping is performed on the Source BLT data that was previously optionally byte swizzled. Finally, after both
byte swizzling and 16-bit word swapping are performed, the individual color channels are selected as defined in
bltCommand bits(7:6). Note that the color channels are selected on the Source BLT data that was previously byte
swizzled and/or 16-bit word swapped.

Bit(12) and bit(10) of bitCommand control the BLT chroma-ranging tests. Bit(10) enables the Source pixel
chroma-range test, and bit(12) enables the Destination pixel chroma-range test. When the Source chroma-range
test is disabled (bltCommand bit(10)=0), the result of the Source chroma-range test isforced to “fail.” Similarly,
when the Destination chroma-range test is disabled (bltCommand hit(12)=0), the result of the Destination
chroma-range test is forced to “fail.” The comparison results from both the Source chroma-range and Destination
chroma-range tests are used to select the ROP for a given pixel. See the bltSrcChromaRange,
bltDstChromaRange, and bltRop register descriptions for more information.

Bits(15:14) of bltCommand control the memory mapping type of the Source and Destination BLT areas. When
bit(14)=1, the Source BLT memory areais defined to be mapped using the 32x32 tiling algorithm, and when
bit(14)=0 the Source BLT memory areais defined to be linearly memory mapped. Similarly, when bit(15)=1, the
Destination BLT memory areais defined to be mapped using the 32x32 tiling algorithm, and bit(15)=0 defines the
Destination BLT memory areato be linearly mapped. Note that the setting of bitCommand bits(15:14) have no
effect on SGRAM fill commands. Seethe bltSrcBaseAddr, bltDstBaseAddr, and bltXY Strides register
descriptions for more information on memory mapping.

Bit(16) of bltCommand is used to enable the 2D BitBLT clipping register. When bit(16)=1, all 2D BitBLT
Destination XY values are clipped to the rectangle defined by the bltClipX and bItClipY registers. When BitBLT
clipping is enabled (bltCommand hit(16)=1), if the XY Destination coordinates lie outside the clipping rectangle
defined by bltClipX and bItClipY, the pixel isinvalided in the BitBLT drawing pipeline and the pixel is not
written to the frame buffer. Note that when clipping is enabled, the bounding clipping rectangle must always be
less than or equal to the screen resolution in order to clip to screen coordinates. Also notethat if BitBLT clipping
isdisabled, 2D BitBLT drawing must be programmed to guarantee drawing is never outside the screen resol ution.
All 2D drawing commands are subject to clipping when bltCommand bit(16)=1 with the exception of SGRAM fill
command, which ignores the state of blitCommand bit(16).

Bit(17) of bltCommand is used to control whether monochrome Source data is transparent or opague. When
bit(17)=0, monochrome Source data is opague; the value ‘0" within the monochrome Source data is expanded into
the 16-bit Background color, specified by BltColor bits(31:0). When bltCommand bit(17)=1, monochrome
Source data is transparent; the value ‘0’ within the monochrome Source data results in the corresponding
Destination pixel to be unchanged. Note that bitCommand bit(17) has no effect on Screen-to-Screen BLTS,
rectangle fills, and SGRAM fills.

Bit(31) of bltCommand is used to launch the BitBLT operation. BitBLT operations may be launched by writing
thevalue ‘1’ to bit(31) of bltCommand, bit(31) of bitDstXY, or bit(31) of bltSize. Launching a BitBLT operation
causesthe BLT to begin execution. For Screen-to-Screen BLTs and Rectangle Fills, launching a BitBLT operation
causes the entire block region defined by the bltSrcXY, bltDstXY, and bltSize registers to befilled. For CPU-to-
Screen BitBLTs, launching a BitBL T operation causes the BitBL T engine to wait for CPU Source data to be sent

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 90 Updated 12/1/99

B] \Voodoo® Graphics
\J
3dfx

through the bltData register — each 32-bit Source data word sent by the CPU results in between 1 and 32 pixels
(depending on the CPU Source color format) to be generated in the Destination block region. Note that all
registers which are used by a particular BitBLT operation must be properly setup before launching the BitBLT
operation.

5.94 bltSrcBaseAddr

The bltSrcBaseAddr register specifies the base address for the Source BLT data for Screen-to-Screen BLTs. The
value stored in bltSrcBaseAddr is afunction of whether the Source BLT data areais linearly mapped or tiled.

When the Source BLT data areais linearly mapped (bltCommand bit(14)=0), bltSrcBaseAddr specifies the base
linear frame buffer address for address calculations. The base address for Source BLT data must be aligned on an
8-byte boundry, and so the low 3-bits of bltSrcBaseAddr must be stored with the value 000. See the bltXY Strides
register description for more information on memory mapping and how XY coordinates are converted into linear
frame buffer addresses.

bltSrcBaseAddr, with linearly mapped Source BLT data (bltCommand(14)=0)

Bit Description
2.0 Value ignored for address calculations. Software must store the value 000.
21:3 Base address for Screen-to-Screen Source BLT data [range 0-4 MBytes|

When the Source BLT data areaistiled (bltCommand bit(14)=1), bltSrcBaseAddr specifies the base page address
(or row value) for address calculations. Seethe bltXY Strides register description for more information on
memory mapping and how XY coordinates are converted into linear frame buffer addresses.

bltSrcBaseAddr, with 32x32 tiled Source BLT data (bltCommand(14)=1)

Bit Description

9:0 Base row for Screen-to-Screen Source BLT data [range 0-1023]

5.95 bltDstBaseAddr

The bltDstBaseAddr register specifies the base address for the Destination BLT data for Screen-to-Screen
BitBLTs, CPU-to-Screen BitBLTs, and BitBLT Rectangle Fills (SGRAM fills does not use the bltDstBaseAddr).

When the Destination BLT dataareais linearly mapped (bltCommand bit(15)=0), bltDstBaseAddr specifies the
base linear frame buffer address for address calculations. The base address for Destination BLT data must be
aligned on an 8-byte boundry, and so the low 3-bits of bltDstBaseAddr must be stored with the value 000. Seethe
bltXY Strides register description for more information on memory mapping and how XY coordinates are
converted into linear frame buffer addresses.

bltDstBaseAddr, with linearly mapped Destination BLT data (bltCommand(15)=0)

Bit Description
2.0 Value ignored for address calculations. Software must store the value 000.
21:3 Base address for Screen-to-Screen Destination BLT data [range 0-4 Mbytes]

When the Destination BLT dataareaistiled (bltCommand bit(15)=1), bltDstBaseAddr specifies the base page
address (or row value) for address calculations. See the bltXY Strides register description for more information on
memory mapping and how XY coordinates are converted into linear frame buffer addresses.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 91 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

bltDstBaseAddr, with 32x32 tiled Destination BLT data (bltCommand(15)=1)

Bit Description

9:0 Base row for Screen-to-Screen Destination BLT data [range 0-1023]

5.96 bltXYStrides

The bltXY Strides register specifies several constants used in the memory mapping agorithms for al 2D BitBLT
commands except for the SGRAM fill command, which does not use bltXY Strides. The values stored in

bltXY Strides are functions of whether the Source and Destination BLT data areas are linearly mapped or tiled
(bltCommand bits(15:14)). Note that when linear mapping is selected, the X and Y strides must be aligned on an
8-byte boundry.

BItXY Strides, with linearly mapped Source BLT data (bltCommand(14)=0)

Bit Description
2.0 Software must store the value 000.
11:3 Source BLT data stride for linearly mapped Source data [in bytes, range 0-4K bytes]

BItXY Strides, with 32x32 tiled Source BLT data (bltCommand(14)=1)

Bit Description
5:0 Number of 32x32 tilesin X-dimension for Source BLT datafor tiled Source data
6 Invert ramSelect bit(1) bit calculation for Source address calculation (1=invert)

BItXY Strides, with linearly mapped Destination BLT data (bltCommand(15)=0)

Bit Description

18:16 Software must store the value 000.

2719 Destination BLT data stride for linearly mapped Destination data [in bytes, range 0-4K
bytes|

BItXY Strides, with 32x32 tiled Destination BLT data (bltCommand(15)=1)

Bit Description

21:16 Number of 32x32 tilesin X-dimension for Destination BLT data for tiled Destination data

22 Invert ramSelect bit(1) bit calculation for Destination address calculation (1=invert)

When BLT memory datais linearly mapped, the BitBL T engine uses the following algorithm to calculate the linear
memory address as a function of the base address, the stride, X, and Y (specified in the bltSrcBaseAddr,
bltDstBaseAddr, and bltXY Strides registers):

baseAddress[21:0] = (bltSrcBaseAddr[21:3]<<3) (for Source data memory accesses)
baseAddress[21:0] = (bltDstBaseAddr[21:3]<<3) (for Destination data memory accesses)
stride[11:0] = bltXY Strides[11:0] (for Source data memory accesses)

stride[11:0] = bItXY Strides[27:16] (for Destination data memory accesses)
pixelMemoryAddress[21:0] (in bytes) = baseAddress[21:0] + (Y*stride[11:Q]) + (X*2)
bankSelect = pixelMemoryAddress[21]

row[8:0] = pixelMemoryAddress[20:12]

column[8:0] = pixelMemoryAddress[11:3]

ramSelect[1:0] = pixelMemroyAddress[2:1]

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 92 Updated 12/1/99

B Voodoo® Graphics
\)

When BLT memory dataistiled, the BitBLT engine uses the following algorithm to calculate the linear memory
address as a function of the base address, the number of 32x32 tilesin the X dimension, X, and Y (specified in the
bltSrcBaseAddr, bltDstBaseAddr, and bltXY Strides registers):

tilesInX[4:0] = bltXY Strides[4:0] (for Source data memory accesses)

tilesInX[4:0] = bltXY Strides[20:16] (for Destination data memory accesses)

rowBase[9:0] = bltSrcBaseAddr[9:0] (for Source data memory accesses)

rowBase[9:0] = bltDstBaseAddr[9:0] (for Destination data memory accesses)
invertRamSelect = bltXY Strideg[5] (for Source data memory accesses)

invertRamSelect = bltXY Strideg[21] (for Destination data memory accesses)

rowStart[9:0] = ((Y>>5) * tilesinX) >> 1

rowOffset[9:0] = (!(Y&0x20) || !(tileslnX & Ox1)) ? (X>>6) : ((X>31) ? (((X-32)>>6)+1) : 0)
row[9:0] = rowBase + rowStart + rowOffset (software must guarantee now overflows...)
column[8:0] = ((Y % 32) <<4) + ((X % 32)>>1)

ramSelect[1] =(!(tilesinX&0x1)) ? ((X&0x20) ?1: 0) : (((X&0x20)*(Y &0x20)) ?1 : 0) * invertRamSelect
ramSelect[0] =X % 2

pixelMemoryAddress[21:0] = (row[9:0]<<12) + (column[8:0]<<3) + (ramSelect[1:0]<<1)
bankSelect = pixelMemoryAddress[21]

Asapoint of reference, the 3D engine uses the following algorithm to calculate the linear memory address as a
function of the video buffer offset (fbil nit2 bits(19:11)), the number of 32x32 tilesin the X dimension (fbil nit1
bits(7:4) and bit(24)), X, and Y:

tilesInX[4:0] = {fbilnit1[24], fbilnit1[7:4], fbil nit6[30]}

rowBase = fbil nit2[19:11]

rowStart = ((Y>>5) * tilesinX) >> 1

rowOffset = (1(Y &0x20) || !(tilesinX & Ox1)) ? (X>>6) : ((X>31) ? (((X-32)>>6)+1) : 0)

row[9:0] = rowStart + rowOffset (for color buffer 0)

row[9:0] = rowBase + rowStart + rowOffset (for color buffer 1)

row[9:0] = (rowBase<<1) + rowStart + rowOffset (for depth/alpha buffer when double color buffering[fbil nit5[10:9]=0])
row[9:0] = (rowBase<<1) + rowStart + rowOffset (for color buffer 2 when triple color buffering[fbil nit5[10:9]=1 or 2])
row[9:0] = (rowBase<<1) + rowBase + rowStart + rowOffset (for depth/alpha buffer when triple color buffering[fbil nit5[10:9]=2])
column[8:0] = ((Y % 32) <<4) + ((X % 32)>>1)

ramSelect[1] =(!(tilesinX&0x1)) ? (X&0x20) ?1: 0) : (((X&0x20)(Y & 0x20)) ? 1 : 0) (for color buffers)

ramSelect[1] =(!(tilesinX&0x1)) ? ((X&0x20) ?0: 1) : ((X&0x20)*(Y &0x20)) ?0: 1) (for depth/al pha buffers)
ramSelect[0] =X % 2

pixelMemoryAddress[21:0] = (row[9:0]<<12) + (column[8:0]<<3) + (ramSelect[1:0]<<1)

bankSelect = pixelMemoryAddress[21]

5.97 bltSrcChromaRange

The bltSrcChromaRange register specifies minimum and maximum 16-bit RGB color values which are compared
to the 2D BitBLT Source pixels when the Source chroma-range comparison function is enabled (bltCommand
bit(10)=1). The comparison results of the Source and Destination chroma-range tests are used to select one of four
possible ROPs (defined in the bItRop register). A 2D BitBLT Source pixel color may be compared to the color
range formed by the minimum and maximum colors stored in the bltSrcChromaRange register. Software must
program the minimum color value to be less than or equal to the value of the maximum color. The Source chroma
range test “Passes’” if the Source pixel color iswithin the range (greater than or equal to the minimum color and
less than or equal to the maximum color) of the colors specified in bltSrcChromaRange and the Source chroma-
range test is enabled (bltCommand bit(10)=1). The Source chroma-range test “Fails’ if the Source pixel color is
less than the minimum color or greater than the maximum color. A “Fail” condition for the Source chroma-range
test may be forced by disabling the chroma-range test by setting blitCommand bit(10)=0. Note that the SGRAM
fill command ignores any chroma-range tests and always writes data directly into frame buffer memory, regardiess
of the ROPs specified in the bItRop register. See the bltDstChromaRange and bltRop register descriptions for
more information.

