Personal Computer PCjr
Hardware Reference
Library

Technical
Reference

Preface

The IBM PC;jr Technical Reference manual describes
the hardware design and provides interface information
for the IBM PCjr. This publication also has
information about the basic input/output system
(BIOS) and programming support.

The information in this publication is both descriptive
and reference oriented, and is intended for hardware
and software designers, programmers, engineers, and
interested persons who need to understand the design
and operation of the IBM PCjr computer.

You should be familiar with the use of the IBM PCjr,
and understand the concepts of computer architecture
and programming.

This manual has five sections:

Section 1: “Introduction” is an overview of the basic
system and available options.

Section 2: ‘“Base System’ describes each functional
part of the base system. This section also has
specifications for power, timing, and interfaces.
Programming considerations are supported by coding
tables, command codes, and registers.

Section 3: “System Options”’ describes each available
option using the same format as Section 2: ‘“‘Base
System.”

Section 4: “Compatibility with the IBM Personal
Computer Family” describes programming concerns for
maintaining compatibility between the IBM PCjr and
the other IBM Personal Computers.

Section 5: ‘““System BIOS and Usage’ describes the
basic input/output system (BIOS) and its use. This
section also contains the software interrupt listing, a
system memory map, descriptions of vectors with

special meanings, and a set of low-storage maps. In
addition, keyboard encoding and usage is discussed.

This publication has four appendixes:

Appendix A: “ROM BIOS Listing”

Appendix B: “Logic Diagrams”

Appendix C: ‘“Characters, Keystrokes, and Color”
Appendix D: ‘“Unit Specifications”

Prerequisite Publication:
Guide to Operations part number 1502291
Guide to Operations part number 1502292

Suggested Reading: _
IBM PCjr Hands on BASIC part number 1504702
IBM PCjr BASIC Reference Manual part number
6182371)
Disk Operating System (DOS) part number 6024061
Hardware Maintenance and Service Manual part
number 1502294
Macro Assembler part number 6024002

Related publications are listed in “Bibliography.”

Contents

DECTION 1. INTRODUCTION 1-]

Processor and Support 2-13

Pertormance e 2-13
B259A Interrupt Controller 2-13
PCyr Hardware Interrupts 2-13
B25YA Programming (onsiderations . 2Z2-19G
p4KRAM e, 2114
ROM Subsystem 2-19
[nput/Output Channel 2-21
bystem Board 1/0O Channel Description 2-23

Input/Output 2-2
Lassette Interface e e aee o 2-34
Video Color Graphics Subsystem 2-43
Major Components Definitions 2-41

tte . e e -

Alphanumeric Modes 2-34
raphicsMode 2-J]
Video Gate Array 2-63
Cight Pen 2-73
CRT/Processor Page Register 2-79
Beeper 2-83
SBound Subsystem 2-81

.omplex Sound Generat ceeen... 2-8
Audio Ione Generator 2-89

nira- e . -

IBM PCjr Cordless Keyboard 2-101
-(ransmitter eeeo......2-103

P Cariridge SIoi 7107
Cartridge Storage Allocations . 2-108
ROM Maodule 2-114

[Games Interface =114
[nterface Description A . 2-119
[nput from Address Hex 201 2-120
Pushbuttons 2-122
Doystick Positions 2-122

derial Port (RSN232) 2-123
Modesof Operation 2-128
Interruptsc0..0... 2-123

ver-Voltage/Over-Current
| Protection 2-137

SECTION 3. SYSTEM OPTIONS 3-1
[BM PCjr 64KB Memory and Display

Expansionii0iian... 3-5
BT -
Functional Description ., 3-13
Sysfem 170 Channel Inferface 319
Drive Inferface 322
oltage and Current Requirements .. 3-Z

IBM_PCjr Disketfe Drive 321
kunctional Description 3-21
Disketie 3-31
IBM PCjr internal Modem 3-31
Functional Description e 3314
Modem Design Parameters 371

P e Consid . 140
Bfatus Conditions 160
Dialing and I.oss of Carrier 3-60
Defanit State 3-01

Programming Examples 3-63

IBM P(Cjr Attachable JoysticK 3-71
Hardware Description 3-71
Functional Description 3-71

IBMColorDisplay _....... 3-81
Hardware Description 3-81
Operating Characteristics 3-82

Printer Specifications 3-107
[Additional Printer Specifications .. 3-109Y
DIP Switch Settings 3-TI{
Parallel Intertace Description 3-1173
Printer Modes J-113
Printer ControlCodes 3-116
IBM PC Compact Printer 3-133
Printer Specifications 3-133
Serial Interface Description 3-139
Print Mode Combinations for the PC
Compact Printer _ 3-14¢

Compatibuity Overviewccc0cv. 4-3
[Timing Dependenciesccevvennn. 4-3
[Unequal Configurations 4-7

vii

User Ready/Write Memory 4-T)
Diskette Capacity/Operation 4-T3
IBM PCjr Cordless Keyboard 4-14
Color Graphics Capability 4-T3

Black and White Monochrome Display 4-14
S232 Serial Port and IBM P(jr

| Internal Modem e iisaeeens 4-18

Bummarycoceeeieeeiiaiannns 4-19

syuidelines -1

Kevboard Encoding and Usage 3-21

Cordless kevboard Encoding)-21

Dpecial

BIOS Cassette 1.ogic

software Algorithms - Interrupt

Hex 15 fee e ieiaaieen, 5-47
Cassefte Wnite 5-43
Cassefte Read e 549

Power-On Selt-lTest . . A=A
L A2
lime-of-Dayc0000vv... A4
raphics-Character Generator
(Second 128 Characters) A-5

/O Supportcooeeeeeeeses A-97

pystem Configuration Analysis A-9
raphics-Character Generator
(First 128 Characters) A-103
Erint Screen . e e e A-10d
Appendix B. LOGTC DTAGRAMS . B-1
BystemBoard B-3
program Cartridge B-2()
Power Supplyv Board B-2
b4KB Memory and Display 4
Expansion e B-2
Lolor Displayccoivou... B-24
pDiskette Drive Adapter b-3U

Wﬂd—l—l—t—l—l—l—l—l—l—l—l—l—l—l—l—lﬂ
Faralle] Printer Attachment B-31

nira-Re €1V B-4
raphics Printerc...c... B-4
ompact Printer B-47

Appendix C. CHARACTERS, KEYSTROKES, ancil

COLOR e AP 60 |
Appendix D, UNIT SPECIFICATIONS D-1]
Pystem Unitciieeeenre.s D-1]

Lordless Keyboard D-2

Diskette JIrive . .00 ee v e e D-J3

Lolor DIisplay ..o e it e eenrennnns D-J

Lraphics Printer, D-§

nt¢rnlM0 N b L

Kompact Printercocoeu..s D-Y

Glossaryc.cccuiuins. Glossary-1|
Bibliography Bibliography-1|
Index000000000000tttaae.. Index-1

ix

Notes:

TAB INDEX

[Section 1: Introduction|

uonpnNposu|

[Section 2: Base System|

[Section 3: System Options|

ection 4: Compatibility With the ersonall
Computer Family

Anpqneduio)

ection >: System SABE|ttt e

adesN) SOIg

Notes:

[Appendix B: Logic Diagraml A,

g xtpuaddy

Appendix C: Characters, Keystrokes, and Color|

) Xipuaddy

d xtpuaddy

Bibliography ettt e

=
=
=
I
~
]
)
=
-

Notes:

Xiv

SECTION 1. INTRODUCTION

=2
=
e
=%
s
)
=2
3

Contents

[Introductioncco00eceectaosossoecs 1-3|

Notes:

Introduction

The system unit, a desk top transformer, and a cordless
keyboard make up the hardware for the PCjr base
system.

I
=
-
—
e
.
s
(<]
=
=]
=

The following options are available for the base system:
+ IBM PCjr 64KB Memory and Display Expansion

— The 64KB Memory and Display Expansion
enables the user to work with the higher density
video modes while increasing the system’s
memory size by 64K Bytes to a total of 128K
Bytes.

« IBM PCjr Diskette Drive Adapter

— The IBM PCjr Diskette Drive Adapter permits
the attachment of the IBM PC;jr Diskette Drive
to the IBM PCjr and resides in a dedicated
connector on the IBM PCjr system board.

« IBM PCjr Diskette Drive

— The IBM PCjr Diskette Drive is double-sided
with 40 tracks for each side, is fully
self-contained, and consists of a spindle drive
system, a read positioning system, and a
read/write/erase system.

» IBM PCjr Internal Modem
— The IBM PCjr Internal Modem is an adapter
that plugs into the PCjr system board modem

connector and allows communications over
standard telephone lines.

Introduction 1-3

o IBM PCjr Parallel Printer Attachment

— The IBM PCjr Parallel Printer Attachment is
provided to attach various I/O devices that
accept eight bits of parallel data at standard TTL
logic levels. It attaches as a feature to the right
side of the system unit.

o IBM Personal Computer Graphics Printer

— IBM Graphics Printer is an 80 cps
(characters-per-second), self-powered,
stand-alone, tabletop unit.

o IBM PCjr Joystick
— The IBM PCjr Joystick is an input device to
provide the user with two-dimensional
positioning-control. Two pushbutton switches

on the joystick give the user additional input
capability.

« IBM Color Display
— The IBM Color Display is a Red/Green/Blue
/Intensity (RGBI) Direct-Drive display, that is
independently housed and powered.

« IBM Connector for Television

— The IBM Connector for Television allows a TV
to be connected to the IBM PCjr system.

» IBM PCjr Keyboard Cord
— The IBM PCjr Keyboard Cord option is used to

connect the IBM PCjr Cordless Keyboard to the
system board.

1-4 Introduction

« IBM PCjr Adapter Cable for Serial Devices

— This option is an adapter cable that allows
connection of serial devices to the IBM PCjr
system board.

S
=
-
-
=
(=
e
[«
=
=]
=

« IBM PCjr Adapter Cable for Cassette
— This option is an adapter cable that allows a
cassette recorder to be connected to the IBM
PCjr.
o IBM PCjr Adapter Cable for Color Display

— This adapter cable allows the IBM Color Display
to be connected to the IBM PCjr.

The following is a block diagram of the IBM PCjr
system.

Introduction 1-5

14.31628 w2

o5V
8088
T U U
ADY [
1A DATA
CLl
(1 ——
—1 INTR
wr_[hest o I
I o
MEMORY 36
DECODE
cs?
82504 B XS
INTR R

INRQ-7

~
e x8
| how

ROM
CARTRIOGE
CONNS

DATA DUT

170 €S

+/| DECORE

—

13
3400
[}
7

STale
wAr_| osic
$
fo M
Lol
ra
"
ot Lt [
L]
“1 Thete companents are contained on the 54K8 mamery and displsy
expansion card They are included here for completeness s
L

System Block Diagram (Sheet 1 of 2)

1-6 Introduction

60 ”in
/0 Comn

M m
1 { 1"g3
€A | ns232 3 SERAL
82504 :
sERAL ::> L 2 =1
3
tazu M 77 ATTACHED
K—] - ¢ ° e,
— 4
78490
S0UND
o = /0 AUDIO ¥
i 1'ﬂ I
L8314 TiMeR SPEAKER AUQI0 ALA
, 1061 R or
: 12 7 0 e
1RO ‘ I

ot D—o]easserte

>—— Halt i
(T veveoano

4
i

KEYBOARD
LR LOGIC

|
|

L

~J
2 (0] ren

il

COMPOSITE CONPOSITE
VIDED LOGIC .q."”
18374
comﬁ!nn [Wrecevision
FOI
TELEVISION
L5258
ADR 6845
NPX
L
LIGHT PEN

*1 These compenens are contained on the 64K8 memory 3nd display
exgangion card They are incuded here for compleleness

System Block Diagram {Sheet 2 of 2)

Introduction 1-7

]
=]
-
-
=3
=9
c
(]
=,
=3
=]

Notes:

1-8 Introduction

SECTION 2. BASE SYSTEM

Contents

=
2
o
2
>4
4
o
3

KROM Subsystem e etoescseaccna 2-19Y
Input/Output Channel vees 2-21
pPystem Board 1/0 Channel Description 2-23
[nput/Output 2-29
B23) Bit Assignments 2-34
B25) Bit Assignment Description 2-31
Port AO Output Description 2-33
Port AO Input Operation 2-3Q

e Interfac e e o cs s e o s eoe s easone 2-

|Video Color/Graphics Subsystem 2-43
Major Components Definitions 247
Motorola 6845 CR1 Controlier 2471
ptorage Organization 2-47]
Bandwidth .. .~ R 239
Character Generator .- ., 249

Video Gate Array 2-4Y
Palette 230

Alphanumeric Modes 2-54

GraphicsMode 2-53
w-Resolution 16- r -
edium-R - -

Medium-Resolution 16-Color Graphics .. 2-58

-Resolution 2-Color Graphics 2-5
1gh-Resolution 4-Color Graphics 2-3
[Graphics Storage Organization 2-60
Video Gate Array 2-63
ode R -
alett -
Border Color Register 2-66
ode rol 2 Register 2-664
ResetRegister 2-69
Palette Registers e 2-71
Btatus Register 273
LightPen 2-74
’ rogrammin nsl . 2-78

......

_R'T'/Processor Page Register

Beeper tecccccieceeccecscseceasnss 2-83
Lomplex Sound Generator 2-88
Aundio Tone Generator 2-89

Features 2-84

Infra-Red Link 2-97

Intfra-Red Receiver 2-9°4
Functional Description 2-97
Application Notes 2-98

Transmitter

Program Cartridge and Interface 2-107

Program Cartridge Slots 2-10°)
Cartridge Storage Allocations 2-108
ROM Module . e 2-114

G Intert 7119
Intertace Description 2-11Y
Input from Addresshex 201 2-120
Pushbuttons 2-122
Joystick Positions 2-144
Serial Port (RS232) 2-12%
Modes of Operation 2-129
Interrupts e 2-129
Interface Description 2-129

oltage Interchange Information 2-13
PutputSignals 2-13]
Accessible Registers 2-131
NS38250A Programmable Baud Rate

Generator 2-132
System Power Supply 2-133
Operating Characteristics 2-139
Power Supply Input Requirements 2-136
pPCOutputs 2-134
Over-Voltage/Over-Current Protection ... 2-13]
Input (Iransiormer) 2-13
Dutput (Power Board) 2-15)

wsAg aseq

Notes:

Introduction

The PCjr base-system hardware consists of the system
unit, a 62-key cordless-keyboard, and a power.
transformer.