Bit | Description |

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 93 Updated 12/1/99

B] \Voodoo® Graphics
3df
A
4.0

Source chroma-range test minimum color (5 bits, blue color component)
10:5 Source chroma-range test minimum color (6 bits, green color component)
15:11 Source chroma-range test minimum color (5 bits, red color component)
20:16 Source chroma-range test maximum color (5 bits, blue color component)
26:21 Source chroma-range test maximum color (6 bits, green color component)
31:27 Source chroma-range test maximum color (5 hits, red color component)

5.98 bltDstChromaRange

The bltDstChromaRange register specifies minimum and maximum 16-bit RGB color values which are compared
to the 2D BitBLT Destination pixels when the Destination chroma-range comparison function is enabled
(bltCommand bit(12)=1). The comparison results of the Source and Destination chroma-range tests are used to
select one of four possible ROPs (defined in the bltRop register). A 2D BitBLT Destination pixel color may be
compared to the color range formed by the minimum and maximum colors stored in the bltDstChromaRange
register. Software must program the minimum color value to be less than or equal to the value of the maximum
color. The Destination chroma-range test “Passes’ if the Destination pixel color is within the range (greater than
or equal to the minimum color and less than or equal to the maximum color) of the colors specified in
bltDstChromaRange. The Destination chroma-range test “Fails’ if the Destination pixel color is less than the
minimum color or greater than the maximum color. A “Fail” condition for the Destination chroma-range test may
be forced by disabling the chroma-range test by setting bitCommand bit(12)=0.. Note that the SGRAM fill
command ignores any chroma-range tests and always writes data directly into frame buffer memory, regardless of
the ROPs specified in the bItRop register. See the bltSrcChromaRange and bltRop register descriptions for more
information.

Bit Description

4:0 Destination chroma-range test minimum color (5 bits, blue color component)
10:5 Destination chroma-range test minimum color (6 bits, green color component)
15:11 Destination chroma-range test minimum color (5 bits, red color component)
20:16 Destination chromar-range test maximum color (5 hits, blue color component)
26:21 Destination chroma-range test maximum color (6 bits, green color component)
31:27 Destination chroma-range test maximum color (5 bits, red color component)

5.99 bItClipX and bltClipY

The bltClipX and bltClipY registers specify arectangle within which all 2D BitBLT drawing operations are
confined, except for the SGRAM fill command which bypasses the clip test. If 2D BitBLT pixel to be drawn
(specified by the XY coordinates of the Destination pixel) lies outside the 2D BitBLT clip rectangle and 2D BitBLT
clipping is enabled (bltCommand(16)=1), then the pixel is not written into the frame buffer. The valuesin the
clipping registers are given in pixel units, and the valid drawing rectangle isinclusive of the bltClipleft and
bltClipLowY register values, but exclusive of the bltClipRight and bltClipHighY register values. In other
words, if clipping is enabled, a pixel is not written to the frame buffer if the X coordinate of the pixel islessthan
bltClipL eft or greater than or equal to bltClipRight, or if the Y coordinate of the pixel islessthan clipLowY or
greater than or equal to bltClipHighY. bltClipLowY must be less than bltClipHighY, and bltClipL eft must be
less than bltClipRight. The bltClipX and bltClipY registers are enabled by setting bit(16) in the bltCommand
register. When clipping is enabled, the bounding clipping rectangle must always be less than or equal to the screen
resolution in order to clip to screen coordinates. Note that if clipping isdisabled, 2D BitBLT commands must be
programmed such that drawing is guaranteed to occur only inside the boundries of the screen resolution. Also note
that the SGRAM fill command ignores any clipping tests and always writes data directly into frame buffer memory.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 94 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

bltClipX Register

Bit Description

11:0 Unsigned integer specifying right clipping rectangle edge (bltClipRight)
15:10 reserved

27:16 Unsigned integer specifying left clipping rectangle edge (bltClipL eft)
31:26 reserved

bltClipY Register

Bit Description

11:0 Unsigned integer specifying high Y clipping rectangle edge (bltClipHighY)
15:10 reserved

27:16 Unsigned integer specifying low Y clipping rectangle edge (bItClipL owY)
31:26 reserved

5.100 bltSrcXY

The bltSrcXY register specifies the starting X and Y coordinates for the Source data for Screen-to-Screen BitBLTs.
Screen-to-Screen BitBLTs copy data from the location starting at the coordinates specified in the bltSrcXY register
to the location starting at the coordinates specified in the bltDstXY register. The upper left of the screen is (0, 0).
Positive X istoward the right and positive Y is toward the bottom of the screen. The XY coordinates are specified
as unsigned coordinates, as negative coordinates are not allowed. Software must guarantee that the coordinates
specified by the bltSrcXY register access valid datain the frame buffer. Note that the starting XY Source
coordinates are independent of the direction of the BitBL T (derived from the sign of the values stored in bltSize).
For example, if bltSizeX and bltSizeY are both positive, then the coordinates specified in bltSrcXY point to the
upper left corner of the Source BitBLT block region. Conversdly, if bltSizeX and bltSizeY are both negative, the
coordinates specified in bltSrcXY point to the lower right corner of the Source BitBLT block region. Also note
that the value of bltSrcXY isignored for CPU-to-Screen BitBLTs, Rectangle Fills, and SGRAM fills.

Bit Description

10:0 Unsigned integer X coordinate of Screen-to-Screen BLT Source Data (bltSrcXY X)
[range O to 2K]

15:11 reserved

26:16 Unsigned integer Y coordinate of Screen-to-Screen BLT Source Data (bltSrcXYY)
[range O to 2K]

5.101 bItDstXY

The bltDstXY register specifies the starting X and Y coordinates for the Destination data for Screen-to-Screen
BitBLTs, CPU-to-Screen BitBLTs, and BitBLT Rectangle Fills. BitBLTsand Rectangle Fills copy datainto the
location starting at the coordinates specified in the bItDstXY register and fill ablock the size of which is specified
by the bltSize register. The upper left of the screenis (0, 0). Positive X istoward the right and positive Y is
toward the bottom of the screen. The XY coordinates are specified as unsigned coordinates, as negative
coordinates are not allowed. Software must guarantee that the coordinates specified by the bltDstXY register
access valid datain the frame buffer. Note that the starting XY Destination coordinates are independent of the
direction of the BitBLT (derived from the sign of the values stored in bltSize). For example, if bltSizeX and
bltSizeY are both positive, then the coordinates specified in bltSrcXY point to the upper left corner of the

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 95 Updated 12/1/99

B] \Voodoo® Graphics
\J
3dfx

Destination BitBLT block region. Conversely, if bltSizeX and bltSizeY are both negative, the coordinates
specified in bltSrcXY point to the lower right corner of the Destination BitBLT block region.

Bit(31) of bltDstXY isused to launch the BitBLT operation. BitBLT operations may be launched by writing the
value ‘1’ to bit(31) of BItCommand, bit(31) of bltDstXY, or hit(31) of bltSize. Launching a BitBLT operation
causes the BLT to begin execution. Note that the storing a 32-bit data value to bltDstXY with bit(31)=0 stores the
XY coordinates for the BLT Destination data but does not begin BitBLT command execution. However, storing a
32-bit data value to bItDstXY with bit(31)=1 stores the XY coordinates for the BLT Destination data and also
commences execution of the BitBLT operation as defined by bltCommand bits(2:0).

Screen-to-Screen BLTs, CPU-to-Screen BLTs, and BitBL T Rectangle Fills

Bit Description

10:0 Unsigned integer X coordinate of BLT Destination Data (bltDstXY X) [range O to 2K]
15:11 reserved

26:16 Unsigned integer Y coordinate of BLT Destination Data (bltDstXYY) [range O to 2K]
30:27 reserved

31 Begin BitBLT operation execution

The bltDstXY register is also used to specify the starting row and column address of the SGRAM page to fill with
the value specified in bltColor bits(15:0) for the SGRAM fill command. When executing the SGRAM fill
command, bItDstXY bits(8:0) specify the starting column address of the page to begin filling with constant data
and bltDstXY bits(24:16) specify the starting row address (or page number) of the page to begin filling with
constant data. For SGRAM fills, bltSize bits(8:0) specify the number of complete columnsto fill, and bltSize
bits(24:16) specify the number of pagesto fill.

SGRAM fills

Bit Description

8:0 Starting column address to be filled for SGRAM fills
15:9 reserved

24:16 Starting row address to be filled for SGRAM fills
5.102 bltSize

The bltSize register specifies the width and height for Screen-to-Screen BitBLTs, CPU-to-Screen BitBLTs, and
BitBLT Rectangle Fills. The XY coordinates are specified as signed coordinates in the range -2K to 2K. The
number of pixelsfilled horizontally inthe BLT (i.e. the width of the BLT region) is the absolute value of bltSizeX
plus one, and the number of partial scanlines stored vertically (i.e. the height of the BLT region) is the absolute
value of bltSizeY plusone. A positive value stored in bltSizeX generatesaBLT block operation which moves
from left-to-right, and a negative value stored in bltSizeX generatesa BLT operation which moves from right-to-
left. Similarly, a positive value stored in bltSizeY generates a BLT operation which moves from top-to-bottom,
and a negative value stored in bltSizeY generates aBLT operation which moves from bottom-to-top. Storing the
value 0x0 in bltSizeX generates a single pixel-wide BLT, and storing the value 0x0 in bltSizeY generates asingle
pixel-high BLT. For CPU-to-Screen BitBLTSs, both bltSizeX and bltSizeY must be greater than or equal to zero, as
negative sizes are not supported for CPU-to-Screen BLTs. However, negative sizes may be used for rectangle Fills
and Screen-to-Screen BLTs. Software must guarantee that the coordinates specified by the bltSize register access
valid datain the frame buffer. Bit(31) of bltSize is used to launch the BitBLT operation. BitBLT operations may
be launched by writing the value ‘1’ to bit(31) of bltCommand, bit(31) of bItDstXY, or bit(31) of bltSize.
Launching a BitBLT operation causes the BLT to begin execution. Note that the storing a 32-bit data value to

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 96 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

bltSize with bit(31)=0 stores the width and height of the BLT block region but does not begin BitBLT command
execution. However, storing a 32-bit data value to bltSize with bit(31)=1 stores the width and height of the BLT
block region and also commences execution of the BitBLT operation as defined by bltCommand bits(2:0).

Screen-to-Screen BLTs, CPU-to-Screen BLTs, and BitBL T Rectangle Fills

Bit Description

11:0 Signed integer BitBLT width (bltSizeX) [range -2K to 2K]
15:12 reserved

27:16 Signed integer BitBLT height (bltSizeY) [range -2K to 2K]
30:28 reserved

31 Begin BitBLT operation execution

The bltSize register is also used to specify the number of columns and rows to fill with the value specified in
bltColor bits(15:0) for the SGRAM fill command. When executing the SGRAM fill command, bltDstXY
bits(8:0) specify the starting column address of the page to begin filling with constant data and bltDstXY
bits(24:16) specify the starting row address (or page number) of the page to begin filling with constant data. For
SGRAM fills, bltSize bits(8:0) specify the number of complete columns to fill, and bltSize bits(24:16) specify the
number of pages to fill.

SGRAM fills

Bit Description

8:0 Number of complete columnsto fill for SGRAM fills
15:9 reserved

24:16 Number of rowsto fill for SGRAM fills

5.103 bltRop

The bltRop register defines the Raster Operations (ROPs) for BitBL T operations. During a BitBLT operation, the
value of the 16-bit Source pixel is subject to the Source chroma-range test (as controlled by bitCommand bit (10)
and the bltSrcChromaRange register), and the value of the 16-bit Destination pixel is subject to the Destination
chroma-range test (as controlled by bltCommand bit(12) and the bltDstChromaRange register). The results of
the Source chroma-range test and the Destination chroma-range test cause a ROP to be selected from the bltRop
register on a pixel-by-pixel basis as follows:

Sour ce chroma- Destination ROP
range Test chroma-range Test | selected

Fail Fail ROP 0
Fail Pass ROP 1
Pass Fail ROP 2
Pass Pass ROP 3

Bit Description

3:0 ROP 0 raster operation

7:4 ROP 1 raster operation

11:8 ROP 2 raster operation

15:12 ROP 3 raster operation

The BitBLT engine supports 16 ROPs, illustrated in the table below:

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 97 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

ROP Value Value stored in Frame Buffer
0x0 0
Ox1 ~(Src | Dst)
0x2 ~Src & Dst
0x3 ~Src
0x4 Src & ~Dst
0x5 ~Dst
0x6 Src " Dst
Ox7 ~(Src & Dst)
0x8 Src & Dst
0x9 ~(Src Dst)
OxA Dst
0xB ~Src | Dst
0xC Src
0xD Src | ~Dst
OxE Src | Dst
OxF 1

The BitBLT engine implements the 16 raster operations by using a 4-to-1 MUX for each bit within an outgoing
Destination pixel. The 4-bit data inputs into each 4-to-1 MUX isthe ROP value (selected by the Source and
Destination chroma-range tests), the MSB of the 2-bit MUX select is the Source pixel bit, and the LSB of the 2-bit
MUX select is the Destination pixel bit. Note that the SGRAM fill command ignores all ROPs and aways writes
data directly into frame buffer memory.

5.104 bltColor

The bltColor register specifies constant colors used during BitBLT operations. For CPU-to-Screen BLTswith a
monochrome CPU Source color data format (bltCommand(5:3)=0 or bltCommand(5:3)=1), the value ‘1’ within
the monochrome Source data is expanded into the 16-bit Foreground color, specified by bltColor bits(15:0). When
the monochrome Source data is opague (specified by blitCommand bit(17)=0), the value ‘O’ within the
monochrome Source data is expanded into the 16-bit Background color, specified by bltColor bits(31:16). When
the monochrome Source data is transparent (bltCommand bit(17)=1), the value ‘O’ within the monochrome
Source data results in the corresponding Destination pixel to be unchanged. For Rectangle Fill BLTs
(bltCommand(2:0) = 2) and SGRAM fills (bltCommand(2:0) = 3) the value specified by the Foreground color is
used as the color for the solid fill.