The PCjr system board is the center of the PCjr system
unit. The system board fits horizontally in the base of
the system unit and is approximately 255 mm by 350
mm (10 inches by 13.8 inches). It is double-sided, with
.an internal-power/ground plane. Low voltage ac
power enters the power supply adapter, is converted to
dc voltage, and enters the system board through the
power supply adapter edge-connector. Other system
board connectors provide interfaces for a variety of
input/output (I/0) devices and are individually keyed
to prevent improper installation. The following is a list
of these connectors:

+ 64KB Memory and Display Expansion Connector

« Diskette Drive Adapter Connector

o Internal Modem Connector

« Infra-Red (IR) Link Receiver Board Connector

« Program Cartridge Connectors (2)

« I/0 Channel Expansion Connector

« Serial Port (RS232) Connector (with optional
adapter cable)

« Direct Drive (RGBI) Video Connector

« Composite Video Connector

o IBM Connector for Television Connector (external
RF modulator)

« Light Pen Connector

« External Audio Connector

« IBM PC,r Keyboard Cord Connector

« Cassette Connector (with optional adapter cable)

« IBM PCjr Attachable Joystick Connectors (2)

Introduction 2-5

WaIsAg Iseq

The system board consists of seven functional
subsystems: the processor subsystem and its support
elements, the read-only (ROM) subsystem, the
read/write (R/W) subsystem, the audio subsystem, the
video subsystem, the games subsystem, and the I/O
channel. All are described in this section.

The nucleus of the system board is the Intel 8088
microprocessor. This processor is an 8-bit external bus
version of Intel’s 16-bit 8086 processor, and is
software-compatible with the 8086. The 8088 supports
16-bit operations, including multiplication and division,
and supports 20 bits of addressing (1 megabyte of
storage). It operates in the minimum mode at 4.77
MHz. This frequency, which is derived from a
14.31818-MHz crystal, is divided by 3 for the
processor clock, and by 4 to obtain the 3.58-MHz
color-burst signal required for color televisions.

For additional information about the 8088, refer to the
publications listed in “Bibliography”’.

The processor is supported by a set of high-function
support-devices providing three 16-bit timer-counter
channels, and nine prioritized-interrupt levels.

The three programmable timer/counters are provided
by an Intel 8253-5 programmable interval-timer and are
used by the system in the following manner: Channel O
is used as a general-purpose timer providing a constant
time-base for implementing a time-of-day clock;
Channel 1 is used to deserialize the keyboard data and
for time-of-day overflow during diskette operations.
Channel 2 is used to support the tone generation for the
audio speaker and to write data to the cassette.

Of the nine prioritized levels of interrupt, three are
bused to the system’s I/ O channel for use by adapters.
Five levels are used on the system board. Level 0, the

2-6 Introduction

highest priority, is attached to Channel 0 of the
timer/counter and provides a periodic interrupt for the
time-of-day clock; level 3 is the serial-port-access
interrupt; level 4 is the modem-access interrupt; level 5
is the vertical-retrace interrupt for the video; and level
six is the diskette drive adapter-access interrupt. The
non-maskable interrupt (NMI) of the 8088 is attached
to the keyboard-interface circuits and receives an
interrupt for each scan code sent by the keyboard.

The system board supports both read-only memory
(ROM) and R/W memory (RAM). It has space for
64K bytes by 8 bits of ROM. There are two module
sockets that accept a 32K byte by 8 bit ROM module.
ROM is aligned at the top of the 8088’s address space.
This ROM contains the Power-On Self-Test,
cassette-BASIC interpreter, cassette-operating system,
I/O drivers, dot patterns for 256 characters in graphics
mode, a diskette bootstrap-loader and user-selectable
diagnostic-routines.

Introduction 2-7

Wa)sAS aseg

The system board contains the following major
functional components:

o 8088 Microprocessor

« 64K ROM

o 128K ROM Cartridge Interface
e« 64K Dynamic RAM

o 64KB Memory and Display Expansion Interface
e Serial Port (RS232)

e Audio Alarm (Beeper)

« Sound Subsystem

o Cassette Interface

« Joystick Interface

« Keyboard Interface

e« Modem Interface

« Diskette Interface

« Video/Graphics Subsystem

« Light Pen Interface

« I/0 Expansion Bus

e 9-Level Interrupt

The following is a block diagram of the System Board.

2-8 Introduction

IR Link or Keyboard Cable

Connector
2 Joysticks
4 Buttons
=]
73
Key- 128K ®
Power | board | o o] BOM | RO |Sena fe—s] Serie | RS
comn. | tnter: ovsEeE| car. Conn. |1 ort Printer | b2
: face Conn. onn. |lnterface I~
=]
64K 64K
0OSC 170 Parallel
9 Level
Clock 8088 i ROM RAM Channel jag=—p{ Printer
nterrupt| on on
Control Conn. Attach.
Board Board
Audio Diskette - "'—-]
Modem Vide and Drive Cassette Cassette
Adapter o Audio Adapter |liInterface|” |Deck
Alarm | Interface
o RF o Diskette Drive
Mod.
- External Amplifier
and Speaker
Home
el Television
Composite Video

RGBI
Monitor

> Light Pen

*1 Telephone

System Board Block Diagram

Introduction 2-9

uoydnponuy Q-7

Infra-Red Receiver
Connector

Right Side

System Board Connector Specifications (Part 1 of 3)

Diskette Drive Adapter Connector
Internal Modem Connector
64KB Memory Expansion Connector

Power Board Connector

Power Adapter
Grounding Pins

Left Side

Internal Modem
Grounding Pins

11-7 uoudnponuy

Front View

Left Cartridge Slot Right Cartridge Slot

1/0 Expansion Connector

N/
A{TIIIU]IUUUIIUUUUIIIIUUWA"S A1 \A18
s1(10000ANNONNNANNNARIB 18 B1mmB

I

A1 ; \
B1 Right Side View

System Board Connector Specifications (Part 2 of 3)

A30
B30

uoydnponuy 7i-g

Letter Letter
Designation Connector Use Designation Connector Use
J Left Joystick v Composite Video
J Right Joystick D Direct Drive Video
L Spare S Serial Device
K Keyboard Cc Cassette
LP Light Pen A Audio
T Television
©-
J L K P T \4 D S C

L ETTIFrR

| |

7

) S ¥

14141313131§

/i

9 1 8

A t:::::::.]L:::::;::_”:':_:;]

System Board Connector Specifications (Part 3 of 3)

Processor and Support

The (R) Intel 8088 Microprocessor is used as the
system’s central processor. Some of its characteristics
are:

e 4.77 MHz clock

« 20 bit address bus

« 8-bit memory interface

« 16-bit ALU (arithmatic/logic unit) and registers
» Extensive instruction set

« DMA and interrupt capabilities

o Hardware fixed-point multiply and divide

=
2

o

w
>

z
o

3

The system clock is provided by one Intel 8284 A clock
chip. The 8088 is operated in the minimum mode.

Performance

The 8088 is operated at 4.77 MHz which results in a
clock cycle-time of 210 ns.

Normally four clock cycles are required for a bus cycle
so that an 840 ns ROM memory cycle time is achieved.
RAM write and read cycles will incur an average of two
wait states because of sharing with video, leading to an
average of six clock cycles. I/ O reads and writes also
take six clock cycles leading to a bus cycle time of
1.260 us.

Processor and Support 2-13

Notes:

2-14 Processor and Support

8259A Interrupt Controller

PCjr Hardware Interrupts

Nine hardware levels of interrupts are available for the
PCjr system. The highest-priority interrupt is the NMI
interrupt in the 8088. The NMI is followed by eight
prioritized interrupt-levels (0-7) in the 8259A
Programmable Interrupt Controller, with IRQ 0 as the
highest and IRQ 7 as the lowest. The interrupt level
assignments follow:

=
7
™
wn
<
a
®
3

Level Function

8088 NMI Keyboard Interrupt

8259A IRQO | Timer Clock Interrupt

8259A IRQ 1 1/ 0O Channel (Reserved)

8259A IRQ 2 | 1/0 Channel

8259A IRQ 3 | Asynchronous Port Interrupt (RS-232C)
8259A 1IRQ4 | Modem Interrupt

8259A IRQ 5 | Vertical Retrace Interrupt (Display)
8259A IRQ 6 | Diskette Interrupt

8259A IRQ 7 1/ O Channel (Parallel Printer)

Hardware Interrupts

Interrupt Controller 2-15

8259A Programming Considerations

The 8259A is set up with the following characteristics:

« Buffered Mode

o 8086 Mode

o Edge Triggered Mode _

o Single Mode Master (No Cascading is Allowed)

The 8259A 1/0 is located at I/O address hex 20 and
hex 21. The 8259A is set up to issue interrupt types hex
8 to hex F which use pointers to point to memory
address hex 20 to hex 3F.

The following figure is an example setup.

0263 BO 13| MOV AL, I13H : ICWI - Reset edge
, sense circuit set
single
: 8259 Chip and ICW4
read

0265 E6 20| OUT INTAO0,AL

0267 BOO8 | MOV AL :1ICW2 - Set interrupt
type 8 (8-F)

0269 E6 21 | OUT INTAOI.AL

026B BO09 | MOV ALS9 ' : ICW4 - Set buffered
mode master
and 8086 mode

026D E6 21 | OUT INTAOLAL

Example Set Up

2-16 Interrupt Controller

64K RAM

The 64K bytes of R/W memory reside on the system
board and require no user configuration.

Eight 64K byte by 1, 150 ns, dynamic memory modules
are used to provide 64K byte of storage. The RAM has
no parity. Sources of these memory modules include
the Motorola MCM6665AL1.15 and the Texas
Instruments TMS4164-15 or equivalent.

=
2
®
2]
(>3
a
(2]
3

The system board 64K RAM is mapped at the bottom
of the 1 MEG address space. The system board 64K
RAM is mapped to the next 64K bytes of address space
if the 64KB Memory and Display Expansion option is
not installed. If read or written to, this higher block of
address space will look just like the low-order 64K-byte
block. This means the bottom 128K bytes of address
space is always reserved for RAM. If the 64KB
Memory and Display Expansion option is installed, it is
mapped to the 'ODD' memory space within the 128K
byte-reserved space while the system board memory is
mapped to the 'EVEN' space. Memory refresh is
provided by the 6845 CRT Controller and gate array.
The gate array cycles the RAM and resolves contention
between the CRT and processor cycles.

See “IBM PC,r 64KB Memory and Display Expansion”
in Section 3 for a detailed description.

64K RAM 2-17

Notes:

2-18 64K RAM

ROM Subsystem

The ROM subsystem is made up of 64K bytes of ROM
aligned at the top of the 1 MEG address space. The
ROM is built using 32K byte by 8 ROM-modules. The
ROM has no parity. The general memory specifications
for the ROM are:

Access Time - 250 ns
Cycle Time - 375ns

WRISAQ Iseq

ROM modules Mk 38000 from Mostek, TMM23256P
or equivelent are used. Address A14 is wired to both
pin 1 and pin 27.

The following figure is a map of the sections of memory
allocated for use by the system:

ROM Subsystem 2-19

FFFFF |
BIOS/Diagnostic/Cassette
Basic Program Area

FO000
Standard Application Cartridge Cartridge

E8000 % Chip
Standard Application Cartridge Selects

E0000
Reserved For Future Cartridge

D8000
Reserved For Future Cartridge

D000O0
Reserved for
1/0 ROM

C0000
Video RAM

B8000
Reserved
Future
Video

A0000
Reserved
Future User
RAM

20000
Expansion RAM

10000
Base RAM

00000

Memory Map

2-20 ROM Subsystem

Input Output Channel

The Input/Out channel (I/O) is an extension of the
8088 microprocessor bus. It is however, demultiplexed,
repowered, and enhanced by the addition of interrupts.

The I/0 channel contains an 8-bit bidirectional bus, 20
address lines, 3 levels of interrupt, control lines for
memory and I/0O read or write, clock and timing lines,
and power and ground for the adapters. Voltages of
+5 dc and +12 dc are provided for external adapters.
Any additional power needs will require a separate
power-module.

WISAQ aseq

All 1/O Channel functions are bused to the right-hand
side of the system unit and are provided by a
right-angle, 60-pin connector. Each external adapter
connects to the I/O bus and passes the bus along for
the next attachment.

A 'ready’ line is available on the I/O Channel to allow
operation with slow 1/0O or memory devices. If the
channel’s 'ready' line is not activated by an addressed
device, all processor-generated memory-read and write
cycles take four 210-ns clocks or 840-ns/byte. All
processor-generated 1/O-read or write cycles require
six clocks for a cycle time of 1.26-us/byte.

The 1/0 Channel also contains the capability to add
bus masters to the channel. These devices could be
DMA devices or alternate processors.

The I/O Channel signals have sufficient drive to
support five I/O Channel expansion-adapters and the
internal modem and diskette drive adapter, assuming
one standard TTL load per attachment. For
information on power available for external adapters,
see “System Power Supply”’, later in this Section.

I/0 Channel 2-21

Signal Name

D1
D2
D4
Shield GND

D7
A0 ——

A2

Shield GND

A5
A6

A8

-DACKO

A11
A12
" Shield GND
A15
Shield GND
A17
A19
Shield GND
-MEMR
-MEMW
ALE
Shield GND
10/-M
READY
-CARD SLCTD —
Shield GND
IRQ7
AUDIO IN

B1

B5

B10

B15

B20

B25

B30

A1

A5

A10

A15

A20

A25

A30

170 Channel Expansion Connector Specifications

2-22 I/0 Channel

Signal Name

DO
+12 Vdc
D3

D5

D6

+56 Vdc
A1

A3

A4
GND
A7

A9
A10
DRQO
A13
A14
A16
GND -
A18
-IOR
-low
GND
HDLA
CLK
RESET
+5 Vdc
-HRQ
IRQ1
IRQ2

Reserved

System Board I/O Channel Description

The following is a description of the I/O Channel. All
signals are TTL compatible.