Bit Description

4:0 Foreground color (5 bits, blue color component)

10:5 Foreground color (6 bits, green color component)

15:11 Foreground color (5 bits, red color component)

20:16 Background color (5 bits, blue color component)

26:21 Background color (6 bits, green color component)

31:27 Background color (5 bits, red color component)

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 98 Updated 12/1/99

B \Voodoo® Graphics
\J
3dfx

5.105 bltData

The bltData register is used to transfer data from the CPU to the 2D BitBLT engine during CPU-to-Screen
BitBLTs. A CPU-to-Screen BitBLT is setup by setting bltCommand bits(2:0) = 1, then launching the BLT by
writing the value ‘1’ to bit(31) of BltCommand, bit(31) of bltDstXY, or bit(31) of bltSize. Notethat asingle
write to blitCommand can be used to simultaneously specify a CPU-to-Screen BitBLT and also to launch the
BitBLT command. Launching a CPU-to-Screen BitBLT operation simply causes the state information (e.g.
destination drawing region, Source color format, etc.) to be propogated into internal BLT engine state machines,
but does not cause the BLT engine to wait for CPU data to be transferred through the bltData register. All Source
data for CPU-to-Screen BitBLTsis passed by the CPU through the bltData register, where it is then operated on by
the 2D BitBLT engine. Note that CPU-to-Screen BLTs are not “ stateful,” as the exact amount of datato fill the
block area defined by the bltSize register does not need to be sent by the CPU. Instead, each write to bltData
increments the internal destination X,Y addresses and writes the number of pixels which are generated by asingle
bltData write (more than one pixel can be generated by a single bltData write for 1BPP and 16BPP Source color
formats).

Bit Description

31:.0 Datafor CPU-to-Screen BitBLTs

The format of the data passed by the CPU to the bltData register is dependent on the Source color format of the
data being transferred as specified in bltCommand bits(5:3). For monochrome Source color formats, the incoming
dataword isin a 1-bit-per-pixel (1 BPP) format which is color expanded to the native screen display format, 16-bit
565 RGB. For monochrome data, the value * 1’ within the Source data is color expanded to equal the value
specified in the 16-bit Foreground color (bltColor bits(15:0)), and the value *0" within the monochrome Source
datais color expanded into the 16-bit Background color, specified by bltColor bits(31:16).

Bit(17) of bltCommand is used to control whether monochrome Source data is transparent or opague. When
bltCommand bit(17)=0, monochrome Source data is opaque; the value ‘0’ within the monochrome Source datais
expanded into the 16-bit Background color, specified by BItColor bits(31:0). When bltCommand bit(17)=1,
monochrome Source data is transparent; the value ‘0" within the monochrome Source data resultsin the
corresponding Destination pixel to be unchanged.

When the Source color format is specified as the “standard” 1 BPP format (bltCommand bits(5:3)=0), each 32-bit
write from the CPU will generate up to 32-pixels on the screen in a 1x32 rectangular area. If the remaining
BitBLT destination width isless than 32 pixels, then the extra data passed from the CPU as part of the single 32-bit
writeisignored. For example, if the BitBLT destination area is defined to be 37 pixels wide by 5 rowstall, 10 32-
bit CPU writes would be required to fill the 5x37 pixel area as follows:

CPU 32-bit write #1: fill row O, pixels 0-31

CPU 32-bit write #2: fill row O, pixels 32-36

CPU 32-bit write #3: fill row 1, pixels 0-31

CPU 32-bit write #4: fill row 1, pixels 32-36

CPU 32-bit write #5: fill row 2, pixels 0-31

CPU 32-bit write #6: fill row 2, pixels 32-36

CPU 32-bit write #7: fill row 3, pixels 0-31

CPU 32-bit write #8: fill row 3, pixels 32-36

CPU 32-bit write #9: fill row 4, pixels 0-31

CPU 32-bit write #10: fill row 4, pixels 32-36

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 99 Updated 12/1/99

B \Voodoo® Graphics
\J
3dfx

When the Source color format data format is specified as the * byte-packed” 1 BPP format (bltCommand
bits(5:3)=1), each 32-bit write from the CPU will generate up to 32-pixels on the screen in a 4x8 rectangular area.
If the remaining BitBL T destination width is less than 8 pixels or the remaining BitBLT destination height isless
than 4 pixels, then the extra data passed from the CPU as part of the single 32-bit write isignored. Note that
when using the “ byte-packed” 1 BPP format, the destination width cannot exceed 8 pixels -packed” 1
BPP format is very useful for accelerating Windowsa text formats. For example, if the BitBLT destination areais
defined to be 6 pixelswide by 7 rows tall, 2 32-bit CPU writes would be required to fill the 7x6 pixel area as
follows:
CPU 32-bit write #1: fill row O, pixels 0-5
fill row 1, pixels 0-5
fill row 2, pixels 0-5
fill row 3, pixels 0-5
CPU 32-bit write #2: fill row 4, pixels 0-5
fill row 5, pixels 0-5
fill row 6, pixels 0-5

When the Source color format data format is specified as the 16 BPP format (bltCommand bits(5:3)=2), each 32-
bit write from the CPU will generate up to 2-pixels on the screen in a 1x2 rectangular area. If the remaining
BitBLT destination width is less than 2 pixels, then the extra data passed from the CPU as part of the single 32-bit
writeisignored. For example, if the BitBLT destination area is defined to be 5 pixels wide by 2 rows tall, 6 32-bit
CPU writes would be required to fill the 2x5 pixel area as follows:

CPU 32-bit write #1: fill row O, pixels 0-1

CPU 32-bit write #2: fill row O, pixels 2-3

CPU 32-bit write #3 fill row O, pixel 4

CPU 32-bit write #4 fill row 1, pixels 0-1

CPU 32-bit write #5 fill row 1, pixels 2-3

CPU 32-bit write #6 fill row 1, pixel 4

When the Source color format data format is specified as a 24 BPP format (bltCommand bits(5:3)=3 or
bltCommand bits(5:3)=4), each 32-bit write from the CPU will generate a single pixel on the screen. For the
undithered 24-bit Source color format (bltCommand bits(5:3)=3), the 24-bit data is converted into the 16 BPP
Destination pixel format by bit truncation. For the dithered 24-bit Source color format (bltCommand bits(5:3)=4),
the 24-bit Source datais converted into the 16 BPP Destination pixel format using a 2x2 ordered dithering
algorithm. Note that the CPU must generate a full 32-bit write for each 24-bit Source data element to be
transferred. For example, if the BitBLT destination area is defined to be 3 pixelswide by 2 rows tall, 6 32-bit CPU
writes would be required to fill the 2x3 pixel area as follows:

CPU 32-bit write #1: fill row O, pixel O

CPU 32-bit write #2: fill row O, pixel 1

CPU 32-bit write #3 fill row O, pixel 2

CPU 32-bit write #4: fill row 1, pixel O

CPU 32-bit write #5: fill row 1, pixel 1

CPU 32-bit write #6 fill row 1, pixel 2

The tables below shows a pixel's position within an incoming 32-bit word and how each bit is color expanded onto
the destination screen as a function of the Source color format (bltCommand bits(5:3)).

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 100 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

Bit Position within a 32-bit word
Data Format| 31| 30| 29] 28| 27| 26| 25| 24| 23] 22] 21| 20 19| 18] 17| 16| 15| 14| 13| 12| 11f 10] 9] 8] 7] 6] 51 4 3] 2| 1] 0
1 BPP, standard |A24|A25|A26| A27] A28| A29]A30{A31] A16|A17]A18|A19| A20| A21] A22] A23|A8 |A9 |A10/A11]A12|A13]A14[A15|A0 A1 |A2 |A3 |A4 [AS5 |A6 |AT7
1 BPP, byte-packed|D0 |D1 |D2 |D3 |D4 [D5 |D6 |D7 |CO |C1 JC2 [C3 |C4 |C5 |C6 |C7 [BO |B1 |B2 |B3 |B4 |B5 [B6 |B7 |AO |Al |A2 [A3 |A4 |A5 |A6 |A7
Al, |Al, |Al, |Al, |Al, |Al, |Al, |Al, |Al, |ALl, JALl, |Al, |Al, |Al, |Al, |Al, |AO, |AO, |AO, |AO, JAO, |AO, |AO, |AO, |AO, |AO, |AO, |AO, |AO, |AO, |AO, JAO,
16BPP|red4 |red3 |red2 |red1 Jred0 |gm5 g4 |gm3 |gm2 Jgrm1 Jgrn0 |blu4 |blu3 |blu2 |blul |blu0 |red4 |red3 |red2 |red1 |red0 {grmn5 [grn4 [grm3 [gm2 Jgrn1 Jgrno |blu4 |blu3 |blu2 |blul |blu0

AO, |AO, |AO, |AO, |AO, |AO, |AO, JAO, |AO, |AO, |AO, |AO, |AO, |AO, |AO, |AO, |AO, JAO, JAO, |AO, |AO, |AO, |AO, [AO,
24BPP|n/a [n/a |n/a |n/a In/a |n/a |n/a |n/a [red7 Jred6 |reds |red4 |red3 [red2 |red1 Jred0 |arn7 |gm6 Jam5 larnd Jarn3 |arn2 fgrna gm0 |blu7 Ibiué Jblus biua [biu3 {blu2 |blu1 fbluo

Pixels on Screen
Horizontal Column (x)

Verticalrow (y)L_0l 11 2[3] 4] 5| 6] 70 8] 9l 10| 11] 12| 13[14] 15| 16| 17] 18] 19] 20] 21] 22| 23| 24] 25| 26| 27| 28| 29[30] 31f 32

A A0 A1 |A2 |A3 |A4 |AS |A6 |A7 |A8 |A9 |A10]A11]A12[A13|A14]A15|A16|A17]A18|A19|A20|A21[A22] A23| A24] A25|A26]|A27|A28| A29] A30JA31]A32)

B _[BO |B1 |B2 [B3 |B4 [B5 |B6 |B7 [B8 |BY |B10|B11{B12|B13|B14]|B15|B16{B17|B18|B19|B20{B21|B22|B23|B24]|B25|B26|B27|B28|B29|B30|B31|B32

C |COo |C1 [C2 |C3 |C4 |C5 |C6 [C7 |C8 JC9 |C10{C11]C12|C13{C14|C15[C16|C17|C18]C19|C20|C21|C22{C23)C24|C25]C26|C27|C28|C29| C30]C31{C32|

D _|D0 |D1 |D2 D3 |D4 [D5 |D6 |D7 [D8 |D9 |D10|D11{D12]D13|D14)D15|D16[D17)D18|D19|D20{D21]D22] D23{ D24]D25|D26|D27|D28| D29) D30jD31|D32

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 101 Updated 12/1/99

B Vioodoo? Graphics
\ 2
3dfx

6. PCI Configuration Reqgister Set

Register Name Addr Bits Description

Vendor 1D 0 (0x0) 15:0 3Dfx Interactive Vendor Identification

Device 1D 2 (0x2) 15:0 Device Identification

Command 4 (0x4) 15:0 PCI bus configuration

Status 6 (0x6) 15:0 PCI device status

Revison_ID 8 (0x8) 7:0 Revision Identification

Class code 9 (0x9) 23.0 Generic functional description of PCI device

Cache line size | 12 (0xc) 7:0 Bus Master Cache Line Size

Latency timer 13 (Oxd) 7.0 Bus Master Latency Timer

Header type 14 (Oxe) 7:0 PCI Header Type

BIST 15 (0xf) 7.0 Build In Self-Test Configuration

memBaseAddr 16 (0x10) 31:.0 Memory Base Address

Reserved 20-59 (0x14-0x3b) Reserved

Interrupt_line 60 (0x3c) 7:0 Interrupt Mapping

Interrupt_pin 61 (0x3d) 7.0 External Interrupt Connections

Min_gnt 62 (0x3€) 7:0 Bus Master Minimum Grant Time

Max_lat 63 (0x3f) 7:0 Bus Master Maximum Latency Time

initEnable 64 (0x40) 310 Allow writes to hardware initialization
registers

busSnoop0 68 (0x44) 31:.0 Chuck bus snooping address 1 (write only)

busSnoopl 72 (0x48) 31:.0 Chuck bus snooping address 0 (write only)

cfgStatus 76 (Ox4c) 31.0 Aliased memory-mapped status register

cfgScratch 80 (0x50) 31:.0 Scratchpad register

siProcess 84 (0x54) 31:.0 Silicon Process monitor register

Reserved 88-255 (0x58-0xff) | n/a Reserved

6.1 Vendor_|D Register

The Vendor_ID register is used to identify the manufacturer of the PCI device. Thisvalueis assigned by a central
authority that controls issuance of the values. Thisregister isread only.

Bit Description

7.0 3Dfx Interactive Vendor Identification. Default is Ox121a

6.2 Device |D Register

The Device ID register is used to identify the particular device for a given manufacturer. Thisregister isread
only.

Bit Description

15:0 VVoodoo2 Graphics Device ldentification. Default is Ox1.

6.3 Command Register

The Command register is used to control basic PCl bus accesses. See the PCI specification for more information.
Bit 1is R/W, and bits 0, 15:2 are read only.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 102 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

Bit Description
0 I/0O Access Enable. Default isO.
1 Memory Access Enable (1=respond to memory cycles). Default value is the value of

fb_addr_a[5] at the deassertion of pci_rst

Master Enable. Default is 0.

Specia Cycle Recognition. Default isO.

Memory Write and Invalidate Enable. Default isO.

Parity Error Respond Enable. Default isO.

Wait Cycle Enable. Default isO.

2
3
4
5 Palette Snoop Enable. Default isO.
6
7
8

System Error Enable. Default isO.

15:9 reserved. Default is 0x0.

6.4 Status Register
The Status register is used to monitor the status of PCI bus-related events. This register isread only.

Bit Description

4.0 Reserved. Default is 0x0.

5 66 MHz Capable. Default value isthe value of fb_addr_b[1] at the deassertion of
pci_rst

6 Reserved. Default is 0x0.

7 Fast back-to-back capable. Default value isthe value of fb_addr_a[8] at the deassertion
of pci_rst

8 Data Parity Reported. Default isO.

10:9 Device Select Timing. Default value is selected by the value of fb_addr_a[8] at the

deassertion of pci_rst. If the value of fb_addr_a[8] at the deassertion of pci_rstis1,
then the device is specified as a Fast device — otherwise the device is specified as a
Medium device.