Signal I/0,
CLK 0]
70 ns 140 ns
Duty Cycle
RESET O
A0-A19 I/0

Description

System Clock: Itisa
divide-by-three of the 14.31818
MHz oscillator and has a period
of 210 ns (4.77 MHz). The
clock has a 33% duty cycle.

&
2
®
w
-
4
®
3

70 ns 140 ns

This line is used to reset or
initialize system logic upon
power-up. This line is
synchronized to the falling edge
of the clock and is 'active high'.
Its duration upon power up.is
26.5 ps.

Address Bits 0 to 19: These lines
are used to address memory and
I/0 devices within the system.
The 20 address lines allow access
of up to 1 megabyte of memory.
AOQ is the least-significant- bit

_ (LESB) while A19 is the

most-significant-bit (MSB).
These lines are normally driven
by the 8088 microprocessor as

1/0 Channel 2-23

DO0-D7

ALE

READY

2-24 I/0 Channel

1/0

I

outputs, but can become inputs
from an external bus-master by
issuing an HRQ and receiving an
HLDA.

Data Bits 0-7: These lines
provide data-bus bits 0 to 7 for
the processor, memory, and 1/0
devices. DO is the
least-significant-bit (LSB) and
D7 is the most-significant-bit
(MSB). These lines can be
controlled by an external
bus-master by issuing an HRQ
and receiving an HLDA.

Address Latch Enable: This line
is provided to allow the addition
of wait states in memory and I/O
cycles.

This line, normally 'high'
('ready'), is pulled 'low' ('not
ready') by a memory or I/O
device to lengthen I/O or
memory cycles. It allows slower
devices to attach to the I/O
Channel with a minimum of
difficulty. Any slow device
requiring this line should drive it
'low' immediately upon
detecting a valid address and
10/-M signal. Machine cycles
(I/0 and memory) are extended
by an integral number of CLK
cycles (210 ns). Any bus master
on the I/O Channel should also
honor this ‘ready’ line. Itis
pulled 'low' by the system board

IRQ1, IRQ2,
IRQ7

-IOR

~-IOwW

-MEMR

I

I/0

1/0

1/0

on memory read and write cycles
and outputting to the sound
subsystem.

Interrupt Request 1, 2, and 7:
These lines are used to signal the
processor that an I/O device
requires attention. They are
prioritized with IRQ1 as the
highest priority and IRQ7 as the
lowest. An Interrupt Request is
generated by raising an IRQ line
('low' to 'high') and holding it
'high"' until it is acknowledged
by the processor
(interrupt-service routine).

wa)SAQ Isegq

1/0 Read Command: This
command line instructs an I/0O
device to drive its data onto the
data bus. This signal may be
driven by the 8088
microprocessor or by an external
bus-master after it has gained
control of the bus. This line is
active 'low'.

I/0 Write Command: This
command line instructs an I/O
device to read the data on the
data bus. This signal may be
driven by the 8088
microprocessor or by an external
bus-master after it has gained
control of the bus. This line is

.active 'low'

Memory Read Command: This
command line instructs the

I1/0 Channel 2-25§

-MEMW

10/-M

-HRQ

2-26 1I/0 Channel

1/0

1/0

memory to drive its data onto the
data bus. This signal may be
driven by the 8088
microprocessor or by an external
bus-master after it has gained
control of the bus. This line is
active 'low’.

Memory Write Command: This
command line instructs the
memory to store the data present
on the data bus. This signal may
be driven by the 8088
microprocessor or by an external
bus-master after it has gained
control of the bus. This line is
active low.

I/0 or Memory Status: This
status line is used to distinguish a
memory access from an [/0O
access. This line should be
driven by a bus master after it
has gained control of the bus. If
this line is 'high' it indicates an
I/O Address is on the Address
Bus; if this line is 'low’, it
indicates a memory address is on
the Address Bus.

Hold Request: This line indicates
that another bus master is
requesting the I/O Channel. To
gain bus-master status, a device
on the channel must assert -HRQ
(active 'low'). The 8088 will
respond to a =HRQ by asserting
an HLDA. After receiving an
HLDA, the new bus master may

DRQ 0

-DACK 0

HLDA

I

o

control the bus, and must
continue to assert the -HRQ until
it is ready to relinquish the bus. A
-HRQ is not an asynchronous
signal and should be
synchronized to the system clock.
All channel devices with
bus-master capabilities must latch
data-bit D4 during any 'Out'
instruction to AO-A7. The
resulting signal should be used to
qualify -HRQ as follows:
Latched value = 1 --> -HRQ is
inhibited. Latched value = 0 -->
-HRQ is allowed. For more
detail, see the explanation of the
A0 port.

wRJsAQ aseq

This line comes from the floppy
disk controller (FDC) and can be
used by an external DMA to
indicate that a byte should be
transferred to the FDC.

This line should come from an
external DMA and should

-indicate that a byte is being

transferred from memory to the
FDC.

Hold Acknowledge: This line
indicates to a bus master on the
channel that -HRQ has been
honored and that the 8088 has
floated its bus and control lines.

1/0 Channel 2-27

~CARD
SLCTD

AUDIO IN

2-28 1/0 Channel

This line should be pulled down
by any adapter when it is selected
with address and 10/-M. This
line will be used for bus
expansion. It is pulled up with a
resistor and should be pulled
down with an open collector
device.

Channel devices may provide
sound sources to the
system-board sound-subsystem
through this line. Itis 1 volt
peak-to-peak, dc biased at 2.5
volts above ground.

Input/Output

Hex Range|9 87 413 2 1 0 Device
20-27 0 0|0 010 X X A0 | PIC 8259
40-47 00]0 0[O0 0 Al A0 | Timer 8253-5
60-67 0 0j0 0] 0 X Al A0 | PPI 8255-5
AQ0-A7 0 0}1 0|0 X X NMI Mask Reg.
C0-C7 00]1 0fo0 X X Sound

SN76496N

FO-FF 0 0fl1 1| X A2 Al A0 | Diskette
200-207 {1 0]0 010 X X X [Joystick
2F8-2FF |1 0}l 111 A2 Al AO | Serial Port
3D0-3DF |1 1]1 1 [A3 A2 Al AO [Video Subsystem
3F8-3FF (1 1]1 1|1 A2 Al A0 | Modem

170 Map

X = Don’t care (that is, not in decode.)

o Any I/O which is not decoded on the system board

may be decoded on the 1I/O Channel.

o At Power-On time the NMI into the 8088 is masked

‘off'. This mask bit can be set by system software

as follows:

Write to Port AO D7=ENA NMI D6=IR TEST ENA
D5=SELC CLK1 INPUT D4=+Disable HRQ

1/0 Channel 2-29

wR)ISAS aseq

8255 Bit Assignments

PA

Output

PAO Reserved for Keystroke Storage

PAl
PA2
PA3
PA4
PAS
PA6
PA7
PB

PBO
PB1
PB2
PB3
PB4

PBS
PB6
PB7
PC

PCO
PCI1
PC2
PC3
PC4
PCS5
PC6
PC7

Reserved for Keystroke Storage
Reserved for Keystroke Storage
Reserved for Keystroke Storage
Reserved for Keystroke Storage
Reserved for Keystroke Storage
Reserved for Keystroke Storage
Reserved for Keystroke Storage
Output

+Timer2 Gate (Speaker)
+Speaker Data

+Alpha (-Graphics)

+Cassette Motor Off

+Disable Internal Beeper and Cassette Motor
Relay

SPKR Switch 0

SPKR Switch 1

Reserved

Input

Keyboard Latched

-Internal MODEM Card Installed
-Diskette Drive Card Installed
-64KB Memory and Display Expansion Installed
Cassette Data In

Timer Channel 2 Output
+Keyboard Data

-Keyboard Cable Connected

2-30 1/0 Channel

2-28

8255 Bit Assignment Description

PAO thru (Output

PA7

PBO

PB1

PB2

Lines)

(+Timer 2
Gate)

(+Speaker
Data)

(+Alpha
-Graphics)

Port A is configured as an output.
The output lines are not used by the
hardware, but are used to store
keystrokes. This is done to maintain
compatibility with the Personal
Computer, and Personal Computer
XT.

WAJSAG aseg

This line is routed to the gate input
of timer 2 on the 8253-5. When this
bit is 'low', the counter operation is
halted. This bit and PBI (+Speaker
Data) controls the operation of the
8253-5 sound source.

This bit ANDS 'off' the output of
the 8253-5 timer 2. It can be used to
disable the 8253-5 sound source, or
modify its output. When this bit is a
1, it enables the output, a 0 forces
the output to zero.

This bit is used to steer data from the
memory into the Video Gate Array.
This bit should be a 1 for all alpha
modes, and a O for all graphics
modes.

I1/0 Channel 2-31

PB3 (+Cassette
Motor Off)

PB4 (+Disable
internal
beeper and
cassette
motor relay)

PBS, (Speaker
PB6 switch 0,1)

PB7 = (Open)

2-32 1/0 Channel

When this bit is a 1, the cassette
relay is 'open' and the cassette
motor is 'off'. When this bit is a 0,
and PB4 = 0, the cassette motor is

on .

When this bit is a 1, the internal
beeper is 'disabled’ and the 8253-5
timer 2 sound source can only be
heard if it is steered to the audio
output. This bit also disables the
cassette motor whenitisa 1. To
‘enable’ the cassette motor, this bit
must be a 0. In this case, PBI
should be used to gate 'off' the
internal beeper and 8253-5 sound
source.

These bits steer one of 4 sound
sources. This is available to the RF
modulator or the external audio jack.
The sound sources selected are
shown below.

PB6 PBS Sound Source

o O 8253-5 Timer 2

0 1 Cassette Audio Input
1 0 1/0 Channel Audio In
1 1 76496

Reserved for future use.

PCO (Keyboard This input comes from a latch which
latched) is set to a 1 on the first rising edge of

the Keyboard Data stream. The
output of this latch also causes the
NMI to occur. This latch is cleared
by doing a dummy 'Read' operation
to port AQ. This input is provided so
that a program can tell if a keystroke
occurred during a time when the
NMI was masked 'off' and a
keystroke has been missed. The
program will then be able to give an
error indication of the missed
keystroke.

WRJSAS aseg

PCl (-Modem When this bit is a 0, it indicates that

card the Internal Modem card is installed.
installed)

PC2 (-Diskette When this bit is a zero, it indicates
card that the Diskette Drive Adapter is
installed) installed.

PC3 (-64KB When this bit is a 0, it indicates that
Memory and the 64KB Memory and Display
Display Expansion is installed.

Expansion
installed)

1/0 Channel 2-33

PC4 (Cassette
data in)

PCS (Timer
channel 2
output)

PCé (+Keyboard
data)

PC7 (-Keyboard
cable
connected)

2-34 1/0 Channel

If the cassette-motor relay is
'closed’, and the cassette motor is
'on’, this pin will contain data
which has been wave shaped from
the cassette. If the cassette-motor
relay is 'off ', this pin will contain
the same data as the 8253-5 timer 2
output.

This input is wired to the timer
channel 2 output of the 8253-5.

This input contains keyboard data.
The keyboard data comes from the
cable if attached, or from the IR
Receiver if the cable is not attached.

If this bit is ‘low', it indicates that
the keyboard cable is connected.

Port A0 Output Description

D7

D6

DS

D4

(Enable NMI)

(IR test ENA)

(Selc CIk1 input)

(+Disable HRQ)

When this bit is a 1, the NMI is
'enabled'. When itis a 0, it is
'disabled"'.

This bit enables the 8253-5 timer 2

‘output into an IR diode on the IR

Receiver board. This information is
then wrapped back to the keyboard
input. If the cable is not connected,
timer 2 should be set for 40 kHz
which is the IR-modulation
frequency. This feature is used only
for a diagnostic test of the IR
Receiver board.

This bit selects one of two input Clks
to the 8253-5 timer 1. A O selects a
1.1925 MHz CIk input used to ‘assist
the program in de-serializing the
keyboard data. A 1 selects the timer
0 output to be used as the Clk input
to timer 1. This is used to catch timer
0 overflows during diskette drive
operations when interrupts are
masked 'off'. This is then used to
update the time-of-day.

This bit is not actually implemented
on the system board, but is supported
by the programming. This bit is used
to disable -HRQs from external
bus-masters (DMA, Alternate
Processors, etc.) The logic for

this bit must exist on each
bus-master attachment. A 0

should 'enable’' -HRQ, and a 1
should 'disable’' -HRQ.

1/0 Channel 2-35

WI)SAG aseg

+HRQ from external
bus master

LS74 LS03

D4

-HRQon1/0

AOCS |<g=—Input should be an open

collector type device

Port AO Output Description

Port A0 Input Operation

A 'read’' to I/0 port A0 will clear the keyboard NMI
latch. This latch causes an NMI on the first rising edge
of the keyboard data if the enable NMI bit (port A0 bit
D7) is 'on'. This latch can also be read on the 8255
PCO. The program can determine if a keystroke
occurred while the NMI was 'disabled' by reading the
status of this latch. This latch must be cleared befoye
another NMI can be received.

The System board provides for selection of keyboard
data from either a cable or the IR-receiver board. The
IR-receiver board is mounted on the system bpard and
can receive data through an IR link. The source of the
keyboard’s data is determined by the -Cable Connected
signal at the keyboard cable connector. Keyboard
serial data is available to the 8088 at bit PC6 of the
8255 PPL

The system board is responsible for the de-serialization
of keyboard data. The start bit in the serial stream
causes an NMI to be generated. The 8088 then reads
the 8253 timer to determine when to interrogate the

2-36 1/0 Channel

'serial stream. After de-serialization the NMI
service-routine does a-'Read' from hex AO to clear the
"NMI latch.

During certain time-critical operations, such as diskette
I/0, the processor will mask 'off' the NMI interrupt.
Keyboard inputs during this time cannot be serviced. A
keyboard latch is provided so that at the end of such
operations the processor will determine whether any
keys were pressed and take appropriate actions. The
keyboard latch is 'set' by any key being pressed and is
‘reset’ by 'Reading’ the NMI port. (No data is
presented to the microprocessor during this 'Read’.)
Keyboard latch data is available to the processor at bit
PCO of the 8255 PPL

o
-]
17
(¢
92
st
%
Z
o
3

1/0 Channel 2-37

Notes: .l

2-38 1/0 Channel

Cassette Interface

The cassette interface is controlled through software.
An output from the 8253 timer controls the data to the
cassette recorder through the cassette connector at the
rear of the system board. The cassette-input data is
read by an input-port bit of the 8255A-5
programmable-peripheral-interface (PPI) (8255A-5
PC4). Software algorithms are used to generate and
read cassette-data. The cassette drive- motor is
controlled by Bit PB3 of the 8255. Bit PB4, which
'enables’' the 7547 relay driver, must be 'low' when
the motor is to be turned on. The cassette interface has
a wrap feature which connects the output to the input
when the motor control is 'off'. See “BIOS Cassette
Logic” in Section 5 for information on data storage and
retrival.

A mechanism is provided that will direct the cassette
input to the audio subsystem. Please see ‘“Sound
Subsection” in Section 2.

Circuit block diagrams for the cassette-interface read,

write, and motor control are illustrated in the following
figures.

Cassette Interface 2-39

Cassette 18 Ohm

1000k

N Ohm ‘
GND Resistor 7 Resistor
+5V
J Cassette
0.047 uF || 18k Ohm | L A?:p 18k Ohm jg-22t2!n
Capacitor Resistor LM358 Resistor
-6V
| Audio
"] Subsystem
Silicon
Data From :‘8"'0""‘ GND=——{ Diode |
Cassette esistor Vir 4V
Recorder Cathode
Earphone
Jack GND

Cassette-Interface Read-Hardware Block Diagram

8253 Timer #2 OO

GND

+5V
1
7418125
3.9k Ohm
G Resistor
D DRV -————*
4.7k Ohm
Resistor
. —
0.678V to
AUX Input
1.2k Ohm
Resistor
0.075V to
ICI
150 Ohm MIC Input
Resistor
GND

Cassette-Interface Write-Hardware Block Diagram

2-40 Cassette Interface

+5V

+5V
4.7k SN75475 Relay
Ohm vee N/ O b
Coil
+5
‘ Clamp Cassette
74LS04 Motor
Control
PB3 In Outfp———{Coil
Motor
S
on NOT
C OM pammese
PB4 vss
Enable
Beeper/
Cassette
Motor NOT
Relay GND
Cassette-Motor Control Block Diagram
Signal Name Pin Number
LOGIC GND AO01
l— CASS AUDIO IN A02 -
je— MIKE AUDIO OUT A03
Cassette je— MOTOR CONTROL AO4 System
KEY PLUG BO1 Board
e— AUX DATA OUT BO2
e— MOTOR CONTROL SW BO3
P SHIELD GND BO4

Cassette Connector Specifications

Cassette Interface 2-41

wajskg aseg

Notes:

2-42 Cassette Interface

' Video Color/Graphics Subsystem

The video subsystem is designed so that the IBM Color
Display, composite monitors, and a home television set
‘can be attached. It is capable of operating in black-
and-white or color. It provides three video ports: a
composite-video, a direct-drive, and a connector for

an RF modulator to be used with home televisions. In
addition, it contains a light pen interface.

o]
-3
173
(4
2
2
P
—
3

Note: The IBM Personal Computer Monochrome
Display cannot be used with the PCjr system.

Note: An IBM Conhector for Television option
must be obtained to attach a home TV.

The subsystem has two basic modes of operation:
alphanumeric (A/N) and all points addressable
graphics (APA). Additional modes are available within
the A/N and APA modes:

In the A/N mode, the display can be operated in either
a 40-column by 25-row mode for a low-resolution
display home television, or an 80-column by 25-row
meode for high-resolution monitors. In both modes,
characters are defined in an 8-wide by 8-high character
box and are 7-wide by 7-high, with one line of
descender. Both A/N modes can operate in either
color or black-and-white.

In the A/N black-and-white mode, the character
attributes of reverse video, blinking, highlighting and
gray shades are available.

In the A/N color mode, sixteen foreground-colors and

sixteen background-colors are available for each
character. In addition, blinking on a per-character basis

Video Subsystem 2-43

is available. When blinking is used, only eight
background-colors are available. One of 16 colors, or
gray shades can be selected for the screen’s border in
all A/N modes.

In both A/N modes, characters are formed from a
ROM character-generator. The character generator
contains dot patterns for 256 different characters. The
character set contains the following major groupings of
characters:

« 16 special characters for game support

e 15 characters for word-processing editing support

« 96 characters for the standard-ASCII-graphics set

« 48 characters for foreign-language support

¢ 48 characters for business block-graphics (allowing
drawing of charts, boxes, and tables using single or
double lines)

e 16 selected Greek symbols

o 15 selected scientific-notation characters

In the APA mode, there are three resolutions available:

a low-resolution mode (160 PELs [Picture ELements]

by 200 rows), a medium-resolution mode (320 PELs by

200 rows), and a high-resolution mode (640 PELs by

200 rows).

Different color modes exist within each of the APA

resolutions. Two, four, or sixteen colors are available in

APA color, and two, four, or sixteen gray shades are
available in APA black-and-white.

H

2-44 Video Subsystem

One of sixteen colors, or grey shades can be selected
for the screen’s border in all APA modes.

The direct drive, composite video and RF Modulator
connector are right-angle-mounted connectors
extending through the rear of the system unit.

The video color/ graphics subsystem is implemented
using a Motorola 6845 CRT controller device and a
Video Gate Array (VGA) (LSI5220). The video
subsystem is highly programmable with respect to raster
and character parameters. Thus many additional modes
are possible with the proper programming.

=
7

o

w
>3

4
)

3

The following figure shows a block diagram of the
video color/graphics subsystem.

Video Subsystem 2-45

64K Expansion Card

T — 7
i A Processor 1
| 64K x 8 Data Latch |
! o |RAM :
|
| aa CRT Data :
Processor | Latch |
Memory I I R S — J
Data Bus = ; I
Processor
Address — ™ Addr.e S5 > Processor
Multiplexer|
4K Data Latch
Processor 64K x 8
/0 +{ Address RAM
Data Bus 6845 Multiplexer -
CRT N Character
Control Data Latch
SYNCS
* Video
Gate RAS, CAS, WE
Array Control Character
B Generator
ROM
CRT {
Data | CG Data
Latch Latch
RGBI Television Direct
Syncs =1 Drive
Y Video
Composite
=1 Video Composite
Logic Video
:' """"""]
| | RF .
i | Modulator | R Television
T
|
0 External :
-

Video Color/Graphic Subsystem Block Diagram

2-46 Video Subsystem

Major Components Definitions
Motorola 6845 CRT Controller

This device provides the necessary interface to drive a
raster-scan CRT. Additional information about this
component is provided in pubhcatlons listed in

Bibliography”’. -
3

4

. o n

Storage Organization P
-]

3

The base video-color/graphics-subsystem accesses 64K
bytes of read/write memory (RAM). A 64KB Memory
and Display Expansion can be added to increase the
amount of system RAM to 128K bytes. This
memory-storage area serves two functions; as the
video-display buffer and as the system processor is -
(8088) main-RAM.

The RAM is located at address hex 0000 and is either
64K bytes or 128K bytes with the memory expansion
option. The 8088 can access the memory by reading -
from and writing to address locations hex 00000 to
1FFFF or by reading from or writing to the 16K-byte
region starting at address hex B8000. The page
affected by a read or write operation is determined by
the processor’s page register. The processor can access
the RAM at any time in all modes with no adverse
effect to the video information. The page that the
video information is taken from is determined by the
CRT page register.

The processor and CRT page registers are write only
registers and can be changed at any time. These
registers allow the processor to work in one page while
the display is displaying another page. The processor
can switch pages at the vertical-retrace time. This will
aid animation on the video color/graphics subsystem.

Video Subsystem 2-47

Also, since all 128K bytes of read/write memory are
available for display purposes, the application can use
as little or as much memory as needed for the display.

The following figure is a map of the video
color/graphics subsystem.

Hex
Memory Map Address
Processor C0000
Read/Write -t Video
Operations B8000
Processor .
Page o
Select 20000
> Page 7 - CRT Page
Select
> Page 6 —
Page 5 >
> Page 4 —r CRT
10000
»{ Page3 —
> Page 2
Page 1 —
> Page O
00000

Video Color/Graphics Subsystem Memory Map

2-48 Video Subsystem

Bandwidth

The video bandwidth is either 3.5, 7 or 14 MHz
depending on the mode of operation. The processor
bandwidth is the same for all modes. The processor is
allowed one cycle every 1.1 microseconds. An average
of two wait states will be inserted in a processor RAM
read cycle, because the average latency time for the
processor to get a cycle is 560 ns and the cycle time is
350 ns. There is no performance penalty for redirecting
processor reads and writes through the B8000 - BFFFF
address area.

ol
0
174
®
1]
]
172}
-
@
3

Character Generator

The ROM character-generator consists of 2K bytes of
storage which cannot be read from, or written to under
software control. It is implemented with a
MCM68A316E or equivalent. Its specifications are
350 ns access, 350 ns cycle static operation. The
device is pin compatible with 2716 and 2732 EPROMS.

Video Gate Array

A CMOS gate array is used to generate storage-timing
(RAS, CAS, WE), direct-drive, composite-color and
status signals. See “Video Gate Array” later in this
section. ’

Video Subsystem 2-49

Palette

The video color/graphics subsystem contains a
16-word by 4-bit palette in the Video Gate Array
which takes PEL (Picture ELement) information from
the read/write memory and uses it to select the color to
display. This palette is used in all A/N and APA
modes. Any input to the palette can be individually
masked 'off' if a mode does not support the full
complement of 16 colors. This masking allows the user
to select a unique palette of colors whenever any mode
does not support all 16 colors.

In two-color modes, the palette is defined by using one
bit (PAQ), with the following logic:

Pa}lette Address Bit

PAO Function

0 Palette Register 0
1 Palette Register |

Palette Logic (1 of 3)

2-50 Video Subsystem

In four-color modes, the palette is defined by using two
bits (PA1 and PA0), with the following logic:

Palette Address Bits

PAl PAO Function
0 0 Palette Register 0
0 1 Palette Register 1
1 0 Palette Register 2
1 1 Palette Register 3

Palette Logic (2 of 3)

Video Subsystem 2-51

WR)ISAG Iseq

In sixteen-color modes, the palette is defined by using
four bits (PA3, PA2, PA1, and PAO), with the
following logic:

Palette Address Bits
PA3| PA2| PA1l| PAO Function

0 0 0 0 Palette Register O
0 0 0 1 Palette Register 1
0 0 1 0 Palette Register 2
0 0 1 1 Palette Register 3
0 l 0 0 Palette Register 4
0 1 0 | Palette Register S
0 | l 0 Palette Register 6
0 1 1 1 Palette Register 7
I 0 0 0 Palette Register 8
1 0 0 1 Palette Register 9
1 0 1 0 Palette Register 10
1 0 | 1 Palette Register 11
1 1 0 0 Palette Register 12
1 1 0 1 Palette Register 13
1 1 1 0 Palette Register 14
1 1 1 1 Palette Register 15

Palette Logic (3 of 3)

2-52 Video Subsystem

The sixteen colors available to all A/N and APA
modes are selected through combinations of the I
(Intensity), R (Red), G (Green), and B (Blue) bits. These
colors are listed in the following figure:

1 R G B Color
|~

0 0 0 0 Black 2
0 0 0 1 Blue <
0 0 1 0 Green a
0 0 1 | Cyan S
0 1 0 0 Red

0 1 0 1 Magenta

0 1 1 0 Brown

0 1 1 1 Light Gray

1 0 0 0 Dark Gray

1 0 0 1 Light Blue

1 0 1 0 Light Green

1 0 1 1 Light Cyan

1 1 0 0 Pink

1 1 0 1 Light Magenta

1 1 1 0 Yellow

1 1 1 I White

Note: The “I” bit provides extra luminance
(brightness) to each available shade. This results in the

light colors listed above, except for monitors that do

not recognize the “1” bit.

Summary of Available Colors

Video Subsystem 2-53

Alphanumeric Modes

Every display-character pbsition in the alphanumeric
mode is defined by two bytes in the system read/write
memory, using the following format:

Display Character Code Byte Attribute Byte

7 6 54 3 2 1 0 76 5 4 3 2 1 0

Display Format

2-54 Video Subsystem

The functions of the attribute byte are defined by the
following figure:

Attribute
Function Attribute Byte Definition
7. 6 5 4 3 2 1 0
=]
Fore- PA2 PA1 PAO PA3 PA2 PAl PAO | B
Ground o
Blink Background Foreground <
o
Normal B 0o o0 o I 1 1 1 3
Reverse B 1 1 1 1 0 0 0
Video
Nondisplay B 0. 0 0 I 0 0 0
(Off)
Nondisplay B 1 1 1 I 1 1 1
(On) .
I o Highlighted Foreground (Character)
B = Blinking Foreground (Character)

Attribute Functions

Graphics Mode

The Video Color/Graphics Subsystem can be
programmed for a wide variety of modes within the
graphics mode. Five graphics-modes are supported by
the system’s ROM BIOS. They are low-resolution
16-color graphics, medium-resolution 4-color graphics,
medium-resolution 16-color graphics, high-resolution
2-color graphics, and high-resolution 4-color graphics.
The table in the following figure summarizes the five
modes:

Video Subsystem 2-55

Number of Colors

Graphics Horiz. | Vert. Available (Includes
Mode (PELs) | (Rows)| Background Color)
Low-Resolution 160 200 16 (Includes b-and-w)
16-Color
Medium-Resolution 320 200 | 4 Colors of 16
4-Color Available
Medium-Resolution 320 200 16 (Includes b-and-w)
16-Color
High-Resolution 640 200 | 2 Colors of 16
2-Color Available
High-Resolution 640 200 | 4 Colorsof 16
4-Color Available

Note: The screen’s border color in all modes can be set to any
1 of the 16 possible colors. This border color is independent of
the screen’s work area colors. In Black and White each color

maps to a distinct gray shade.