11 Signalled Target Abort. Default isO.
12 Received Target Abort. Default isO.

13 Received Master Abort. Default is 0.
14 Signalled System Error. Default isO.
15 Detected Parity Error. Default isO.

6.5 Revision_ID Register
The Revision_|D register is used to identify the revision number of the PCI device. Thisregister isread only.

Bit Description

7.0 Voodoo2 Graphics Revision Identification. Value represents the current revision
number. The revisionID is 0x2 for software backwards compatibility with VVoodoo
Graphics. TherevisionlD for Voodoo2 Graphics is found in the secondary RevisionID
field ininitEnable bits(15:12).

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 103 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

6.6 Class code Register

The Class_code register is used to identify the generic functionality of the PCI device. The default value of
Class_code is dependent on the value of fb_addr_a[6] at the deassertion of pci_rst. See the PCI specification for
more information. This register isread only.

Bit Description

23.0 Class Code. Default is 0x038000 when fb_addr_a[6]=0 at deassertion of pci_rst
(Display controller, non-VGA compatible)

23.0 Class Code. Default is 0x040000 when fb_addr_a[6]=1 at deassertion of pci_rst
(Video multimedia device)

6.7 Cache line size Register

The Cache_line_sizeregister specifies the system cache line size in doubleword increments. It must be
implemented by devices capable of bus mastering. Thisregister isread only and is hardwired to 0xO0.

Bit Description

70 Cache Line Size. Default is 0x0.

6.8 Latency_timer Register

The Latency_timer register specifies the latency of bus master timeouts. It must be implemented by devices
capable of bus mastering. Thisregister isread only and is hardwired to 0xO.

Bit Description

7.0 Latency Timer. Default is0xO0.

6.9 Header type Register

The Header _type register defines the format of the PCI base address registers (memBaseAddr in Voodoo2
Graphics). Bits0:6 are read only and hardwired to 0x0. Bit 7 of Header _type specifies Voodoo2 Graphics as a
single function PCI device.

Bit Description
6:0 Header Type. Default is 0xO0.
7 Multiple-Function PCI device (O=single function, 1=multiple function). Default is 0xO0.

6.10 BIST Register

The BIST register isimplemented by those PCI devices that are capable of built-in self-test. Voodoo2 Graphics
does not provide this capability. Thisregister isread only and is hardwired to 0xO.

Bit Description

7:0 BIST field and configuration. Default is 0xO.

6.11 memBaseAddr Register

The memBaseAddr register determines the base address for all PCI memory mapped accesses to Voodoo2
Graphics. Writing Oxffffffff to this register resetsit to its default state. Once memBaseAddr has been reset, it can
be probed by software to determine the amount of memory space required for Voodoo2 Graphics. A subsequent

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 104 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

write to memBaseAddr sets the memory base address for al PCl memory accesses. See the PCI specification for
more details on memory base address programming. Voodoo2 Graphics requires 16 MBytes of address space for
memory mapped accesses. For memory mapped accesses on the 32-bit PCI bus, the contents of memBaseAddr are
compared with the pci_ad bits(31:24) (upper 8 bits) to determine if Voodoo2 Graphics is being accessed.
MemBaseAddr bit(3) is always set to one, marking Voodoo2 Graphics as prefetchable PCI device. A prefetchable
PCI devicereturns al bytes on reads regardless of the byte enables, and host bridges can merge processor writes
into a device' s address range without causing errors. Bits(31:24) of memBaseAddr are R/W, and all other bits are
read only.

Bit Description

31.0 Memory Base Address. Default value is dependent on the value of fb_addr_b[1] at the
deassertion of pci_rst —if fb_addr_b[1]=0 at the deassertion of pci_rst, the default
value of the memory base address is Oxff000008. Otherwise, if fb_addr_b[1]=1 at the
deassertion of pci_rst, the default value of the memory base address is 0x10000008.

6.12 Interrupt_line Register

The Interrupt_line register is used to map PCI interrupts to system interrupts. In a PC environment, for example,
the values of 0 to 15 in this register correspond to IRQO-IRQ15 on the system board. The value Oxff indicates no
connection. This register is R/W.

Bit Description

0:7 Interrupt Line. Default is 0xO0.

6.13 Interrupt_pin Register

The Interrupt_pin register defines which of the four PCI interrupt request lines, INTA* - INTRD*, the PCI device
is connected to. Thisregister isread only and is hardwired to Ox1.

Bit Description

0:7 Interrupt Pin. Default is Ox1 (INTA*)

6.14 Min_gnt Register

The Min_gnt register specifies the burst period a PCI bus master requires. It must be implemented by devices
capable of bus mastering. Thisregister isread only and is hardwired to 0x0 since Voodoo2 Graphics does not
support bus mastering.

Bit Description

70 Minimum Grant. Default is 0xO0.

6.15 Max_lat Register

The Max_lat register specifies the maximum request frequency a PCl bus master requires. It must be implemented
by devices capable of bus mastering. This register isread only and is hardwired to 0x0 since Voodoo2 Graphics
does not support bus mastering.

Bit Description
7:0 Maximum Latency. Default is OxO.
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 105 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

6.16 initEnable Register

The initEnable register controls write access to the fbiinit registers and also controls the Chuck PCI bus snooping
functionality. Bit(0) of initEnable enables writes to the Chuck hardware initialization registers fbil nit0, fbil nit1,
fbilnit2, and fbil nit3. By default writes to the hardware initialization registers are not allowed. Writesto the
hardware initialization registers when initEnable bit(0)=0 are ignored. Bit(1) of initEnable enables writes to the
PCI FIFO. Bit(1) of initEnable must be set for normal Voodoo2 Graphics operation. Bits (9:4) of initEnable
control the Chuck PCI bus snooping functionality. See the busSnoop register description for more information on
Chuck bus snooping. Bit(10) of initEnable determines which scanline interleave device (master or slave) drives
the PCI bus during scan line interleaving. When scanline interleaving is enabled (fbil nit1(23)=1), then
initEnable(11) determines if Chuck is the master or slave for scanline interleaving. If initEnable(11) and
initEnable(10) are set to the same value, then the programmed Chuck drives the PCI bus during scanline
interleaving.

Bits(31:12) of initEnable can be used by software for scratchpad register storage space. The data stored in
initEnable bits(31:12) have no affect on functionality of Voodoo2 Graphics.

Bit Description

0 Enable writes to hardware initialization registers. (1=enable writes to the hardware
initialization registers). Default isO.

1 Enable writes to PCl FIFO (1=enable writes to PCI FIFO). Default isO.

2 Remap {fbiinit2, fbiinit3} to {dacRead, videoChecksum} (1=enable). Default isO.

3 reserved.

4 Chuck snooping register 0 enable (1=enable). Default isO.

5 Chuck snooping register 0 memory matching type (O=memory access, 1=10 access).
Default isO.

6 Chuck snooping register 0 read/write matching type (O=write access, 1=read access).
Default isO.

7 Chuck snooping register 1 enable (1=enable). Default isO.

8 Chuck snooping register 1 memory matching type (O=memory access, 1=10 access).
Default isO.

9 Chuck snooping register 1 read/write matching type (O=write access, 1=read access).
Default isO.

10 Scan-line interleaving PCI bus ownership. (0=SLI master owns PCI bus, 1=SL | dave
owns PCI bus). Default isO.

11 Scan-line interleaving master/slave determination (O=master/even scan lines,
1=dlave/odd scan lines). Default isO.

15:12 Secondary Voodoo2 Graphics Revision Identification. Value represents the current
revision number of Voodoo2 Graphics. The PCI revision ID value stored in the
revision_ID register is always 0x2 to maintain backwards software compatibility with
VVoodoo Graphics.

19:16 Manufacturing fab identification. Read only

20 PCI Interrupt Enable (1=enable). Default valueisthe value of fb_addr_a[7] at the
deassertion of pci_rst

21 PCI Interrupt Timeout Enable (1=enable). When enabled, the external PCI interrupt
signal pin pci_inta will be deasserted a minimum of 32 PCI clocks for back-to-back PCI
interrupts. Default isO.

22 NAND tree test enable (1=enable). Default isO.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 106 Updated 12/1/99

Vioodoo? Graphics

Y
A

23 SLI Address snoop enable (1=enable). Default isO.

31:24 SLI Snoop Address. When SLI Address snooping is enabled (initEnable[23]=1), the
incoming PCI address bits(31:24) are compared with initEnable bits(31:24). The PCI
cycle is snooped if the address comparison passes

6.17 busSnoop0 and busSnoopl Registers

The busSnoop0 and busSnoop registers control the Chuck PCI bus “snooping” functionality. When bus snooping
isenabled, a PCl cycle with characteristics (i.e. write/read type, io/mem type, etc). and address matching those
characteristics and address specified in the initEnable and busSnoop registers sets the vga_pass Chuck external
pin. Note that the snooping functionality does not affect the PCI data transfer, as Chuck does not own the address
space specified in the snooping registers. busSnoop bits(1:0) are only used for 10 PCI access types, as bits(1:0) of
the PCI address are used to uniquely map 10 space for PCI devices -- bits(1:0) of the busSnoop registers are
ignored for PCI memory access types. The Chuck snooping functionality is useful for making sure VGA
passthrough capability does not drive the video monitor upon soft and hard resets. Note that the busSnoop0 and
busSnoop1 registers are write-only, and return 0x0 when read.

Bit Description
1:0 PCl Snooping address register bits 1:0. (ignored for memory access types).
31:2 PCI Snooping address registers bits 31:2. Used for all PCI access types.

6.18 cfgStatus Register

The cfgStatus register is an alias to the normal memory-mapped status register. See section 5.1 for a description
of the statusregister. Reading the configuration-space cfgStatus register returns the same data as if reading from
the memory-mapped status register.

6.19 cfgScratch Register

The cfgScratch register can be used as scratchpad storage space by software. The values of cfgScratch are not
used internally to alter functionality, so any value can be stored to and read from cfgScratch.

Bit Description

31:0 Scratchpad register. Default is 0xO.

6.20 siProcess Register
The siProcess register is used to measure the silicon performance of Chuck.

Bit Description
15:0 Oscillator counter output (16-bits)
2716 PCI counter output (12-bits). Reading bits(27:16) of siProcess returns the current state
of the PCI countey.
28 Silicon process monitor oscillator counter reset (O=reset, 1=run)
29 Silicon process monitor ring oscillator select (O=nand-tree oscillator, 1=nor-tree
oscillator)
30 Silicon process monitor force on (O=normal, 1=force oscillator to be enabled)
31 reserved
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 107 Updated 12/1/99

B \Voodoo® Graphics
\J
3dfxX

7. 3D Command Descriptions

7.1 NOP Command

The NOP command is used to flush the graphics pipeline. When a NOP command is executed, al pending
commands and writes to the texture and frame buffers are flushed and completed, and the graphics engine returns
toits IDLE state. While this command is used primarily for debugging and verification purposes, it is also used to
clear the 3D status registers (fbiTrianglesOut, fbiPixelsl n, fbiPixelsOut, fbiChromakFail, fbiZfuncFail, and
fbiAfuncFail). Setting nopCM D bit(0)=1 clears the 3D status registers fbiPixelsl n, fbiPixelsOut,
fbiChromaFail, fbiZfuncFail, and fbiAfuncFail and flushes the graphics pipeline, while setting nopCMD
bit(0)=0 has no affect on the 3D status registers but flushes the graphics pipeline. Setting nopCMD bit(1)=1 clears
the fbiTrianglesOut register. See the description of the nopCM D register in section 5 for more information.

7.2 TRIANGLE Command
TOBE COMPLETED. SEE THE SST-1 PROGRAMMING GUIDE FOR A DETAILED EXPLANATION.

7.3 FASTFILL Command

The FASTFILL command is used for screen clears. When the FASTFILL command is executed, the depth-buffer
comparison, alphatest, apha blending, and all other special effects are bypassed and disabled. The FASTFILL
command uses the status of the RGB write mask (bit(9) of fbzM ode) and the depth-buffer write mask (bit(10) of
fbzM ode) to access the RGB/depth-buffer memory. The FASTFILL command also uses bits (15:14) of fbzM ode to
determine which RGB buffer (front or back) iswritten. Prior to executing the FASTFILL command, the
clipLeftRight and clipLowY HighY registers must be loaded with arectanglar areawhich is desired to be cleared
-- -- the fastfillCM D register is then written to initiate the FASTFILL command. Note that clip registers define a
rectangular area which isinclusive of the clipL eft and clipLowY register values, but exclusive of the clipRight
and clipHighY register values. Note also that the relative position of the Y origin (either top of bottom of the
screen) is defined by fbzM ode bit(17). The 24-bit color specified in the Color 1 register is written to the RGB
buffer (with optional dithering as specified by bit(8) of fbzM ode), and the depth value specified in bits(15:0) of the
zaColor register iswritten to the depth buffer. See the description of the fastfillCM D register in section 5 for
more information.

7.4 SWAPBUFFER Command

The SWAPBUFFER command is used to swap the drawing buffers to enable smooth animation. Since the
SWAPBUFFER command is executed and queued like al other 2D and 3D commands, proper order is maintained
and software does not have to poll and wait for vertical retrace to manually swap buffers — this frees the CPU to
perform other functions while the graphics engine automatically waits for vertical retrace. When the
SWAPBUFFER command is executed, swapbuffer CM D bit(0) determines whether the drawing buffer swapping is
synchronized with vertical retrace. Typically, it is desired that buffer swapping be synchronized with vertical
retrace to eliminate frame “tearing” typically found on single buffered displays. If vertical retrace synchronization
is enabled for double buffered applications, the graphics command processor blocks on a SWAPBUFFER command
until the monitor vertical retrace signal is active. If the number of vertical retraces seen exceeds the value stored in
bits(8:1) of swapbuffer CM D, then the pointer used by the monitor refresh control logic is changed to point to
another drawing buffer. If vertical retrace synchronization is enabled for triple buffered applications, the graphics
processor does not block on a SWAPBUFFER command. Instead, aflag is set in the monitor refresh control logic
that automatically causes the data pointer to be modified in the monitor refresh control logic during the next active
vertical retrace period. Using triple buffering allows rendering operations to occur without waiting for the vertical
retrace active period.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 108 Updated 12/1/99

B \Voodoo® Graphics
\J
3dfx

When a swapbuffer CM D is received in the front-end PCI host FIFO, the swap buffers pending field in the status
register isincremented. Conversely, when an actual frame buffer swapping occurs, the swap buffers pending field
in the status register (bits(30:28)) is decremented. The swap buffers pending field allows software to determine
how many SWAPBUFFER commands are present in the Voodoo2 Graphics FIFOs. See the description of the
swapbuffer CM D register in section 5 for more information.