Graphics Modes

Low-Resolution 16-Color Graphics

The low-resolution mode supports home-television sets,
low-resolution displays, and high-resolution displays. It
has the following characteristics:

e Contains a maximum of 200 rows of 160 PELs
« Specifies 1 of 16 colors for each PEL by the I, R, G,

and B bits

« Requires 16K bytes of read/write memory
+ Formats 2 PELs per byte for each byte in the

following manner:

2-56 Video Subsystem

7 6 5

4

3 2 1

PA3 PA2 PA1

PAO

PA3 PA2 PA1

PAO

First
Display
PEL

Second
Display
PEL

Low-Resolution 16-Color Graphics

Medium-Resolution 4-Color Graphics

The medium-resolution mode supports home-television
sets, low-resolution displays, and high-resolution

displays. It has the following characteristics:

¢ Contains a maximum of 200 rows of 320 PELs

¢ Selects one of four colors for each PEL

¢ Requires 16K bytes of read/write memory
o Supports 4 of 16 possible colors
o Formats 4 PELs per byte for each byte in the

following manner:

7 6 5 4 3 2 1 o
PA1 PAO PA1 PAO PA1 PAO PA1 PAO
First Second Third Fourth
Display Display Display Display

PEL PEL PEL PEL

Medium-Resolution 4-Color Graphics

Video Subsystem 2-57

wI)ISAQ aseg

Medium-Resolution 16-Color Graphics

The medium-resolution 16-color graphics mode
supports home television sets, low-resolution displays,
and high-resolution displays. It has the following
characteristics:

¢ Requires system configuration of 128K bytes of
read/write memory
Requires 32K bytes of read/write memory

L]
¢ Contains a maximum of 200 rows of 320 PELs.
o Specifies 1 of 16 colors for each PEL
o Formats 2 PELs per byte for each byte in the
following manner.
7 6 5 4 3 2 1 o0
PA3 PA2 PA1 PAO PA3 PA2 PA1 PAO
First Second
Display Display
PEL PEL

Medium-Resolution 16-Color Graphics

High-Resolution 2-Color Graphics

The high-resolution 2-color mode supports
high-resolution monitors only. This mode has the
following characteristics:

e Contains a maximum of 200 rows of 640 PELs
e Supports 2 of 16 possible colors.

2-58 Video Subsystem

« Requires 16K bytes of read/write memory.
o Formats 8 PELs per byte for each byte in the
following manner: '

7 6 5 4 3 2 1 0

PAO| PAO | PAO | PAO | PAO| PAO | PAO| PAO

L Eighth Display PEL

- Seventh Display PEL
> Sixth Display PEL
Fifth Display PEL
Fourth Display PEL
Third Display PEL

» Second Display PEL
» First Display PEL

o]
Z
~
s
]
172]
—
o
3

High-Resolution 2-Color Graphics

High-Resolution 4-Color Graphics

The high-resolution mode is used only with
high-resolution monitors. This mode has the following

characteristics:

« Requires system configuration of 128K Bytes
read/write memory

« Requires 32K bytes of read/write memory

« Contains a maximum of 200 rows of 640 PELs

« Selects one of four colors for each PEL

» Supports 4 out of 16 colors

o Formats 8 PELs per two bytes (consisting of one
even-byte and one odd-byte) in the following
manner:

Video Subsystem 2-59

Even Bytes

7 6 5 4 3 2 1 (4]

PAO PAO PAO PAO PAO PAO PAO PAO
First Second Third Fourth Fifth Sixth Seventh Eighth
Display Display Display Display Display Display Display Display
PEL PEL PEL PEL PEL PEL PEL PEL

N N S NN N RN B

PA1 PA1 PA1 PA1 PA1 PA1 PA1 PA1

7 6 5 4 3 2 1 (4]

Odd Bytes

High-Resolution 4-Color Graphics

Graphics Storage Organization

For the low-resolution 16-color graphics, the
medium-resolution 4-color graphics, and the high-
resolution 2-color graphics, storage is organized into
two banks of 8000 bytes each.

The following figure shows the organization of the
graphics storage.

2-60 Video Subsystem

Memory Address

(Hex) L— 80 Bytes —Pl

0000H
0o Even Scans (0,.2,4,...,190)
8000 Bytes
1F3F
2000 Odd Scans (1,3,5,...,199)
8000 Bytes
3F3F g:
ES
Graphics Storage Organization (Part 1 of 2) w
z
(o)
3

Address 0000 contains PEL information for the
upper-left corner of the display area.

For the medium-resolution 16-color graphics, and the

high-resolution 4-color graphics modes, the graphics
storage is organized into four banks of 8000 bytes each.

Video Subsystem 2-61

Memory Address

(Hex) |<— 160 Bytes —>|

0000 00 Scans
(0.4.,8....,196)
(8000 Bytes)

1F3F

2000 01 Scans
(1,5.9....,197)
(8000 Bytes)

3F3F

4000 10 Scans
(2,6.10,...,198)

: (8000 Bytes)

5F3F

6000 11 Scans
(3.7.11...., 199)
(8000 Bytes)

7F3F

Graphics Storage Organization (Part 2 of 2)

Address 0000 contains PEL information for the
upper-left corner of the display.

2-62 Video Subsystem

Video Gate Array

The Video Gate Array is located at I/0O address hex
3DA, and is programmed by first writing a register
address to port hex 3DA and then writing the data to

port hex 3DA.

Any I/O 'write'-operations to hex address 3DA
continuously toggle an internal address/data flip-flop.
This internal flip-flop can be set to the address state by
issuing an I/O 'read’ instruction to port hex 3DA. An
I1/0 'read’ instruction also 'reads' the status of the
Video Gate Array. A description of each of the
registers in the Video Gate Array follows.

o
)
1’4
®
92}
e
_(ﬂ‘
®
3

Hex Address

Register

00
01
02
03
04
10-1F

Mode Control 1
Palette Mask
Border Color
Mode Control 2
Reset

Palette Registers

Video Gate Array Register Addresses

Video Subsystem 2-63

Mode Control 1 Register

This is a 5-bit 'write ' -only register, it cannot be
‘read'. Its address is 0 within the Video Gate Array.
A description of this register’s bit functions follows.

Bit 0 +HIBW/-LOBW
Bit 1 +Graphics/-Alpha
Bit 2 +B/W

Bit 3 +Video Enable

Bit 4 +16 Color Graphics

Mode Control 1 Register

Bit 0 This bit is 'high' (1) for all
high-bandwidth modes. These modes are
all modes which require the 64KB Memory
and Display Expansion for a system total
of 128K bytes of read/write memory. The
high bandwidth modes are the 80 by 25
alphanumeric mode, the 640 by 200
4-color graphics mode, and the 320 by 200
16-color graphics mode. This bit is 'low’
(0) for all low-bandwidth modes.

Bit 1 This bit is 'high' (1) for all graphics
modes and is 'low' (0) for all
alphanumeric modes.

Bit 2 When this bit is 'high' (1), the
composite-video color-burst and
chrominance are disabled, leaving only the
composite intensity-levels for gray shades.
When this bit is 'low' (0), the
composite-video color is 'enabled’. This

2-64 Video Subsystem

bit should be set 'high' for high-
resolution black-and-white display

applications.

Note: This bit has no effect on direct-drive

colors.

Bit 3 When this bit is 'high' (1), the video

signal is 'enabled’.
should be 'disabled

The video signal
' when changing

modes. When the video signal is
'disabled’, the screen is forced to the

border color.

Bit 4 This bit must be ' high' (1) for all
16-color graphics-modes. These modes

are the 160 by 200

16-color

graphics-mode and the 320 by 200
16-color graphics-mode.

Palette Mask Register

This is a 4-bit write-only register, it cannot be 'read’.
Its address in the Video Gate Array is hex 01. A
description of this register’s bit functions follows.

Bit 0 —Palette Mask 0
Bit 1 —Palette Mask 1
Bit 2 —Palette Mask 2
Bit 3 -Palette Mask 3

Palette Mask Register

When bits 0-3 are 0, they force the appropriate palette

address to be 0 regardless of the

incoming color

Video Subsystem 2-65

WSS Iseq

information. This can be used to make some
information in memory a 'don’t care' condition until it
is requested.

In the 2-color and 4-color modes, the palette addresses
should be 'masked' because only 1 or 2 color-lines
contain valid information. For 4-color modes, the
palette mask register should contain a hex 03 and, for
2-color modes, it should contain a hex 01.

Border Color Register

This is a 4-bit 'write '-only register, it cannot be
'read’. Its address in the Video Gate Array is hex 02.
The following is a description of the register’s bit
functions:

Bit Number Function

0 + B (Blue) Border Color Select

] + G (Green) Border Color Select
2 + R (Red) Border Color Select

3 + 1 (Intensity) Border Color Select

Border Color Register

A combination of bits 0-3 selects the screen-border
color as one of 16 colors, as listed in the ‘“Summary of
Available Colors’’ table in this section.

Mode Control 2 Register

This is a 4-bit, 'write'-only register, it cannot be
'‘read'. Its address inside the Video Gate Array is hex

2-66 Video Subsystem

03. The following is a description of the register’s bit

functions: :
Bit Number Function
0 - Reserved =0
1 + Enable Blink
2 — Reserved =0
3 + 2-Color Graphics

Mode Control 2 Register

Bit 0 This bit is reserved, but should always be
programmed as a 0.

Bit 1 When this bit is ‘high' (1) in the

alphanumeric mode, the attribute byte has
the following definition:

7 6 5 4 3 2 1 o

B PA2 PA1 PAO | PA3 PA2 PA1 PAO

» Foreground Color

Background Color

= Blinking

Where PAO to PA3 are palette addresses.
Attribute Byte Definition (Part 1 of 2)

Video Subsystem 2-67

WSS aseq

If the enable-blink bit is 'off' in the
alphanumeric mode, the attribute byte
takes on the following definition:

7 6 5 4 3 2 1 o]

PA3 PA2 PA1 PAD PA3 PA2 PA1 PAO

Foreground Color

> Background Color

Attribute Byte Definition (Part 2 of 2)

If the enable-blink bit is on in a graphics
mode, the high-order address of the palette
(PA3) is replaced with the character-blink
rate. This causes displayed colors to
switch between two sets of colors.

If the colors in the lower half of the palette
are the same as in the upper half of the
palette, no color changes will occur. If the
colors in the upper half of the palette are
different from the lower half of the palette,
the colors will alternately change between
the 2 palette colors at the blink rate.

Only eight colors are available in the
16-color modes when using this feature.
Bit 3 of the palette mask has no effect on
this mode.

Bit 2 This bit is reserved, but should always be
programmed as a 0.

2-68 Video Subsystem

Bit 3 This bit should be 'high' (1) when in the
640 by 200 2-color graphics-mode. It
should be 'low' (0) for all other modes.

Reset Register

This is a 2-bit 'write '-only register, it cannot be
'read’. Its address inside the Video Gate Array is hex
04. The following is a description of the register’s bit
functions:

=
8
174
®
2
-
28
)
3

Bit 0 +Asynchronous Reset
Bit | +Synchronous Reset

Reset Register

Bit 0 When ‘high' (1), this bit will issue an
'asynchronous reset' to the Video Gate
Array. This will cause all memory cycles
to stop and all output signals to be
tri-stated. The 'asynchronous reset'
should only be issued once at the system
power-on time. This bit should be 'high'
(1), the Video Gate Array and the 6845
programmed, and then it should be 'low'

(0).

The system read/write memory (RAM)
will not work until this power-on sequence
is finished. After this power-on sequence,
subsequent 'resets’ should be
‘synchronous resets'.

Video Subsystem 2-69

Bit 1

2-70 Video Subsystem

Note: Issuing an 'asynchronous reset'
can cause the contents of RAM to be
destroyed.

When 'high' (1), this bit will issue a
‘synchronous reset' to the Video Gate
Array. This will cause all memory cycles
to stop and all output signals to stop. Bit 1
should be 'low' (0) before changing
modes.

Before issuing a * synchronous reset', the
program should read 256 locations in
RAM as every other location in 512
locations. The program should then issue
the ‘synchronous reset' and change the
mode. This changes the Video Gate Array
mode-control registers and the 6845
registers.

Next, the 'synchronous reset' should be
removed and the 256 RAM locations
should be ‘read’ again as above. This
procedure will ensure system RAM
data-integrity during mode changes.
'Synchronous resets' need only be issued
when changing between high-bandwidth,
and low- bandwidth modes. (Bit 0 in
mode control 1 register)

Note: No accesses to RAM can be
made while the video gate array isin a
'reset’' state. 'Resets' must be done
from code in ROM or EPROM’’s.

Palette Registers

There are sixteen 4-bit-wide palette-registers. These
registers are 'write '-only, they cannot be 'read’.
Their addresses in the Video Gate Array are from hex
10 to 1F.

Palette address hex 10 is accessed whenever the color
code from memory is a hex 0, address hex 11 is
accessed whenever the color code from memory is a hex
1, and so forth. A description of the color codes is in
“Summary of Available Colors” in this section.

=
1)

w

®

72
>3

4
o

3

Note: The palette address can be 'masked' by
using the palette mask register.

The following is a description of the register’s bit
functions:

Bit Number Function
0 + Blue
1 + Green
2 + Red
3 + Intensity

Palette Register Format

When loading the palette, the video is 'disabled’ and
the color viewed on the screen is the data contained in
the register being addressed by the processor.

When the program has completed loading the palette, it

must change the hex address to some address less than
hex 10 for video to be 'enabled'again.

Video Subsystem 2-71

If a programmer does not wish a user to see the adverse
effects of loading the palette, the palette should be
loaded during the vertical-retrace time. The program
must modify the palette and change the video gate array
address to less than hex 10 within the vertical-retrace
time. A vertical-retrace interrupt and a status bit are
provided to facilitate this procedure.

2-72 Video Subsystem

Status Register

This is a 5-bit 'read’-only register, it cannot be
'written'. The internal address of the video gate array
isa 'don’t care' condition for the status-register
read-operation. A description of the register’s bit
functions follows:

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4

+Display Enable

+Light Pen Trigger Set
-Light Pen Switch Made
+Vertical Retrace

+Video Dots

Status Register

Bit 0

Bit 1

Bit 2

Bit 3

When 'high' (1), this bit indicates video is
being displayed.