7.5 USERINTERRUPT Command

The USERINTERRUPT command allows for software-generated interrupts. A USERINTERRUPT command is
generated by writing to the user Intr CM D register. userIntr CM D bit(0) controls whether awrite to userIntrCMD
generates a USERINTERRUPT. Setting userIntr CM D hit(0)=1 generates a USERINTERRUPT. userintrCMD
bit(1) determines whether the graphics engine stalls on software clearing of the user interrupt. By setting

user Intr CMD bit(1)=1, the graphics engine stalls until the USERINTERRUPT is cleared. Alternatively, setting
user I ntr CM D bit(1)=0 does not stall the graphics engine upon execution of the USERINTERRUPT command,
and additional graphics commands are processed without waiting for clearing of the user interrupt. A
identification, or Tag, is also associated with an individual USERINTERRUPT command, and is specified by
writing an 8-bit value to user Intr CM D bits(9:2).

User interrupts must be enabled before writes to the userIntr CM D are alowed by setting intr Ctrl bit(5)=1.
Writes to user Intr CM D when intr Ctrl bit(5)=0 are “dropped” and do not affect functionality. A user interrupt is
detected by reading intr Ctrl bit (11), and is cleared by setting intr Ctrl bit(11)=0. Thetag of a generated user
interrupt is read from intr Ctrl bits (19:12). See the description of the intr Ctrl and userIntr CMD registersin
section 5 for more information.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 109 Updated 12/1/99

“3dfy

Vioodoo? Graphics

8. 2D Command Descriptions

The diagram below shows the block diagram for the 2D BitBLT engine:

PCI Bus
32
pop
» PCl BusFIFO
¢ 32
ByteSwizzle [«€— bltCommand hit(8)
I
16-hit Word Swap [«€— bltCommand bit(9)
I
Color Formatting |<€— bltCommand bits(5:3), bits(7:6)
Color Lane Selection «— bitColor
Dithering
bltSrcBaseAddr —» 16 (single 16-bit pixel)
bItXY Strides —»| BIBLT So \ 4
i urce sdlect .
bltCommand _>Addr/DataGenerator 16 (s_ngl_e
bltSrcStart —| " sdlect 16-bit pixel)
bltsize — —7/_ \
push R
> BitBLT Source 4 2
bits(31:16) bits(15:0
———»| DaaFIFO 3 [S150)
pop
bltDstBaseAddr —] 16 (single 16-bit pixel 2
bItXY Strides —»{ . (aingle16-tit pixel) o onl
bitCommand BitBLT Destination \ 4 (color only,
o > Addr/Data Generator Source Chroma. | €— bltCommand bits(11:10) o depth)
) Range Testand [«— bltSrcChromaRange
bltSize — ROPSdlection |¢— pitROP
XY Coordinat: .
oorainates 2 4-bit ROPs{” 16-hit Color
et S Gy]y 4
P2, bittlip ' Pack
invalidate '
pixd ,{v’z 4-bit ROPS¢2 16-bit Colors
v
Pixel FIFO
24-bit Src Color | Dst Color |
ROPs A 4 A4 _ | Destination Chroma [€— bitDstChf omaRange
_ v RangeTest [«— bitComnjand bits(13:12)
ROP Selection and €« - -1 I
(Src ROP Dst) ROP M emory
selection Read Ahead
FIFO
? 32 (color only, no depth)
Data out Datain

Memory Data Bus

The following sections describe each 2D BitBLT command, as well as detail which registers are used for 2D
commands.

Copyright O 1996-1998 3Dfx Interactive, Inc.

Revision 1.16
Proprietary

110 Updated 12/1/99

B \Voodoo® Graphics
\J
3dfxX

8.1 Screen-to-Screen BitBLT command

The Screen-to-Screen BitBLT command is used to copy data from alocation in frame buffer memory (the Source
data region) to another location in frame buffer memory (the Destination region). The Screen-to-Screen BitBLT
command is executed by setting bltCommand(2:0)=0 and launching a 2D BitBLT command by writing the value
‘1’ to bit(31) of BltCommand, bit(31) of bltDstXY, or bit(31) of bltSize. All registers which control the Screen-
to-Screen BLT functionality must be written prior to launching the command, although writes to registers which
include a launch bit may specify control for the BLT and launch the BLT with the same single write.

For Screen-to-Screen BLTS, the starting Source XY addressis specified in the bltSrcXY register, the starting
Destination XY address is specified in the bltDstXY register, and the BitBLT block size is specified in the bltSize
register. The values stored in bltSrcXY and bltDstXY are unsigned values (range 0 to 2K), and the value stored
in the bltSize register is specified in signed coordinates (range -2K to 2K). BLTs cannot be executed in negative
coordinate space, and software must setup the BLT such that the block region iterated does not cross into
negative coordinates. Because the Source and Destination block regions of a Screen-to-Screen BLT may be
overlapping, software must choose the proper starting corner and the appropriate size (whether positive or
negative) to guarantee that the writes to the Destination region do not overwrite Source data during Screen-to-
Screen BLT execution. A positive value stored in bltSizeX generates a Screen-to-Screen operation which moves
from left-to-right, and a negative value stored in bltSizeX generates a Screen-to-Screen operation which moves
from right-to-left. Similarly, a positive value stored in bltSizeY generates a Screen-to-Screen operation which
moves from top-to-bottom, and a negative value stored in bltSizeY generates a Screen-to-Screen operation which
moves from bottom-to-top. Seethe bltSrcXY, bltDstXY, and bltSize registers for more information regarding
setting up and defining the Source and Destination data block regions for Screen-to-Screen BLTs

For Screen-to-Screen BLTS, the base address of the Source dataregion is stored in the bltSrcBaseAddr register,
the memory organization (whether linear or tiled) specified by bitCommand bit(14), and the memory mapping
conversion formula of the Source data specified in the bltXY Strides register. Similarly, the base address of the
Destination data block is stored in the bltDstBaseAddr register, the memory organization specified by
bltCommand hit(15), and the memory mapping conversion formula of the Destination data specified in the
bltXY Stridesregister. Seethe bitCommand, bltSrcBaseAddr, bltDstBaseAddr, and bltXY Strides register
descriptions for more information on selecting memory location, organization, and configuration.

Screen-to-Screen BLTs are optionally subject to both Source and Destination chroma-range tests. The Source
chroma-range test is enabled by setting bitCommand bit(10)=1 and specifying the color range for the Source
chroma-range comparison in the bltSrcChromaRange register. Similarly, the Destination chroma-range test is
enabled by setting bltCommand bit(12)=1 and specifying the color range for the Destination chroma-range
comparison in the bltDstChromaRange register. See the bltCommand, bltSrcChromaRange, and
bltDstChromaRange register descriptions for more information regarding the Source and Destination chroma-
range tests.

Screen-to-Screen BLTs are also subject to the 2D clipping test. When clipping is enabled (bltCommand
bit(16)=1), the XY coordinates of the Destination pixel are compared to the bounding box defined by the bltClipX
and bltClipY registers. If the destination pixel XY coordinates lie outside of the bounding box defined by the
clipping registers, the pixel isinvalidated in the BitBLT pixel pipeline and the frame buffer memory data addressed
by the Destination XY coordinates is unmodified. See the bltCommand, bltClipX, and bItClipY register
descriptions for more information regarding the 2D clip test.

Screen-to-Screen BLTs use Raster Operations (ROPs) to merge the Source and Destination color pixels. The
results of the Source and Destination chroma-range tests are used to specify one of four ROPs stored in the bItROP

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 111 Updated 12/1/99

B \Voodoo® Graphics
\J
3dix

register. A given ROP selects one of sixteen different pixel algorithms used to merge the Source and Destination
pixels. Seethe bltCommand, bltSrcChromaRange, bltDstChromaRange, and bltRop register descriptions for
more information regarding the chroma-range tests, the individual pixel merging functions which the chosen ROP
performs, and how a single ROP is selected on a pixel-by-pixel basis.

8.2 CPU-to-Screen BitBLT command

The CPU-to-Screen BitBLT command is used to copy data from alocation in Host/System memory (the Source
data region) to another location in frame buffer memory (the Destination region). During a CPU-to-Screen BLT,
the host CPU sends data to the 2D BitBL T engine through the bltData register. For each 32-bit word that is sent
by the CPU through the bltData register, the Destination block region is automatically iterated as a function of the
CPU Source color format. The format of the data sent by the CPU is programmable, and controlled by
bltCommand register bits (9:3). Prior to data being sent from the CPU through the bltData register, the CPU-to-
Screen BitBLT command must be launched by setting bltCommand(2:0)=1 and writing the value * 1’ to bit(31) of
BltCommand, bit(31) of bltDstXY, or bit(31) of bltSize. All registers which control the CPU-to-Screen BLT
functionality must be written prior to launching the command, although writes to registers which include a launch
bit may specify control for the BLT and launch the BLT with the same single write.

The format of the CPU data for CPU-to-Screen BLTs is specified in bitCommand bits(5:3). The supported CPU
data formats include two different types of monochrome data, 16 bit-per-pixel data, and 24-bit data with optional
dithering. Prior to data formatting, the CPU data may optionally be byte sizzled and/or 16-bit word swapped, as
controlled by bltCommand bits (9:8). Additionaly, the RGBA color lanes of the incoming CPU data are sel ected
by bltCommand bits(7:6). When the CPU data format is a monochrome format, bitCommand bit(17) controls
whether to expand the monochrome data as opaque or transparent, and the bltColor register specifies the colors
used during color expansion. See the bltCommand register description for more information on byte-swizzling,
word swapping, color lane ordering, and transparency control for monochrome data formats.

The Destination data block region for CPU-to-Screen BLTs is setup the same as described above for Screen-to-
Screen BLTs using the blitCommand, bltDstXY, bltSize, bltDstBaseAddr, and bltXY Strides registers prior to
sending down through the bltData register. All CPU-to-Screen BLTs are also subject to 2D clipping, Source and
Destination chroma-range tests, and ROP selection as described above for Screen-to-Screen BLTs. Important Note:
Negative sizes are not supported for CPU-to-Screen BitBLTs. Both bltSizeX and bltSizeY must be greater than or
equal to 0.

8.3 BitBLT Rectangle Fill command

The BitBLT Rectangle Fill command is used to fill a block region located in frame buffer memory (the Destination
region) with a constant color value, specified by bltColor bits(15:0). The BitBLT Rectangle Fill command is
executed by setting bltCommand(2:0)=2 and writing the value ‘1’ to bit(31) of BltCommand, bit(31) of
bltDstXY, or bit(31) of bltSize. All registers which control the BitBLT Rectangle Fill functionality must be
written prior to launching the command, although writes to registers which include a launch bit may specify
control for the BLT and launch the BLT with the same single write.

The Destination data block region for BitBLT Rectangle Fills is setup the same as described above for Screen-to-
Screen BLTs using the blitCommand, bltDstXY, bltSize, bltDstBaseAddr, and bltXY Strides registers. All
BitBLT Rectangle Fills are also subject to 2D clipping, Source and Destination chroma-range tests, and ROP
selection as described above for Screen-to-Screen BLTs.

8.4 SGRAM fill command

The SGRAM fill command is used to fill one or more full SGRAM pages located in frame buffer memory (the
Destination region) with a constant color value, specified by bltColor bits(15:0). The SGRAM fill command is

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 112 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

executed by setting bltCommand(2:0)=3 and writing the value ‘1’ to bit(31) of BltCommand, bit(31) of
bltDstXY, or hit(31) of bltSize. All registerswhich control the SGRAM fill functionality must be written prior to
launching the command, although writes to registers which include a launch bit may specify control for the BLT
and launch the BLT with the same single write.

The row address of the starting page to be filled by the SGRAM fill command is specified by bltDstXY bits(24:16)
and the starting column address to begin filling is specified by bltDstXY bits(8:0). The number of pagesto fill is
specified by bltSize bits(24:16) and the number of complete columsto fill is specified by bltSize bits(8:0).
Execution of the SGRAM fill command fills complete columns by using the SGRAM-specific color expansion
capability for improved performance. The color value specified by bltColor bits(15:0) iswritten into each
specified SGRAM column. SGRAM fills are not subject to 2D clipping tests, chroma-range tests, or ROP
operation, and the registers and bits which control these functions are ignored during execution of the SGRAM fill
command.