When 'high' (1), this bit indicates that a
positive- going edge from the light pen
input has set the light pen trigger. This
trigger is 'low' (0) upon a system
power-on, and may also be cleared by
performing an I/O 'Out' command to
address hex 3DB. No specific data is
required, this action is address-activated.

This bit indicates the status of the light pen
switch. The switch is not latched or
debounced. When this bit is 'low' (0), the
light pen switch is 'on’.

When 'high’ (1), this bit indicates the
vertical retrace is ‘'active'.

Video Subsystem 2-73

WJSAS aseg

Bit 4 When 'high' (1), this bit indicates that
video-dot information is available. The
two low-order bits of the address register
determine the video-dot information
presented through the following logic:

Video Dot
Address Register | Address Register Information
Bit 1 Bit 0 - Selected
0 0 Blue
o 1 Green
| 0 Red
I 1 Intensity

Address Register

This bit is provided for testing purposes. It verifies that
video is occurring properly, and that the palette
registers and all other 'write'-only registers are
operating correctly.

Light Pen

A light pen can be used on the PCjr by connecting it to
the six-pin connector for light pens on the back of the
system board. ,

2-74 Video Subsystem

Signal Name Pin Number

- 112V AO1
— _LIGHT PEN INPUT A02
Light je— 15V AO03 System
Pen | Locic GND BO1 = Board
— _LIGHT PEN SWITCH B02 N
UNUSED B03

Connector Specifications

Note: The light pen interface is set for RGBI
(Red, Green, Blue, Intensity). Due to timing
differences between different displays (Different
phosphors take longer to turn on, and different
circuits take longer to accomplish their task.) the
row, column value returned from the CRT can vary.
This difference must be compensated for through
software.

Programming Considerations

Programming the 6845 CRT Controller

The 6845 has 19 accessible, internal registers, which
are used to define and control a raster-scanned CRT
display. One of these registers, the Index Register, is
actually used as a pointer to the other 18 registers. It is
a 'write'-only register, which is loaded from the
processor by executing an 'Out' instruction to I/0O
address hex 3D4. The five least-significant-bits of the
I/0 bus are loaded into the Index Register.

In order to load any of the other 18 registers, the Index

Register is first loaded with the necessary pointer; then
the Data Register is loaded with the information to be

Video Subsystem 2-75

=
0
17
o
2]
-
|72}
-
o
3

placed in the selected register. The Data Register is
loaded from the processor by executing an 'Out'
instruction to I/O address hex 3D5.

The following table defines the values that must be
loaded into the 6845-CRT-Controller registers to
control the different modes of operation supported by

the attachment:

Low/High
Register Alphanumeric | Band
Hex Width
Addr. # Type Units | 1/0 | 40x25 | 80x25 | Graphics
0 |RO | Horizontal | Char.| Write| 38 71 38/71
Total Only
I |R1 | Horizontal | Char. | Write| 28 50 28/50
Display Only
2 |R2| Horizontal | Char.| Write| 2C | 5A 2B/56
Sync Only
Position
3 |R3 | Horizontal | Char. | Write| 06 0C 06/0C
Sync Only
Width
4 |R4 | Vertical Char.| Write| 1F 1F 7F/3F
Total Row | Only
5 |R5 | Vertical Scan | Write| 06 06 06/06
Total Line | Only
Adjustment
Note: All register values are given in hexadecimal.

6845 Register Table (Part 1 of 3)

2-76 Video Subsystem

Low/High

Register Alphanumeric | Band
Hex Width
Addr.| # Type Units | 1/0 | 40x25 | 80x25 | Graphics
6 |R6 | Vertical | Char.| Write| 19 19 64/32
Displayed | Row | Only
: o]
7 |R7 | Vertical | Char.| Write] 1C | IC 70/38 | IR
Sync Row | Only w
Position ;
3
8 |R8 | Interlace — | Write| 02 02 02/02
Mode Only
9 |R9 | Maximum| Scan | Write| 07 07 01/03
Scan Line| Line | Only
Address
A |R10| Cursor Scan | Write| 06 06 26/26
Start Line | Only
B |R11| Cursor Scan | Write| 07 07 07/07
End Line | Only

Note: All registef values are given in hexademical.

6845 Register Table (Part 2 of 3)

Video Subsystem 2-77

Low/High

Register Alphanumeric | Band
Hex ‘Width
Addr.| # Type |Units] 1/0 |40x25 [80x25 | Graphics
C |R12 |Start — | Write 00 00 00/00
Addr. (H) Only
D |R13 |Start — | Write 00 00 00/00
Addr. (L) Only
E |R14 [Cursor — | Read/| 00 00 00/00
Addr. (H) Write
F |R15 |Cursor — | Read/| 00 00 00/00
Addr. (L) Write
10 |R16 |Light — |Read | NA | NA NA/NA
Pen (H) Only
11 |R17 |Light - | Read | NA | NA NA/NA
Pen (L) Only

Note: All register values are given in hexadecimal.

6845 Register Table (Part 3 of 3)

2-78 Video Subsvstem

CRT/Processor Page Register

This register is an 8-bit 'write '-only register, that
cannot be read. Its address is hex 3DF. The following
is a description of the Register functions.

Bit Number

Description

NNV EWN—~O

CRT Page0

CRT Page |

CRT Page 2
‘Processor Page 1
Processor Page 2
Processor Page 3
Video Address Mode 0
Video Address Mode |

=
2

®

w
>

2
®

3

CRT/Processor Page Register (Part 1 of 2)

CRT Page 0-2

Processor Page 0-2

These bits select which 16K
byte memory-page between
00000 to hex 1FFFF is being
displayed. If there is no
expansion RAM in the system,
the high- order bit is a 'don’t
care', and only 4 pages are
supported. For graphics modes
which require 32K bytes the
low-order bit is a 'don’t care'.

These bits select the 16K byte
memory-page region where
memory cycles to B8000 are
redirected. If there is no
expansion RAM installed in

",’the system, the high-order bit
isa 'don’t care' and only 4

pages are supported.

Video Subsystem 2-79

Video Adr Mode 0-1

These bits control whether the
row scan addresses are used as
part of the memory address.

These should be programmed
as follows:
Video Address Mode
1(Bit7) 0 (Bit 6) Resulting Modes
0 0 All Alpha Modes
0 1 Low-Resolution-Graphics Modes
| 1 High-Resolution-Graphics Modes
| 0 Unused, Reserved

CRT/Processor Page Register (Part 2 of 2)

The following I/O devices are defined on the video

color/graphics subsystem:

Hex Function of
Address | A9A8A7TA6A5A4A3A2A1A0 Register
3DA 1 1 1 1 0 1 1 0 1 0 [GateArray Address
and Status Register
3DB I 11 1 0 1 1 0 I 1 |ClearLight
Pen Latch
3DC 1 1 1 1 0 1 1 1 O O [PresetLight
Pen Latch
3D03D4 1 1 1 1 1 0 1 0 x x 0O |6845Index Register
3DI3D5 | 1 1 1 1 0 I 0 x x |1 |6845 Data Register
3DF 1 1 1 1 0 1 1 1 1 1 |CRT,Processor
Page Register
X = “don’t care” condition

Video 1/0

Devices

2-80 Video Subsystem

Mode Selection Summary

Four registers of the Video Gate Array allow the user
to access all the alphanumeric and graphics modes
supported by the system ROM BIOS. The following
table summarizes the modes and their register settings:

Video Gate g

Array Reg. ®

4

Mode 00 |01 02 |03 (-‘-”;

3
40 by 25 Alphanumeric Black-and-White | 0C | OF | 00 | 02
40 by 25 Alphanumeric Color 08 |OF | 00 |02
80 by 25 Alphanumeric Black-and-White | 0D | OF | 00 | 02
80 by 25 Alphanumeric Color 09 |OF {00 {02
160 by 200 16-Color Graphics IA[OF |00 |00
320 by 200 4-Color Graphics 0A |03 |00 [00
320 by 200 4-Shade Black-and-White OE |03 |00 {00
320 by 200 16-Color Graphics IB {OF (00 |00
640 by 200 2-Color Graphics OE {01 |00 |08
640 by 200 4-Color Graphics 0B |03 |00 {00

Note: All values are given in hexadecimal.

Mode Summary

Sequence of Events for Changing Modes

Determine the mode of operation.

2. Reset the ‘video enable’ bit in the Video Gate Array
to disable video. :

3. Program the 6845 CRT Controller to select the
mode.
Read 256 bytes of memory
Reset gate array

4. Program the Video Gate Array registers.

(o)

Video Subsystem 2-81

Remove gate-array reset
Read 256 bytes of memory
5. Re-enable video.

Note: The gate array needs to be reset only when
changing the high-bandwidth/low-bandwidth
register.

Interrupt Information

The Video Gate Array uses interrupt level 5 of the Intel
8259 to provide the vertical retrace interrupt to the

system.
At Standard TTL Levels

-VERT SYNC —= A1 B1 p~~ +VERTSYNC
LOGIC GND = == LOGIC GND
~HORIZ SYNC = A3 B3 = +HORIZSYNC
BLUE - —~ RESERVED
RED — ~= LOGIC GND
INTEN -= A6 B6 M~ RESERVED
GREEN — == RESERVED
COMP SYNC = = RESERVED
AUDIO -1 A9 B9 p— SHIELD GND

Connector Specifications

The direct-drive signals are standard TTL levels except
the audio output which is a 1V peak-to-peak signal
biased at OV which can drive a 10K ohm or greater
input-impedence.

2-82 Video Subsystem

—_— Composite Video Signal
Video *
Monitor

7 ——

Color/Graphics

Chassis Ground Composite Jack

2—

Connector Specifications

o
. -
The composite-video signal is 1V peak to peak biased @
at .7V with a 75 ohm load. <&
P
(2]
3
Connector AO01 — +12V RF
AO02 — Key >
for A03 — Composite Video em==—p-]| Modulator
BO1 — GND

p————— B02 — Audio >
BO3 — Shield GND <=

Television

Television Connector Specifications

The Coennector for Television connector has the
composite-video signal at 1V peak to peak biased at
.7V with a 75 ohm load. The connector also has the
audio output which is 1V peak-to-peak signal biased at
0V which can drive a 10K ohm or greater input
impedence.

Video Subsystem 2-83

Notes:

2-84 Video Subsystem

‘Beeper

The system beeper is a small, piezoelectric- speaker,
which can be driven from one or both of two sources.
The two sources are:

o The 8255A-5 PPI output-bit PB1
« A timer clock out of an 8253-5 timer which has a

1.19 MHz-clock input. The timer gate is also
controlled by an 8255-5 outport bit PB0.

=]
g

17

"

2
(>3

£
(23

3

Note: The T176496 Sound Generator cannot be
directed through the beeper.

8255A-5 Bit PB1, I/0 Address Hex 61 ——{ AND

Timer Clock Out 2 ™

Drive
Select

8255A-5 Bit PB4

L 30 Ohm Resistor [—® Beeper

Beeper Block Diagram

Beeper 2-85

Notes:

2-86 Beeper

Sound Subsystem

The nucleus of the sound subsystem is an analog
multiplexer (mpx) which allows 1 of 4 different sound
sources to be selected, amplified, and sent to the audio
outputs. The mpx and amplifier are configured so the
amplifier’s gain is unique to and consistent with each
sound source. This provides a consistent level of output
with any of the sound sources. The output of the
amplifier is supplied to the IBM Connector for
Television interface and external-amplifier interface. If
an external speaker is used, an external amplifier must
be used to drive it. The amplifier is configured as a
single-pole low pass filter with a 3 dB cut-off frequency
of 4.8 kHz. This filter is used to “round” off the
corners of the square-wave signals. BIOS Power-on will
initialize the sound subsystem to use the 8253
programmable-timer mode.

1 Audio

System External

Connector Specifications

The audio output is a 1V peak-to-peak signal biased 4t
OV. It can.drive a 10k ohm or greater
input-impedence.

Sound Subsystem 2-87

wRJISAG Iseg

Port Bits

Source PBé6 PB5

b
—

Complex Sound Generator (TI 76496)
Programmable Timer (8253)

Cassette Audio

I/O Channel Audio

-_0 O
S = O

Port bits PBS and PB6, of the 8255, control which source is
selected.

Sound Sources

Complex Sound Generator

The Complex Sound Generator chip (SN76496N) has 3
programmable frequencies which may be mixed to form
chords and a white noise generator which may also be
mixed for special effects. Each of the 3 channels as
well as the white noise generator can be independently
attenuated. The processor controls the sound chip by
writing to port hex CO.

The Sound Generator is described in greater detail later
in this section. More information can be obtained by
referring to Texas Instruments’ data sheets and
application notes.

2-88 Sound Subsystem

Sound

Mpx PBS
Select PB6
(8255) N
Analog
8253 -
>~/
0
7
(-]
p Direct Drive A
rotection Monitor Audio [
Cassette - Diodes Mpx 4
|| Low R.F. Modulator =
Pass + ™ Audio
Filter
External f3dB = L. External Audio
Channel 4.8 kHz Amp
T
76496
Sound Block Diagram
L3
Audio Tone Generator

Features

¢ 3 Programmable Tone-Generators
« Programmable White Noise

¢ Programmable Attenuation

« Simultaneous Sounds

o TTL Compatible

¢ 3.579 MHz Clock Input

e Audio Mixer

Processor to Sound-Generator Interface

The system microprocessor communicates with the
SN76496N through the 8 data lines and 3 control lines

Sound Subsystem 2-89

(WE, CE and READY). Each tone generator requires
10 bits of information to select the frequency and 4 bits
of information to select the attenuation. A frequency
update requires a double-byte transfer, while an
attenuator update requires a single-byte transfer.

If no other control registers on the chip are accessed, a
tone generator may be rapidly updated by initially
sending both types of frequency and register data,
followed by just the second byte of data for succeeding
values. The register address is latched on the chip, so
the data will continue going into the same register. This
allows the 6 most-significant bits to be quickly

modified for frequency sweeps.