8.5 Register Use by Command
The following chart shows the registers which are used for specific 2D BitBLT commands:

Command Registers Used

Screen-to-Screen BLT bltSrcBaseAddr, bltDstBaseAddr, bltXY Strides, bltSrcChromaRange, bltDstChromaRange,
bltClipX, bItClipY, bltSrcXY, bltDstXY, bltSize, bIltROP, bltCommand

CPU-to-Screen BLT bltDstBaseAddr, bltXY Strides, bltSrcChromaRange, bltDstChromaRange, bltClipX,
blItClipY, bltDstXY, bltSize, bItROP, bltColor, bltCommand, bltData

BitBLT Rectangle Fill bltDstBaseAddr, bltXY Strides, bltSrcChromaRange, bltDstChromaRange, bitClipX,
bItClipY, bltDstXY, bltSize, bltROP, bltColor, bltCommand

SGRAM fill bltDstXY, bltSize, bltCommand

8.6 Command use by Register
The following chart shows the registers which are used for specific 2D BitBLT commands:

Register Name Commands Which Use Register
bltSrcBaseAddr Screen-to-Screen BLTS
bltDstBaseAddr Screen-to-Screen BLTs, CPU-to-Screen BLTS, BitBLT Rectangle Fills
bltXY Strides Screen-to-Screen BLTs, CPU-to-Screen BLTS, BitBLT Rectangle Fills

bltSrcChromaRange | Screen-to-Screen BLTs, CPU-to-Screen BLTS, BitBLT Rectangle Fills

bltDstChromaRange | Screen-to-Screen BLTs, CPU-to-Screen BLTS, BitBLT Rectangle Fills

bltClipX Screen-to-Screen BLTs, CPU-to-Screen BLTS, BitBLT Rectangle Fills
bItClipY Screen-to-Screen BLTs, CPU-to-Screen BLTS, BitBLT Rectangle Fills
bltSrcXY Screen-to-Screen BLTs
bltDstXY Screen-to-Screen BLTs, CPU-to-Screen BLTS, BitBLT Rectangle Fills, SGRAM fills
bltSize Screen-to-Screen BLTs, CPU-to-Screen BLTS, BitBLT Rectangle Fills, SGRAM fills
bltRop Screen-to-Screen BLTs, CPU-to-Screen BLTS, BitBL T Rectangle Fills
bltColor CPU-to-Screen BL TS, BitBLT Rectangle Fills, SGRAM fills
bltCommand Screen-to-Screen BLTs, CPU-to-Screen BLTS, BitBLT Rectangle Fills, SGRAM fills
bltData CPU-to-Screen BLTs
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 113 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

9. Linear Frame Buffer Access

The Voodoo?2 Graphics linear frame buffer base addressislocated at a 4 Mbyte offset from the memBaseAddr PCI
configuration register and occupies 4 Mbytes of Voodoo2 Graphics address space (see section 4 for an Voodoo2
Graphics address map). Regardless of actual frame buffer resolution, all linear frame buffer accesses assume a
1024-pixel logical scan line width. The number of bytes per scan line depends on the format of linear frame buffer
access format selected in the IfbM ode register. Note for all accesses to the linear frame buffer, the status of bit(16)
of fbzM ode is used to determine the Y origin of data accesses. When bit(16)=0, offset 0xO0 into the linear frame
buffer address space is assumed to point to the upper-left corner of the screen. When bit(16)=1, offset 0x0 into the
linear frame buffer address space is assumed to point to the bottom-left corner of the screen. Regardless of the
status of fbzM ode bit(16), linear frame buffer addresses increment as accesses are performed going from left-to-
right across the screen. Also note that clipping is not automatically performed on linear frame buffer writes if
scissor clipping is not explicitly enabled (fbzM ode bit(0)=1). Linear frame buffer writes to areas outside of the
monitor resolution when clipping is disabled result in undefined behavior.

9.1 Linear frame buffer Writes
The following table shows the supported linear frame buffer write formats as specified in bits(3:0) of IfbM ode:

Value Linear Frame Buffer Access Format

16-bit formats

0 16-bit RGB (5-6-5)

1 16-bit RGB (x-5-5-5)

2 16-bit ARGB (1-5-5-5)

3 Reserved
32-hit formats

4 24-hit RGB (8-8-8)

5 32-hit ARGB (8-8-8-8)

7:6 Reserved

11:8 Reserved

12 16-bit depth, 16-bit RGB (5-6-5)

13 16-bit depth, 16-bit RGB (x-5-5-5)

14 16-bit depth, 16-bit ARGB (1-5-5-5)

15 16-bit depth, 16-bit depth

When writing to the linear frame buffer with a 16-bit access format (formats 0-3 and format 15 in IfbM ode), each
pixel written is 16-bits, so there are 2048 bytes per logical scan line. Remember when utilizing 16-bit access
formats, two 16-bit values can be packed in a single 32-bit linear frame buffer write -- the location of each 16-bit
component in screen space is defined by bit(11) of IfbMode. When using 16-bit linear frame buffer write formats
0-3, the depth components associated with each pixel is taken from the zaColor register. When using 16-bit
format 3, the alpha component associated with each pixel istaken from the 16-bit data transfered, but when using
16-bit formats 0-2 the a pha component associated with each pixel is taken from the zaColor register. The format
of the individual color channels within a 16-bit pixel is defined by the RGB channel format field in IfbM ode
bits(12:9). See the IfbM ode description in section 5 for a detailed description of the rgb channel format field.

When writing to the linear frame buffer with 32-bit access formats 4 or 5, each pixel is 32-bits, so there are 4096
bytes per logical scan line. Note that when utilizing 32-bit access formats, only a single pixel may be written per
32-bit linear frame buffer write. Also note that linear frame buffer writes using format 4 (24-bit RGB (8-8-8)),

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 114 Updated 12/1/99

B Voodoo® Graphics
\)

while 24-bit pixels, must be aligned to a 32-bit (doubleword) boundary -- packed 24-bit linear frame buffer writes
are not supported by Voodoo2 Graphics. When using 32-bit linear frame buffer write formats 4-5, the depth
components associated with each pixel istaken from the zaColor register. When using format 4, the alpha
component associated with each pixel istaken from the zaColor register, but when using format 5 the apha
component associated with each pixel istaken from the 32-bit data transfered. The format of the individual color
channels within a 24/32-bit pixel is defined by the rgb channel format field in [fbM ode bits(12:9).

When writing to the linear frame buffer with a 32-bit access formats 12-14, each pixel is 32-bits, so there are 4096
bytes per logical scan line. Note that when utilizing 32-bit access formats, only a single pixel may be written per
32-bit linear frame buffer write. If depth or alphainformation is not transfered with the pixel, then the depth/alpha
information is taken from the zaColor register. The format of the individual color channels within a 24/32-bit
pixel is defined by the rgb channel format field in IfbM ode bits(12:9). The location of each 16-bit component of
formats 12-15 in screen space is defined by bit(11) of IfbMode. Seethe IfbM ode description in section 5 for more
information about linear frame buffer writes.

9.2 Linear frame buffer Reads

When reading from the linear frame buffer, all data returned isin 16-bit format, so there are 2048 bytes per logical
scan line. Note that when reading from the linear frame buffer, datais returned in 16/16 format, with two 16-bit
pixels returned for every 32-bit doubleword read -- the location of each pixel read packed into the 32-bit host read
is defined by bit(11) of IfbMode. The RGB channel format of the 16-bit pixels read is defined by the rgb channel
format field of IfbM ode bits(12:9).

It isimportant to note that reads from the linear frame buffer bypass the PCI host FIFO (as well as the memory
FIFO if enabled) but are blocking. If the host FIFO has numerous commands queued, then the read can potentially
take avery long time before data is returned, as data is not read from the frame buffer until the PCI host FIFO is
empty and the graphics pixel pipeline has been flushed. One way to minimize linear frame buffer read latency isto
guarantee that the Voodoo2 Graphics graphics engine is idle and the host FIFOs are empty (in the status register)
before attempting to read from the linear frame buffer.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 115 Updated 12/1/99

B Voodoo® Graphics
\)

10. Texture Memory Access

The Voodoo2 Graphics texture memory base address is located at an 8 Mbyte offset from the memBaseAddr PCI
configuration register and occupies 8 Mbytes of Voodoo2 Graphics address space (see section 4 for an Voodoo2
Graphics address map). Note that the texture memory is write only -- reading from the texture memory address
space returns undefined data.

The following section is copied in from the Bruce specification. Modifications should be made there and copied
over this (initially, trex may sometimes be more current).

Textures are write only. Actual order of write doesn't matter. The texel data can be indirectly read by rendering a
texture into the Chuck frame buffer, though color dithering alters the values.

Textures are stored as if mipmapped, even for textures containing only one level of detail. The largest texel map
(LOD=0) is stored first, and the others are packed contiguoudly after. texbaseaddr pointsto where the texture
would start if it contained LOD level 0 (256x* dimension), in a granularity of 8 bytes. When only some or one of
the LOD levels are used, lodmin and lodmax are used to restrict texture lookup to the levels that were loaded.

texbaseaddr can be set below zero, such that the offset to the texture wraps to a positive number. When two
memory banks are used (8 DRAMS), atexture can not span both banks because each bank has one RAS.

Texture Base Address Example

Texture Mem. Address 0 -
,,,,,,, - texbaseaddr (may wrap below zero)
LOD 0 (virtual)
Other
Textures
Loaded texture contains only LOD levels 1 and 2
LOD 1
This lodmin >= 1.0
Texture lodmax <= 2.0
LOD 2
LOD3 (virtual)
Other e LOD4,5,6,7,8 (virtual)
Textures
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 116 Updated 12/1/99

B] \Voodoo® Graphics
\J
3dfx

Addresses are generated by adding texbaseaddr and an offset that is a function of LOD, S, T, tclamps, tclampt,

tformat, lod_odd, lod_tsplit, lod_aspect, lod_s is wider, trexinitO, trexinitl. Except for tclamps and tclampt, all of
these values must be valid for texture load.

The size of each level must be known to calculate the texbaseaddr and the amount of memory used by the texture.
The size can be looked up from atable.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 117 Updated 12/1/99

B] \Voodoo® Graphics
\J
3dfx

Texture map sizes for 16-bit texel modes, in units of 8 bytes:

lod_aspect
LOD Size 00 01 10 11
1:1 2:1 4:1 81
0 256x* 274 273 272 M1
1 128x* 272 M1 210 2"9
2 64x* 210 2°9 28 27
3 32x* 28 2N 26 275
4 16x* 26 275 274 2°3
5 8x* 274 2°3 202 202
6 4x* 202 2 2 2
7 2x* 1 1 1 1
8 Ix* 1 1 1 1

For 8-hit textures, the sizes are half as much as 16-bit. In cases where a half location is used for alevel,
subsequent levels use the next free half, but a remaining half can not be used as part of the subsequent texture.

In the following examples, sizes and addresses are shown in units of 8 bytes, which is the granularity texbaseaddr.
Example 1

16-bit tformat, aspect ratiois 1:1, lod_tsplit = 0, only LOD levels 1 and 2 are used, start address is 0x00010.
size of level 0 = 2714 = 0x04000

texbaseaddr = 0x00010 - 0x04000 = 0xfc010

Note that the base wrapped below zero, but lodmin restricts addresses to >= 0x00010.

texture size = size of level 1,2 = 2212 + 210 = 0x01400

next available start address = 0x00010 + 0x01400 = 0x01410

Example 2

8-hit tformat, aspect ratio is 8:1, lod_tsplit = 0, Siswider, LOD levels 4-8 are used, start address is 0x10000.
sizeof levels 0,1,2,3 = (211 + 279 + 277 + 2/\5) / 2 = 0x00550

texbaseaddr = 0x10000 - 0x00550 = 0x0fab0

texture size = size of levels4,5,6,7,8=(2"3+2"1+ 1+ 1 + 1) / 2 = 0x00006 + 1/2 -> 0x00007

next available start address = 0x10000 + 0x00007 = 0x10007

Example 3

8-hit tformat, aspect ratio is 8:1, lod_tsplit = 1, lod_odd = 0, Siswider, LOD levels 4-8 are used, start addressis
0x10000.

sizeof levels 0, 2 = (211 + 27) / 2 = 0x00440

texbaseaddr = 0x10000 - 0x00440 = 0x0fbcO

texture size = size of levels 4,6,8 = (2*3 + 1 + 1) / 2 = 0x00005 + 0/2 -> 0x00005
next available start address = 0x10000 + 0x00005 = 0x10005

Texture Load

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 118 Updated 12/1/99

. Voodoo? Graphics
A

Two 16-bit or four 8-bit texels are written at atime. For maps that are less than 4 texels wide in the S dimension,
the upper texels are inhibited from being written. Only 32-bit accesses are valid, at byte addresses that are a
multiple of 4 (2 LSBs are 0).

Texture L oad For mat

16-bit Texture Write Data:
31 0

For 1xN textures, write of the upper 2 bytesisinhibited.

S[0]=1 S[0]=0

8-bit Texture Write Data:

31 0
S0 [Szo [Sa [910 For 2xN textures, Wr?te of the upper 2 bytes ?s @nh@ b@ted.
=11 =10 -01 =00 For 1xN textures, write of the upper 3 bytesisinhibited.

seq 8 downld==0 or 16-bit texture:

PCI Byte Address (2M 32-bit Words = 8M Bytes) Byte Address
22 21 20 17 16 98 21 0
TREX LOD[3:0] T[7:0] S[7:1] 01]0

For 8-bit textures, g[1] isset to 0.
For textures smaller than 256x256, Sisright aligned to bit 2 and T isright aligned to bit 9. Alignment is
the same for 8- and 16-bit textures.

seq_8 downld==1 and 8-hit texture (not revision 0):

PCI Byte Address (2M 32-bit Words = 8M Bytes) Byte Address
22 21 20 17 16 98 21 0
TREX LOD[3:0] T[7:0] 0 S[7:2] 010

For textures smaller than 256x256, Sisright aligned to bit 2 and T isright aligned to bit 9.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 119 Updated 12/1/99

B] \Voodoo® Graphics
\J
3dfxX

11. CMDEFIFO Operation

11.1 Legacy AddressMap

Voodoo2 Graphics has two separate address maps for backwards compatibility. The 4 MByte “legacy” address
map, selected when fbilnit7 bit(8)=0, is the same as SST-1 and isillustrated below divided into the following
fields:

Alternate Byte Swizzle Wrap Chip Register Byte
Register Mapping Register
Accesses
1 bit (21) 1 bit (20) 6 bits (19:14) | 4 bits (13:10) | 8 hits(9:2) | 2 bits (1:0)

The Alternate Register Mapping bit (bit 21) of the memory mapped register address is used to select the alternate
register mapping. When fbil nit3(0)=1 and bit 21 of the memory mapped register address is set, the alternate
register mapping isused. The Byte Swizzle Register Accesses bit (bit 20) of the memory mapped register address
is used to byte-swizzle the PCI datafor both register reads and register writes. When fbil nit0(3)=1 and bit 20 of
the memory mapped register address is set, then byte 3 of the PCI data is swapped with byte 0, and byte 2 of the
PCI datais swapped with byte 1. This byte-swizzling capability is used to support big-endian host CPUs. The 2D
BitBL T Data bit (bit 19) is an aliasto the bltData register and is used to send data from the host CPU to the
graphics engine for CPU-to-Screen BitBLTs.

The wrap field aliases multiple 14-bit register maps. The wrap field is useful for processors such as the Digital’s
Alphaor Intel’s Pentium Pro which contain large write-buffers which collapse multiple writes to the same address
into a single write (a potential undesirable effect when programming Voodoo2 Graphics). By writing to different
wr aps, software can guarantee that writes are not collapsed in the write buffer. Note that Voodoo2 Graphics
functionality isidentical regardless of which wrap is accessed.

The chip field selects one or more of the Voodoo2 Graphics chips (Chuck and/or Bruce) to be accessed. Each bitin
the chip field selects one chip for writing, with Chuck controlled by the Isb of the chip field, and Bruce#2
controlled by the msb of the chip field. Note the chip field value of 0x0 selects al chips. The following table
shows the chip field mappings:

Chip Field Voodoo2 Graphics Chip
Accessed
0000 Chuck + al Bruce chips
0001 Chuck
0010 Bruce #0
0011 Chuck + Bruce #0
0100 Bruce #1
0101 Chuck + Bruce #1
0110 Bruce #0 + Bruce #1
0111 Chuck + Bruce #0 + Bruce #1
1000 Bruce #2
1001 Chuck + Bruce #2
1010 Bruce #0 + Bruce #2
1011 Chuck + Bruce #0 + Bruce #2
1100 Bruce #1 + Bruce #2
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 120 Updated 12/1/99

B] \Voodoo® Graphics
\J
3dfx

1101 Chuck + Bruce #1 + Bruce #2
1110 Bruce #0 + Bruce #1 + Bruce #2
1111 Chuck + al Bruce chips

Note that Bruce #0 is always connected to Chuck in the system level diagrams of section 3, and Bruce #1 is
attached to Bruce #0, etc. By utilizing the different chip fields, software can precisely control the data presented to
individual chips which compose the Voodoo2 Graphics graphics subsystem. Note that for reads, the chip field is
ignored, and read data is always read from Chuck.

Theregister field selects the register to be accessed. All accesses to the memory mapped registers must be 32-bit
accesses. No byte (8-bit) or halfword/short (16-bit) accesses are allowed to the memory mapped registers, so the
byte (2-bit) field of all memory mapped register accesses must be 0x0. Asaresult, to modify individual bits of a
32-hit register, the entire 32-bit word must be written with valid bitsin all positions.

11.2 CMDFIFO AddressMap

Voodoo2 Graphics has two separate address maps for backwards compatibility. When the CMDFIFO is enabled
(fbilnit7 bit(8)=1), the “CMDFIFO” address map is selected as shown below:

Address Description
0x0000000-0x01fffff | Voodoo2 Graphics memory mapped register set (2 MBytes)
0x0200000-0x03fffff | Voodoo2 Graphics CMDFIFO (2 Mbytes) [write-only]
0x0400000-0x07fffff | Voodoo2 Graphics linear frame buffer access (4 MBytes, state-based)
0x0800000-0x0ffffff | Voodoo2 Graphics texture memory access (8 MBytes)

The 2 MByte register address map (range 0x0 - Ox1fffff) accessed when the “CMDFIFO” address map is selected is
illustrated below divided into the following fields:

Unused Register Byte
11 bits (20:10). Software must store 0xO. 8 bits (9:2) 2 bits (1:0)

I mportant Note: When the “CMDFIFO” address map is selected, the only writes that are permitted to the 2 MByte
register address map (range Ox0 - Ox1fffff) are writesto the following registers: al fbil nit registers, intr Ctrl,
backPor ch, videoDimensions, dacData, hSync, vSync, maxRgbDelta, hBorder, vBorder, borderColor, and all
cmdFifo control registers. Writes to any other register other than the above specified registers will be accepted by
the PCI slave controller, but will not be pushed onto the PCI frontend FIFO (effectely these writes will be
“dropped”).

The 2 MByte CMDFIFO address space is awrite-only address space used to store commands very efficiency either
in off-screen memory or in internal FIFOs (controlled by fbil nit7 bit(9)). Reads from the CMDFIFO address space
return undefined data. The CMDFIFO address space is illustrated below divided into the following fields:

Unused Byte Swizzle CMDFIFO Address Byte
CMDFIFO Writes
2 bits (20:19). Software 1 bit (18) 16 hits (17:2) 2 bits (1:0)
must store 0x0

When accessing the CMDFIFO address space, software may set bit(18) of the CMDFIFO address to cause the
hardware to byte-swizzle the incoming data.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 121 Updated 12/1/99

B \Voodoo® Graphics
\J
3dfxX

Important Note: Using the CMDFIFO address space and the CMDFIFO packets described below, most registers
can be accessed. Those registers which cannot be accessed through the CMDFIFO transport mechanism are the
following: al fbil nit registers, intr Ctrl, backPor ch, videoDimensions, dacData, hSync, vSync, maxRgbDelta,
hBorder, vBorder, border Color, and all cmdFifo control registers. Writes to these registers must be addressed
using the 2 MByte register address map (range 0x0 - Ox1fffff) and not the CMDFIFO address space.

11.3 Command Transport

A command FIFO (CMDFIFO) may be established by software within frame buffer memory. Writes to the
CMDFIFO address space are performed to build a command buffer, which is then parsed and executed by the
accelerator. To accommodate a variety of host CPUs which may issue writes out-of-order (eg. Intel’s Pentium Pro),
one of two scenarioswill occur: the CMDFIFO residesin local frame buffer memory and software manages the
accelerator’ sinternal CMDFIFO depth register, or the CMDFIFO residesin local frame buffer memory and the
accelerator manages the internal CMDFIFO depth register.

If the CMDFIFO residesin local frame buffer memory and software manages the CMDFIFO depth register,
software “BUMPS’ the internal CMDFIFO depth register after N words have been stored into local frame buffer
memory. This allows the CPU to write to the CMDFIFO in any order, flush any pending writesin the CPU’s
internal write buffers and core logic chipset’sinternal write buffers, then update the accelerator’ s depth register.
Since writes to the CMDFIFO will be in consecutive order, the CPU’ s write buffers will fill and burst into memory
more efficiently, than random PCI writes.

If the CMDFIFO resides in frame buffer memory and hardware manages the CMDFIFO depth register, software
writes to the frame buffer in consecutive order, the CPU flushes its write buffer in any order to the accelerator. The
accelerator counts the number of non written addresses, once consecutive addresses are written, the internal
CMDFIFO depth register is updated to the last consecutive written address. Counting unwritten addresses allows
the CPU to flush its internal write buffersin any order, but maintains the correct order in the frame buffer memory.
Software must manage the circular buffer at the point where the buffer recyclesto the beginning. Thisis done by
placing a IMP instruction (CMDFIFO Packet Type 0, Func 100) at the bottom of the fifo to restart at the beginning
of the CMDFI FO space.

11.3.1 CMDFIFO Management
The CMDFIFO mechanism supports 2 types of fifo management, software and hardware

11.3.1.1 Software Management of CMDFIFO

Software manages the CMDFIFO “emptiness.” The accelerator maintains aread pointer and a depth for the
CMDFIFO. Accelerator reads from the CMDFIFO decrement the depth register and increment the read pointer.
The accelerator will automatically execute data from the CMDFIFO as long as the internal CMDFIFO depth
register is greater than zero. When the CPU is ready to inform the accelerator that more data is available in the
CMDFIFO, the CPU writes the number of 32-bit words that have been added to the end of the CMDFIFO. The
accelerator then adds the value written by the CPU to the internal depth register.

The accelerator’ sinternal registers define where the circular CMDFIFO exists in frame buffer memory by defining
a beginning address for the CMDFIFO and arollover address. By default, the CMDFIFO internal read pointer is
set to the beginning address for the CMDFIFO. Once datais stored in the CMDFIFO (and the internal depth
register is incremented by the CPU), the CMDFIFO read pointer will increment as the accelerator parses and
executes the CMDFIFO. Before the end of the CMDFIFO is reached, a IMP command back to the beginning must
beinserted. The CMDFIFO isthus programmable in size as a circular space from 1to N 4k byte pages. Software
must manage CMDFIFO “fullness’ and guarantee that the CMDFIFO does not overflow. On systems like the Intel

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 122 Updated 12/1/99

B \Voodoo® Graphics
\J
3dfx

Pentium Pro, software must place a fence after the last memory write, but before the write to increase the number
of new entriesin the CMDFIFO.

11.3.1.2 Hardware Management of CMDFIFO

Hardware manages the CMDFIFO depth. The accelerator maintains a read pointer, write pointer, and depth for
the CMDFIFO. Accelerator reads from the CMDFIFO decrement the depth register and increment the read pointer.
The accelerator will automatically execute data from the CMDFIFO as long as the internal CMDFIFO depth
register is greater than zero. The CPU writes data into the CMDFIFO areain sequential addresses. The accelerator
snoops the writes into the CMDFIFO area and examines the addresses, |ooking for non sequential addresses or
“holes.” When the accelerator gathers sequential addresses present in the CMDFIFO, the depth and write pointers
areincremented. The accelerator’ sinternal registers define where the circular CMDFIFO existsin frame buffer
memory by defining a beginning address for the CMDFIFO and arollover address. By default, the CMDFIFO
internal read pointer is set to the beginning address for the CMDFIFO. Once datais stored in the CMDFIFO (and
the internal depth register isincremented by the CPU), the CMDFIFO read pointer will increment as the
accelerator parses and executes the CMDFIFO. Before the end of the CMDFIFO is reached, a IMP command back
to the beginning must be inserted. The CMDFIFO is thus programmable in size as a circular space from 1 to N 4k
byte pages. Software must manage CMDFIFO “fullness’ and guarantee that the CMDFIFO does not overflow. On
systems like the Intel Pentium Pro, software must place a fence after the last memory write, but before the first
write to the top of the CMDFIFO.

Or, put another way (from the perspective of adriver writer):

When hole counting is enabled (hardware manages command fifo depth), the memory controller takes specia
action whenever awrite occurs between the command fifo base and the base + size. Aswrites occur in this region,
five variables are fiddled: readPtr, depth, aMin, aMax, and holeCount. As ordered writes happen, both aMin and
aMax increment, as does depth and readPtr. In this state, the difference between aMin/aMax and the readPtr is the
depth. When the depth is nonzero, the readPtr advances as commands are read from the buffer. When/if an out-
of-order write occurs, aMin stops incrementing, but aMax continues to increment as addresses written go up. The
readPtr will not pass aMin, so the depth begins to decrement. Once the readPtr has caught up with aMin, the
depth sits at zero. If aMax ever has to skip (due to an out-of-order write), the hole count is incremented. As out-
of-order data gets written between aMin and aMax, the hole count is decremented. When the holeCount goes to
zero, the difference between aMin and aMax is added to the depth, and aMin is set to be the same as aMax. This
causes command processing to resume.

11.3.2 CMDFIFO Data

All CMDFIFO data packets begin with a 32-bit packet header which defines the data which follows. There are 5
different types of CMDFIFO packet headers. Bits (2:0) of a CMDFIFO packet header define the packet header
type. All CMDFIFO packet headers and data must be 32-bit words - byte and 16-bit short writes are not allowed in
the CMDFIFO.

11.3.3 CMDFIFO Packet TypeO

CMDHFFO Packet Type 0 is avariable length packet, requiring a minimum single 32-bit word, to a maximum of 2
32-bit words. CMDFIFO Packet Type 0 is used to jump to the beginning of the fifo when the end of thefifo is
reached. CMDFIFO Packet Type 0 also supports jumping to a secondary command stream just like ajump
subroutine call (jsr instruction), with a CMDFIFO Packet that instructs areturn aswell. NOPR, JSR, RET, and IMP
LOCAL FRAME BUFFER functions only require a single 32-bit word CMDFIFO packet, while the IMP AGP
function requires a two 32-bit word CMDFIFO packet. Bits 31:29 are reserved and must be written with O.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 123 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

CMDFIFO Packet Type O

31 29 | 28 6|5 3|2 0
word 0 Reserv | Address[24:2] Func | 000
word 1 reserved Address [35:25]

Code Function

000 NOP

001 JSR

010 RET

011 JMP LOCAL FRAME BUFFER
100 JMP AGP

11.3.4 CMDFIFO Packet Type 1

CMDFIFO Packet Type 1 is avariable length packet that allows writes to either a common address, or to
consecutive addresses, minimum number of wordsis 2 32-bit words, and maximum number of words is 65536
words. Bits 31:16 define the number of words that follow word 0 of packet type 1, and must be greater than O.
When bit 15 isa 1, data following word 0 in the packet is written in consecutive addresses starting from the
register base address defined in bits 14:3. When bit 15is a0, datafollowing word O is written to the base address.
Packet header bits 14:3 define the base address of the packet, see section below. The common use of packet type 1
is host blits.

CMDFIFO Packet Type 1

31 16 |15 | 14 3120
word 0 Number of words inc | Register Base (See below) 001
word 1 Data
word N Optiona Data N

Register Base:

CVG

11 7

Chip field Register Number

11.3.5 CMDFIFO Packet Type2

CMDHF FO Packet Type 2 is avariable length packet, requiring a minimum of 2 32-bit words, and a maximum of
30 32-bit words for the complete packet. The base address for CMDFIFO Packet Type 2 is defined to be the
starting address of the hardware 2D registers. The first 32-bit word of the packet defines individual write enables
for up to 29 datawordsto follow. From LSB o MSB of the mask, a“1” enables the write and a“ 0" disables the
write. The sequence of up to 29 32-bit data words following the mask modify addresses equal to the implied base
address plus N where mask[N] equals“1” as N ranges from 0 to 28. The total number of 32-bit data words
following the mask is equal to the number of “1”sinthe mask. The register mask must not be O.