Control Registers

The sound generator has 8 internal registers which are
used to control the 3 tone generators and the noise
source. During all data transfers to the sound
generator, the first byte contains a 3-bit field which
determines the destination control register. The register
address codes are as follows:

2-90 Sound Subsystem

Register Address Field

MSB LSB

RO R1 R2 Destination Control Register
0 0 0 Tone 1 Frequency
0 0 1 Tone 1 Attenuation
0 1 0 Tone 2 Frequency | &
0 1 1 Tone 2 Attenuation 4
1 0 0 Tone 3 Frequency z
1 0 1 Tone 3 Attenuation 2y
1 1 0 Noise Control 3
1 1 1 Noise Attenuation

Register Address Field

Reg. Addr. Low Data High Data
1 RO R1 R2|F6 F7 F8 F9 o X FO F1 F2 F3 F4 F5
L1 | I Lt 1 1t 1
Bit First Byte Bit Bit Second Byte Bit
(] 7 (1] 7
MSB LSB MSB LsSB

Frequency (Double or Single Byte Transfer)

Frequency Generation

Each tone generator consists of a frequency-synthesis
section and an attenuation section. The frequency-
synthesis section requires 10 bits of information (hex
FO0-F9) to define half the period of the desired
frequency (n). Hex FO is the most-significant bit and
hex F9 is the least-significant bit. This information is

Sound Subsystem 2-91

loaded into a 10-stage tone-counter, which is
decremented at an N/ 16 rate where N is the input-clock
frequency. When the tone counter decrements to 0, a
borrow signal is produced. This borrow signal toggles
the frequency flip-flop and also reloads the tone
counter. Thus, the period of the desired frequency is
twice the value of the period register.

The frequency can be calculated by the following:

f= N
32n

where N = ref clock in Hz (3.579 MHz)

10-bit binary-number

3
"

Attenuator

Reg. Addr. Data
1 |RO R1IR2 AOIA1 |A2 A3
I

BitO Second Bit7
mss Byte LSB

Update Attenuation (Single Byte Transfer)

The output of the frequency flip-flop feeds into a
four-stage attenuator. The attenuator values, along
with their bit position in the data word, are shown in
the following figure. Multiple-attenuation control-bits
may be 'true’ simultaneously. Thus, the maximum
theoretical attenuation is 28 dB typically.

2-92 Sound Subsystem

Bit Position
MSB LSB
A0 Al A2 A3 Weight
0 0 0 1 2dB
0 0 1 0 4dB o
4]
0 1 0 0 8dB 4
1| o | o | o 16db o4
I~
1 1 1 1 OFF 3
Attenuator Values
Noise Generator
Reg. Addr.
RO R1 R2 SHIFT
1 1 | 1 | o X | FB | NFO INF1
MSB LSB

Update Noise Source (Single Byte Transfer)

The noise generator consists of a noise source and an
attenuator. The noise source is a shift register with an
exclusive-OR feedback-network. The feedback
network has provisions to protect the shift register from
being locked in the zero state.

H"

Sound Subsystem 2-93

FB Configuration

0 Periodic Noise
I White Noise

Noise Feedback Control

Whenever the noise-control register is changed, the
shift register is cleared. The shift register will shift at
one of four rates as determined by the two NF bits.
The fixed shift-rates are derived from the input clock.

Bits
NF0 | NF1 Shift Rate
0 0 N/512
0 1 N/1024
1 0 N/2048
1 1 Tone Generator #3 Output

Noise Generator Frequency Control

The output of the noise source is connected to a
programmable attenuator.

Audio Mixer/Output Buffer

The mixer is a conventional operational-amplifier
summing-circuit. It will sum the three tone-generator

2-94 Sound Subsystem

outputs, and the noise-generator output. The output
buffer will generate up to 10 mA.

Data Transfer

The sound generator requires approximately 32 clock
cycles to load the data into the register. The open
collector READY output is used to synchronize the
microprocessor to this transfer and is pulled to the false
state (low voltage) immediately following the leading
edge of CE. It is released to go to the true state
(external pull-up) when the data transfer is completed.

[

=]
-]
17
o
w
s
&
-
(2]
=]

This will insert approximately 42 wait states (8.9 us)
for each data transfer.

Warning: Do not attempt to issue an I/O read
operation to the TI76496 port (COH). Such an
operation will cause the system to hang indefinitely.

Note: If DMA is added to the system on the I/O
channel, I/O WRITES to the 76496 will increase

the latency time.

Sound Subsystem 2-95

Notes:

2-96 Sound Subsystem

Infra-Red Link

The infra-red link provides cordless communications
between the keyboard and the system unit. Two
infra-red-emitting diodes, mounted in the keyboard,
transmit coded information to the system unit. The
keyboard transmitter is fully discussed in “Cordless
Keyboard” in this section. The infra-red receiver,
which is located in the system unit, has an
infra-red-sensitive device that demodulates the signal
transmitted from the keyboard and sends it to the
system.

=
)
4
®
2]
i
»n
—
(2]

Infra-Red Receiver

The receiver card measures 57.15 mm wide by 63 mm
(2.25 in. by 2.50 in.) long. The infra-red receiver is
mounted on the system board, component-side down,
with two snap-in-type standoffs. Signal output and
power input is through an 8-pin connector, located at
the rear of the infra-red receiver. The
infra-red-sensitive device is located on the front of the
board and receives its input through an opening in the
front of the system unit’s cover. There is also an
infra-red transmitter mounted on the receiver board for
diagnostic purposes.

Functional Description

The following figure is the Infra-Red Receiver Block
Diagram. During keyboard operation, the emitted light
is modulated, transmitted, and received in the following

sequence:

1. A key is pushed.

Infra-Red Link 2-97

2. The data stream is sent using the infra-red-emitting
diodes.

. The receiver amplifies and processes the signal.

3
4. The demodulated signal is sent to the system board.

The signal received consists of an infra-red-light
transmission modulated at 40 kHz.

An input is available (I/R Test Frequency) to the
system for receiver-circuit-operational verification.

Keyboard
with
Encoder

Infra-
Red

infra-Red Receiver Block Diagram

Infra-Red Receiver Board

First Second
Amplifier Amplifier Demod-
Stage Stage ulator
Photo-Diode with AGC

Infra-

Red
Test
Circuit

Application Notes

2-98 Infra-Red Link

Infra-Red Test Frequency
From System Board

The Infra-Red Receiver Board can serve as a
general-purpose infra-red-receiver, however, the

Out

demodulator timings are tailored to the needs of the
system.

Programming Considerations

The serially-encoded word is software de-serialized by
the 8088 processor on the system unit. The leading
edge of the start bit will generate a non-maskable
interrupt (NMI). Once the processor enters the NMI
routine to handle the deserialization, the keyboard-data
line is sampled and the processor waits to sample the
trailing edge of the start bit. When the trailing edge of
the start bit is sampled, the processor will wait for 310
ps and sample the first half of the first data bit. This
delay causes the processor to sample in the nominal
center of the first half of the first data bit. The
processor then samples the keyboard data every half-
bit cell-time. The sampling interval is 220 us. The
processor samples each half-bit-sample 5 times and will
determine the logical level of the sample by majority
rule. This enables the processor to discriminate against
transient glitches and to filter out noise. The 8088
processor utilizes one 8255 PPI bit (PORT C BIT 6)
and shares one 8253 timer channel (CHANNEL 1) to
do the software de-serialization of the keyboard data.
See the “Cordless Keyboard” in this section for more
information on the data-transmission protocal.

WRJISAS Iseq

Detectable Error Conditions
Errors Cause

Phase Errors The 1st half of the bit-cell sample is
not equal to the inverse of the 2nd half
of the bit-cell sample.

Parity Errors The received encoded word did not
maintain odd parity.

Infra-Red Link 2-99

Note: Errors will be signaled by the processor with
a short tone from the audio alarm or external
speaker.

Operational Parameters

The operational distance from infra-red devices to the
system should not exceed 6.1 meters (20 feet)
(line-of-sight). Operational efficiency can be impaired
by outside sources. These sources are,
excessively-bright lights, and high-voltage lines, which
include some TV sets. High-energy sources will
generally cause an audible alarm within the system unit.
These sources may downgrade the operational distance
from the keyboard to the system. A keyboard cable is
recommended if the above interference conditions are
not controllable.

Pin Signal Input/Output
A0l +12 Volts Input
A02 Ground Input
A03 Ground-Shield Input
A04 LR. TEST FREQ. Input

BOI ~ GROUND Input

B02 +5 Volts Input

B03 -I.LR. KBD DATA Output
B04 GROUND Input

Infra-Red Connector Specifications

2-100 Infra-Red Link

IBM PCjr Cordless Keyboard

The keyboard is a low-profile, 62-key, detached
keyboard with full-travel keys. The keys are arranged in
a standard typewriter layout with the addition of a
function key and cursor-control keys. The keybuttons
are unmarked; however, an overlay is used to provide
the keys’ functional descriptions.

The following figure shows the layout of the cordless
keyboard.

W)SAG Iseq

'!'2 @3 =4 S5 6 7 & 8 9 (0) - — = + Backspace

@QQDQQQQQQQQQQQ

GHNE il NN DS CEEE L
E) lEnterad

il
T |

shn 4§

o fg@@@g@@@@@ il

CapsLock In.

T2as LQ_I 18 ‘ J OO0)

The keyboard is battery powered and communicates to
the system unit with an infra-red (IR) link. The
infra-red link. makes the remote keyboard a truly
portable hand-held device. An optional-cord
connection to the system unit is available. Power is
sent to the keyboard and serially-encoded data received
by the system unit through the optional cord. When
connected, the cord’s keyboard-connector removes the
battery power and the -CABLE CONNECT signal
disables the infra-red-receiver circuit. The disabling of
the circuit also allows other infrared devices to be used

Cordless Keyboard 2-101

without interfering with the system. The data which is
received through the IR link or by the cord, have the
same format.

The keyboard interface is designed to maximize
system-software flexibility in defining keyboard
operations such as shift states of keys, and typematic
operation. This is accomplished by having the
keyboard return scan codes rather than American
National Standard Code for Information Interchange
(ASCII) codes. The scan codes are compatible with
Personal Computer and Personal Computer XT scan
codes at the BIOS interface level. All of the keys are
typematic and generate both a make and a break scan-
code. For example, key 1 produces scan code hex 01
on make and code hex 81 on break. Break codes are
formed by adding hex 80 to the make codes. The
keyboard I/O driver can define keyboard keys as shift
keys or typematic, as required by the application.

The microprocessor in the keyboard performs keyboard
scanning, phantom-key detection, key debounce,
buffering of up to 16 key-scan-codes, and transfer of
serially-encoded data to the system unit. The keyboard
microprocessor is normally in a standby power-down
mode until a key is pressed. This causes the
microprocessor to scan the keyboard. The
microprocessor then transmits the scan code, and
re-enters the power-down mode if its buffer is empty
and no keys are pressed.

The keyboard electronics is designed with low-power
CMOS integrated-circuitry for battery power operation.
Four AA-size batteries are required. Because the
keyboard is normally in the standby power-down mode,
which uses very little power, no on/off switch is
needed.

2-102 Cordless Keyboard

Unlike other keyboards in the IBM Personal Computer
family, the IBM PCjr Cordless Keyboard has
phantom-key detection. Phantom-key detection occurs
when invalid combinations of three or more keys are
pressed simultaneously, causing a hex 55 scan-code to
be sent to the keyboard’s processor. The phantom-key
scan-code instructs the keyboard’s processor to ignore
all of the keys that were pressed at that time. BIOS
ignores the resulting scan-code that is sent to it.

The keyboard-cord connector provides a battery-
disconnect function and also disables the infra-red-
transmission circuitry when the mating plug for the
modular jack is connected.

=
8
w
o
2]
>
»
-y
)
3

Note: See “Keyboard Encoding and Usage’ in
Section 5, for scan codes and further information.

Transmitter

Serially encoded words are transmitted to the system
unit using the Infra-Red Link or the cable link. Encoded
words are sent to the system unit with odd parity. Both
the Infra-Red Link and the cable link use biphase
serial-encoding and each is a simplex link.

The 80C48 microprocessor does the biphase serial
encoding with a bit cell of 440 us. A biphase
logically-encoded 1 is transmitted as logical 1 for the
first half of the bit cell time and as a logical 0 for the
second half of the bit cell. A biphase logically-encoded
0 is transmitted as a logical O for the first half of the bit
cell time and as a logical 1 for the second half of the bit
cell.

Each logical 1 transnﬁsgion for the Infra-Red Link
consists of a 40 kHz carrier burst at a 509 duty cycle.

Cordless Keyboard 2-103

First Bit Start Bit

Second Bit Data Bit 0 (Least Significant Bit)
Third Bit Data Bit 1

Fourth Bit Data Bit 2

Fifth Bit Data Bit 3

Sixth Bit Data Bit 4

Seventh Bit Data Bit 5

Eight Bit Data Bit 6

Ninth Bit Data Bit 7 (Most Significant Bit)
Tenth Bit Parity Bit

Eleventh Bit Stop Bit

Data Stream Sequence

Eleven stop bits are inserted after every scan-code
transmission. This is to allow some processor
bandwidth between keystrokes to honor other types of
interrupts, such as serial and time-of-day.

2-104 Cordless Keyboard

Eleven Stop
Bit Celis I

))
Ii[DOLDﬂDZID3ID4IDS]DG]D7UI (| s IDOID1|02|
l—— Bit Cell
Example: DATA = "“2EH’’ PARITY =
Cable Data
) ————— o
S UIUyY L UL gl
|.1 .I.o- '.1.| 4 ,1.|,0. 1] -0 '0" 9 ,|
Infra-Red Data ,
B RILARRIERLL] L
Cable | BI-Phase ‘1’ | | Bl-Phase ‘0’ |
Bit Cell Bit Cell
—] 220#3 —P' 220‘15
— 440 us 440 us
infra-
Red I Bi-Phase '1'| I Bl-Phase ‘0’ |

40 kHz @ 50% Duty Cycle

LGZ 5us
440 us

Keyboard Transmission Timing

——]

—

40 kHz @ 50%

Duty Cycle
—1220,,5
62.5 us

440 us

Cordless Keyboard 2-105

=
)
’d
]
w
-
72}
-
3

-CLB Data

-I.R. Data

-CBL Con

AND
Keyboard Data
? —> 8255 PC6
AND NOR
Inverter /—l +t6<— D
Q 8255 PCO
CLK Flip Flop
CLR

[

NMI Mask

AND

> NMI

-10R From
Port AO Hex

Keyboard Interface Logic

2-106 Cordless Keyboard

Program Cartridge and Interface

The Program Cartridge allows the addition of ROM to
the system without removing the cover by plugging it ,
into either of two slots in the front of the machine.