CMDFIFO Packet Type 2

31 3(20
word 0 2D Register mask 010
word 1 Data
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 124 Updated 12/1/99

Vioodoo? Graphics

“3df

A
word N — Optional DataN |

11.3.6 CMDFIFO Packet Type 3

CMDFIFO Packet Type 3 isavariable length packet, requiring a minimum of 3 32-bit words, and a maximum of
16 vertex data groups, where a data group is all the register writes specified in the parameter mask, for the
complete packet. It isarequirement that bits 9:6 must be greater than 0. The base address for CMDFIFO Packet
Type 3 is defined to be the starting address of the hardware triangle setup registers. The first 32-bit word of the
packet defines 16 individual vertex data. Bits 31:29 of word O define 0 to 7 dummy fifo entries following the
packet type 3 data. The sSetupMode register is written with the datain bits 27:10 of word 0. Bits 9:6 define the
number of vertex writes contained in the packet, where the total packet size becomes what is defined in the
parameter mask multiplied by the number of vertices. During parsing and execution of a CMDFIFO Packet Type 3,
a specific action takes place based on bits 5:3. The sSetupMaode register impliesthat X and Y are present in
words 1 and 2. When Bit 28 when set, packed color data follows the X and Y values, otherwise independent red,
green, blue, and aphafollow X and Y data. When Smode field is O, then word 0 defines X, and word 1 defines Y.

Code 000 specifies an independent triangle packet, where an implied sBeginTriCMD is written after 2
sDrawTriCMD’s. The sequence would follow, sBeginTriCMD, sDrawTriCMD, sDrawTriCMD,
sBeginTriCMD, until “NumVertex” vertices has been executed.

Code 001 specifies the beginning of atriangle strip, an implicit write to sBeginTriCMD is issued, followed by
Num Vertex sDrawTriCMD writes. The sequence would follow, sBeginTriCMD, sDrawTriCMD,
sDrawTriCMD, sDrawTriCMD, until “num Vertex” vertices has been executed

Code 010 specifies the a continuance of an existing triangle strip, an implicit write to sDrawTriCMD is performed
after one complete vertex has been parsed.

CMDFIFO Packet Type 3

3129 | 28 | 27 2|21 10| 9 6|5 3|20
wordO | Num | PC | SMode Parameter Mask Num Vertex CMD 011
word 1 Data
word N Optional Data N

Code Command

000 Independent Triangle
001 Start new triangle strip
010 Continue existing triangle strip
011 reserved
Ixx reserved
Bit Description
sParamM ask field
10 Setup Red, Green, and Blue
11 Setup Alpha
12 Setup Z
13 Setup Wh
14 Setup WO
15 Setup SOand TO
16 Setup W1
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 125 Updated 12/1/99

Vioodoo? Graphics

301X

17 SetupSland T1
sSetupMode field

22 Strip mode (O=strip, 1=fan)

23 Enable Culling (O=disable,
1=enable)

24 Culling Sign (O=positive sign,
1=negative sign)

25 Disable ping pong sign correction
during triangle strips (O=normal,
1=disable)

Parameter

wordl | X

word2 |Y

word 3 | Red/ Packed ARGB (optional)
word 4 | Green (optional)

word 5 | Blue (optional)

word 6 | Alpha (optional)

word 7 | Z (optional)

word 8 | Whbroadcast (optional)

word9 | WO Tmu 0 & Tmul W (optional)
word 10 | SO Tmu0 & Tmul S (optional)
word 11 | TO TmuO & Tmul T (optional)
word 12 | W1 Tmu 1 W (optional)

word 13 | S1 Tmul S (optional)

word 14 | T1 Tmul T (optional)

Sequence of implied commands for Each code follows:
M = Mode register write

B = sBeginTriCMD

D = sDrawTriCMD

Code 000: MBDDBDDBDDBDD ...

Code 001: MBDDDDDDDDDDD ...

Code 010: MDDDDDDDDDDDD ...

11.3.7 CMDFIFO Packet Type 4

CMDFIFO Packet Type 4 is avariable length packet, requiring a minimum of 2 32-bit words, and a maximum of
22 32-bit words for the complete packet. The first 3 bits 31:29 of word 0 define the number of pad words that
follow the packet type 4 data. The next 14 bits of the header 28:15 define the register write mask, followed by the
register base field, described later in this section. From LSB to MSB of the mask, a“1” enables the write and a* 0"
disables the write. The sequence of up to 22 32-bit data words following the mask modify addresses equal to the
implied base address plus N where mask[N] equals “1” as N ranges from 0 to 16. The total number of 32-bit data

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 126 Updated 12/1/99

B | Vioodoo? Graphics
\ 2
3dfx

must have a non zero value.

CMDFIFO Packet Type 4

3129 | 28 15 |14 3120
word 0 num | General Register mask Register Base (See below) 100
word 1 Data
word N Optional Data N

Register base:

CVG

11 7

Chip field Register Number

11.3.8 CMDFIFO Packet Type5

CMDFIFO Packet Type 5 is avariable length packet, requiring a minimum of 3 32-bit words, and a maximum of
2719 32-hit words for the complete packet Bits 31:30 define linear frame buffer or texture download port Bits
29:26 in word 0 define the byte “disables’ for word 2 and are active high (avalue of 1 prohibits the byte from
being written). Bits 25:22 in word 0 define the byte enables for word N. Data must be in the correct data lane,
and the base address must be 32-bit aligned. CMDFIFO Packet Type 5 is used to transfer large consecutive
guantities of data from the CPU to the frame buffer or texture memory with proper order with the command
stream.

CMDFIFO Packet Type5

3130 | 29 26 25 22 21 20
word 0 Space | Byte Disable W2 Byte Disable WN Num Words 101
word 1 reserv | Base Address[24:0]
word 2 Data
word N Optional Data N
Code Space
00-01 reserved
10 Linear frame buffer
11 Texture Port
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary 127 Updated 12/1/99

B \Voodoo® Graphics
\J
3dfx

12. Programming Caveats

The following is alist of programming guidelines which are detailed elsewhere but may have been overlooked or
misunderstood:

12.1 1/O Accesses
Voodoo2 Graphics does not support 1/0 accesses. All 1/O accesses to Voodoo2 Graphics are ignored.

12.2 Memory Accesses

All Memory accesses to Voodoo2 Graphics registers must be 32-bit word accesses only. Linear frame buffer
accesses may be 32-bit or 16-bit accesses, depending upon the linear frame buffer access format specified in

I[fbM ode. Texture memory accesses must be 32-bit word accesses. Byte(8-bit) accesses are not allowed to VVoodoo2
Graphics register, linear frame buffer, or texture memory space.

12.3 Determining CVG ldle Condition

After certain CV G operations, and specifically after linear frame buffer acceses, there exists a potential deadlock
condition between internal CV G state machines which is manifest when determining if the CVG subsystemisidle.
To avoid this problem, always issue a NOP command before reading the status register when polling on the CVG
busy bit. Also, to avoid asynchronous boundary conditions when determing the idle status, always read CVG
inactive in status three times. A sample code segment for determining CVG idle status is as follows:

/***

* CVG_IDLE:
* returnsOif CVGisnotidle
* returns1lif CVGisidle

***/

CVG_IDLE()
{

ulong j, i;

/I Make sure CVG state machines are idle
PCI_MEM_WR(NOPCMD, 0x0);
i =0;
while(1) {
j =PCI_MEM_RD(STATUS);
if(j & CVG_BUSY)
return(0);
dse
i++;
if(i > 3)
return(1);

12.4 Triangle Subpixe Correction

Triangle subpixel correction is performed in the on-chip triangle setup unit of Voodoo2 Graphics. When subpixel
correction is enabled (fbzColor Path(26)=1), the incoming starting color, depth, and texture coordinate parameters

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 128 Updated 12/1/99

B \Voodoo® Graphics
\J
3dfx

are all corrected for non-integer aligned starting triangle <x,y> coordinates. The subpixel correction in the
triangle setup unit is performed as the starting color, depth, and texture coordinate parameters are read from the
PCI FIFO. Asaresult, the exact data sent from the host CPU is changed to account for subpixel alignments. If a
triangle is rendered with subpixel correction enabled, all subsequent triangles must resend starting color, depth,
and texture coordinate parameters, otherwise the last triangle’ s subpixel corrected starting parameters are subpixel
corrected (again!), and incorrect results are generated.

12,5 Loadingtheinternal Color Lookup Table

When loading the color lookup table by writing data to clutData, the software video reset bit must be disabled
(fbiinit1(8)=0). If the software video reset bit is enabled (fbiinit1(8)=1), the data written to clutData is ignored.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 129 Updated 12/1/99

Voodoo? Graphics

13. Video Timing
Voodoo2 Graphics video timing is defined by the hSync, vSync, backPor ch, and videoDimensions registers. The

following diagram illustrates the video timing parameters of Voodoo2 Graphics:

Blanking Area

vBackPorch
A4 Border Color Area
vBackColor
hBackPorch hBackColor hFrontColor
B g o yHeight vSyncpff
vFrontColor
hSyncOff
dac_hsync < hSyncOn >le hSyncOff >
(active low) . . , .
1 hBackPorch 1 hBackColor 1 xWidth 1 hFrontColor 1
< > >t >t >
1 . 1
dac_blank Blanking Area Border Active Border Blanking Area
(active low) Color Area' Video AreaColor Area
W, 1 1
dac_vsync < vSyncOn >l vSyncOff >
(active low) . . , .
1 vBackPorch 1 vBackColor 1 yHeight 1 vFrontColor1
- > > > >
1 . 1
dac_blank Blanking Area Border Active Border Blanking Area
(active low) Color Area'! Video AreaColor Area
W, 1)
Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
130 Updated 12/1/99

Proprietary

B \Voodoo® Graphics
\J
3dfx

The screen resolution is defined in the videoDimensions register. The horizontal screen resolution is specified in
the xWidth field of videoDimensions, and the vertical screen resolution is specified in the yHeight field of
videoDimensions.

The hSync register is used to control the horizontal sync period. The values of hSync are specified in VCLK
units, which is the video dot clock.

hSyncOn = (Number VCLKSs of active horizontal Sync) - 1

hSyncOff = (Number VCLKSs of inactive horizontal Sync) - 1

The vSync register is used to control the vertical sync period. The values of vSync are specified in horizontal scan
line units. The width of a horizontal scan line is defined by the hSync register.

vSyncOn = (Number horizontal scan lines of active vertical Sync)

vSyncOff = (Number horizontal scan lines of inactive vertical Sync)

The area between the left hand side of the monitor and the border color region, known as the horizontal back
porch, is defined by the hBackPor ch field in the backPor ch register. The register valueis specified in VCLK
units.

hBackPorch = (Number VCLKSs of active horizontal back porch Blank) - 2

The horizontal area between the active video region and the blanking area, known as the color border area, is
defined by the hBorder register. The register value is specified in VCLK units. Note that no border color areais
specified by setting the appropriate fieldsin hBorder to 0x0.

hBackColor = (Number VCLKs of active horizontal color border [left-hand side])

hFrontColor = (Number VCLKSs of active horizontal color border [right-hand side])

The area between the right hand side of the monitor and the border color region, known as the horizontal front
porch, isinferred from the horizontal Sync, the horizontal display resolution information, and the right hand side
horizontal color border information. The area between the top of the monitor and the color border region, known
asthe vertical back porch, is defined by the vBackPor ch field in the backPor ch register. The register valueis
specified in horizontal scan line units.

vBackPorch = (Number Horizontal Scan Lines of active vertical back porch Blank)

The vertical area between the active video region and the blanking area, known as the color border area, is defined
by the vBorder register. Theregister value is specified in horizontal scan line units. Note that no border color
areais specified by setting the appropriate fields in vBorder to 0x0.

vBackColor = (Number Horizontal Scan Lines of vertical color border [top])

vFrontColor = (Number Horizontal Scan Lines of vertical color border [bottom])

The area between the bottom of the monitor and the border color region, known as the vertical front porch, is
inferred from the vertical Sync, the vertical display resolution information and the bottom vertical color border
information.

When generating PCI interrupts, the status of the internal vSyncOff counter is compared to bits(27:16) of the
pcilnterrupt register. Note that the value of the internal vSyncOff counter may be probed in software by reading
the vRetr ace register.

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16
Proprietary 131 Updated 12/1/99

B \Voodoo® Graphics
\J
3dfxX

14. Revision History

1.10

111

112

1.13

1.14

1.15

First draft given to Sega 01Ap97

Added more explanation to CMDFIFO packet types

CMDFIFO packet type 0 no longer has word padding capability in bits (31:29)

Added bit to enable bursting of consecutive texture memory writes across FT Bus in fbil nit7 bit(27)
Renamed fbiTriangles register to fbiTrianglesOut register and implemented in Alpha version.
Moved fbiTrianglesOut register to 0x25c. Added bit in nopCMD to separately clear
fbiTrianglesOut.

Added fbiSwapHistory register at address 0x258

Implemented interruptsin Alpha version (implemented intr Ctrl and userIntr CM D registers).
USERINTERRUPTSs now have separate control of whether to generate an interrupt, and whether to
wait for the USERINTERRUPT to be cleared before continuing processing the command stream.
Added interrupt control bitsin PCI configuration register initEnable bits(21:20).

Changed tiling algorithm from 64x16 tilesto 32x32 tiles. Added bit 30 in fbil nit6 to add another bit
to the tileslnX parameter used in the XY -to-Row/Col memory mapping algorithm. Changed
description of bltXY Strides register to account for more tiles in 32x32 algorithm.

Added initEnable bit(22) to enable NAND tree testing

Added initEnable bits(31:23) to enable SLI address snooping

Changed spec to indicate than when fb_addr_b[1]=1 at the deassertion of pci_rst, the default value
of the memory base address is 0x10000008.

Fixes typosin triangle setup register descriptions

Changed name from “ Console Voodoo Graphics’ to “Voodoo2 Graphics’

Added siProcess register description

Fixed description of clutData register to be non-pipelined, FIFO’ ed

Fixed typosin fbil nit regiseters

Fixed description of bits(10:9) in PCI status configuration register.

Fixed typo in Section 9 describing location of linear frame buffer address space.

Changed bit descriptionsin fbil nit5 to account for new clock buffering schemes on GPIO_1 and to
include triangle raster unit CYA bits. Removed references to interleaved video mode in fbil nit5.

Changed byte “enables’ to byte “disables’ for description of CMDFIFO packet type 5
Fixed definition of fbilnit5 bit(13)

Changed default value of PCI configuration register Interrupt_line to 0x0
Fixed typo in tiled memory mapper algorithm in bltXY Strides register definition
Added definition of fbilnit4[31:29] for Chuck revision 5 to control video clock delay settings

Copyright O 1996-1998 3Dfx Interactive, Inc. Revision 1.16

Proprietary

132 Updated 12/1/99