The 48 by 72 mm (2 by 3 inch) cartridge can hold one
or two 32K byte by 8 ROMS (64K bytes total) of
program storage. Smaller ROMS such as the 8K byte
by 8 modules can be used in the cartridge. When a
smaller module is used, the higher address lines are not
used. To allow two smaller modules to be mapped to
adjacent memory segments, each module’s contents is
addressed to multiple adjacent-memory segments,
within the addressable range of the module’s socket
(32k).

Program Cartridge Slots

The Program Cartridge is designed to plug into either of
two identical slots in the front of the machine. Each
slot has 15 address signals, 8 data signals, 6 chip
selects, 2 control signals, and power. Cartridge
selection is accomplished by the chip selects, each of
which addresses one of the high 32K memory-blocks.
Each cartridge uses up to two of the six chip selects.
Selection is determined on the basis of the intended use
of the cartridge. This is done at the factory.

Two of the chip selects are used by the internal
system-ROM. These two signals can be used to allow
the internal ROM to be replaced by a Program
Cartridge. This allows the machine to assume a
different personality from the standard machine. To
use this option of mapping the internal-ROM space to a
cartridge, the Base-ROM-in-Cartridge function must be
inserted. This function is a factory-installed

Program Cartridge 2-107

WJSAQ aseg

signal-jumper manufactured into particular
program-cartridges that are intended to replace the
system ROM.

Note: When the cartridge is inserted or removed
with the system turned on, the system will 'reset’
and go through a warm power-up. Any data in the
system RAM will be lost.

Cartridge Storage Allocations

A. The following conventions will be followed for
“Initial Program Loadable” program cartridges:

Location Contents
0 055H
1 0AAH
2 Length
34,5 Jump to Initialize Code
6 0
Last 2 Addresses CRC Bytes

Storage Conventions

o Locations O and 1 contain the word hex SSAA.
This is used as a test for the presence of the
cartridge during the configuration- determination
portion of the power-on routines.

o Location 2 contains a length indicator representing
the entire address space taken by the ROM on the
cartridge. The algorithm for determining the

2-108 Program Cartridge

contents of this byte is (length/512). The contents
of this byte is used by the CRC
(cyclic-redundancy-check) routine to determine
how much ROM to check.

+ Location 3 contains the beginning of an
initialization routine that is reached by a 'Long'
call during the power-on sequence. For cartridges
that are 'IPL-able' (BASIC or assembler program)
this routine should set the INT hex 18 vector to
point to their entry points. Other types of
cartridges (BASIC or whatever) should merely
'return’ to the caller. Setting the INT hex 18
vector will enable transfer of control to the cartridge
program by the IPL routine.

o This location 6 should be 00.

¢ CRC bytes: The last two locations of the address
space used by the cartridge must be blank. CRC
characters will be placed in these bytes when the
cartridge is built. See the routine at label “CRC
Check”, in the BIOS listing for the CRC algorithm.

o]
0

17

®

w
>

2
o

3

B. The following conventions will be followed for
cartridges that wish to be recognized by DOS 2.1 as
containing code associated with DOS command words:

Program Cartridge 2-109

Location Contents

0 055H
0AAH

2 Length

3-5 Jump to Initialize

6 Command Name Length (Offset Y-
Offset Z)

Z First Character in Command Name

Y Last Character in Command Name

W Word Pointing to Routine that is
Jumped to if “Name” is Typed

X Next Command Name Length or
“00” if No More Command Names

Last 2 Addresses CRC Bytes

DOS Conventions

e Locations 0 and 1 contain the word hex 55AA.
This is used as a test for the presence of the
cartridge during the configuration- determination
portion of the power-on routines.

o Location 2 contains a length indicator representing
the entire address space taken by the ROM on the
cartridge. The algorithm for determining the
contents of this byte is (length/512). The contents
of this byte is used by the CRC routine to determine
how much ROM to check.

¢ Location 3 contains a 'jump' to the initialization
code for this ROM. (May just be a 'Far Return')

¢ Starting at location 6 may be a sequence of
command name pointers consisting of 1: Count of
length name, 2: Name in ASCII, and 3: Word

2-110 Program Cartridge

containing offset within this segment to the code
that is entered when this name is called. There can
be as many names as desired, providing that a hex
00 is placed in the count field following the last
name pointer. If a cartridge has a routine called
'TEST' at location hex OFB5 (offset from start of
segment that the cartridge is in) that needs to be
executed when 'test' is entered as a DOS command
the entry at location 6 would be hex
04,54,45,53,54,B5,0F.

CRC bytes: The last two locations of the address
space used by the cartridge must be blank. CRC
characters will be placed in these bytes when the
cartridge is built. See the routine at label “CRC
Check”, in the BIOS listing for the CRC algorithm.

wR)SAg Iseg

C. The following conventions will be followed for
cartridges that wish to be recognized by “Cartridge
BASIC” as containing interpretable-BASIC Code:

The cartridge-chip selects must address hex D0O000
since the BASIC cartridge addresses hex E0000.
When “Cartridge BASIC” is activated, it will check
for a second cartridge program at hex D000O0. If the
second cartridge is present and formatted properly,
then the BASIC code is loaded into RAM and run.
The format for this interpretable-BASIC code must
be as follows:

Program Cartridge 2-111

Location Contents

0 055H

1 0AAH

Length

0CBH

0AAH

055H

0

R|la|lwm|la]wlo

OFFH if unprotected Basic program
or OFEH if protected Basic program

8 Start of interpretable Basic code
n OFFH Padding to next 2048 byte
boundary
Last 2 Addresses CRC Bytes

Cartridge Format

1. Locations 0 and 1 contain the word hex SSAA.
This is used as a test for the presence of the
cartridge during the configuration-determination
portion of the power-on routines.

2. Location 2 contains a length indicator representing
the entire address space taken by the ROM on the
cartridge. The algorithm for determining the
contents of this byte is (length/512). The contents
of this byte is used by the CRC routine to determine
how much ROM to check.

3. Location 3 must be hex OCB for a 'far return’
instruction.

2-112 Program Cartridge

. Locations 4 and 5 contain the word hex AASS.
This is used as a test for the presence of the second
cartridge by “Cartridge Basic™.

. Location 6 must be a 0 to follow the DOS

conventions.

. Location 7 can be either hex FF to indicate an

unprotected BASIC program, or hex FE to indicate
a protected program.

. Location 8 must be the start of the BASIC program.
It must be interpretable Basic and not compiled.
Also, at the end of the program PAD to the next
2048 byte boundary with hex OFF.

. CRC bytes: The last two locations of the address
space used by the cartridge must be blank. CRC
characters will be placed in these bytes when the
cartridge is built. See the routine at label “CRC
Check”, in the BIOS listing for the CRC algorithm.

Program Cartridge 2-113

wRIsAg aseg

ROM Module

The ROM modules used are 250 ns devices. Typical
modules are the Mostek MK37000 and MK38000, the

TMM 23256, the SY23128, and other compatible

devices.

ROM Hex

Chip Select | Address Space Typical Use
CSo X Not Used
CSi1 X Not Used
CS2 D0000-D7FFF Optional Cartridge ROM #2
CS3 D8000-DFFFF | Optional Cartridge ROM #1
Cs4 E0000-E7FFF Standard Cartridge ROM #2
CSs E8000-EFFFF Standard Cartridge ROM #1
CSé6 F0000-F7FFF System Board ROM #2
CS7 F8000-FFFFF System Board ROM #1

ROM Chip Select Table

Signal I1/0 Description
A0 - Al14 0 Processor Address lines AQ - A14
DO - D7 I Processor Data lines

2-114 Program Cartridge

-CS2 0 These chip-select lines are used to

THRU select ROM modules at different

-CS7 addresses. The addresses for each
chip-select are shown in the ROM-chip
select-table. -CS6 and -CS7 are used
on the system board for BIOS,
Power-On-Self-Test (POST) and
cassette-basic ROMs. In order to use
these chip selects on a cartridge,
-BASE 1 ROM IN CARTRIDGE or
-BASE 2 ROM IN CARTRIDGE must
be pulled 'low'

&=
2
o
9]
[>]
@
®
3

-BASE | I This line when pulled 'low' instructs
ROM IN the system board to de-gate the ROM
CARTRIDGE module from hex F8000 - FFFFF on

the system board. This ROM module
can then be replaced by a ROM
module on the cartridge by using -CS7.

-BASE 2 ROM 1 This line when pulled 'low' instructs

IN the system board to de-gate the ROM

CARTRIDGE module from hex FO000 - F7FFF on
the system board. This ROM module
can then be replaced by a ROM
module on the cartridge by using -CS6.

Program Cartridge 2-115

Cartridge Reset 1 This input when 'low' causes a 'reset’

Tab to the system. The system will remain
‘reset' until this line is brought back
'high'. This tab is usually wired with
an L shaped land pattern to the GND
at A02 which provides a momentary
‘reset' when a cartridge is inserted or
removed.

2-116 Program Cartridge

A1 A2 A3 A4 A5

Top of Cartridge

Momentary Reset Land

O

LIt

_GN
-CS7
-CSs3
A14
A12
A7
A6
A5
A4
A3
A2
A1l
AO
DO
D1
D2
-CS6 —
+6V —

BO1

BO5

B10

B15

B18

AO1

A0S

A10

A15

A18

T T T TTTTTTTTIT T

Connector Specification

GND

CARTRIDGE RESET TAB
-CS5

-BASE 1 ROM IN CARTRIDGE
A13

A8

A9

Al1

-BASE 2 ROM IN CARTRIDGE
A10

D7

D6

D5

D4

D3

-CS2

-CS4

+5V

Program Cartridge 2-117

TE YN asﬁg

System ROM 1
Address

System ROM 2 B1 Opposite B18
Address Side
FO000 Al A18

(ROM Cartridge

ROM 1 L—= Address
E8000

| Address
ROM 2 4 E0000

Cartridge ROM Locations

2-118 Program Cartridge

Games Interface

Interface Description

The Game Interface has two connectors located at the
rear of the System unit for four paddles (two per
connector) or two joysticks. Each connector has four
input lines: two digital inputs and two resistive inputs.
All the inputs are 'read' with one 'IN' from address
hex 201. The interface, plus system software, converts
the present resistive value to a relative paddle or
joystick-position. On receipt of an output signal, four
timing circuits are started. By determining the time
required for the circuit to time out (a function of the
resistance), the paddle or joystick position can be
determined.

wR)SAg aseq

The four digital inputs each have a 1K ohm resistor to
pull the voltage up to +5V. With no drive on these
inputs, a 1 is read. For a 0 reading, the inputs must be
pulled to ground.

The four resistive inputs are converted to a digital pulse

with a duration proportional to the resistive load,
according to the following equation:

Time = 24.2 pus + 0.011 (r) ps
Where r is the resistance in ohms

Games Interface 2-119

From Right

2 Resistive Inputs Joystick

From Left Convert
2 Resistive Inputs Joystick Resistance

o to Digital
:A/’O [Pulse
rite AND >~
Games
Cs —
170 | anD »| DataBus
Reads o Buffer/
Driver

Data Bus 0-7

2 Button Inputs From Right Joystick

2 Button Inputs From Left Joystick

Games Interface Block Diagram

Any program application must first begin the
conversion by an ‘OUT' to address hex 201. An 'IN'
from address hex 201 will show the digital pulse go
'high' and remain 'high' for the duration according to
the resistance value. All four bits (Bit 3 through Bit 0) -
function in the same manner. Each bits digital pulse
goes high simultaneously and resets independently
according to the input resistance value.

2-120 Games Interface

Input from Address Hex 201

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

L] | |
Y Y

Digital Inputs Resistive Inputs

Input From Address Hex 201

Joysticks typically have one or two buttons and two

- variable resistances each. The variable resistances are
mechanically linked to have a range from 0 to 100k
ohms. One variable resistance indicates the X
coordinate and the other variable resistance indicates
the Y coordinate. The joysticks are attached to give the
following input data:

Joystick B Joystick A Joystick B Joystick A

Button | Button | Button | Button | Coord.| Coord. | Coord.| Coord.
#2 #1 #2 #1 Y X Y X

Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit2 Bit 1 Bit O

Joystick Input Data

Games Interface 2-121

WASAS Iseg

The game paddles have one button each and one
variable resistance each. The variable resistance is
mechanically linked to have a range from 0 to 100k
ohms. The paddles are attached to give the following
input data.

Buttons Coordinates

Paddle| Paddle | Paddle | Paddle | Paddle | Paddle | Paddle | Paddle
D C B A D C B A

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Paddle Input Data

Pushbuttons

The pushbutton inputs are 'read’ by an 'IN' from
address hex 201. These values are seen on data bits 7
through 4. These buttons default to an 'open' state
and are 'read' as 1. When a button is pressed, it is
'read’ as 0.

Note: Software should be aware that these buttons
are not debounced in hardware.

Joystick Positions

The joystick position is indicated by a potentiometer for
each coordinate. Each potentiometer has a range from
0 to 100k ohms that varies the time constant for each
of the four one-shots. As this time constant is set at
different values, the output of the one-shot will be of
varying durations.

All four one-shots are fired simultaneously by an
'OUT' to address hex 201. All four one-shot outputs

2-122 Games Interface

will go 'true' after the fire pulse and will remain
‘high' for varying times depending on where each
potentiometer is set.

These four one-shot outputs are 'read' by an 'IN'
from address hex 201 and are seen on data bits 3

through O.
=
Signal Name Pin Number g
[4-]
Keyplug AO1 ‘Z)
LOGIC GND AO2 28
l«—— Y-AXIS RESISTANCE AO3]
- +5V AO4 System
Joystick SHIELD GND BO1 Board
l«—— X-AXIS RESISTANCE B0O2
e—— SWITCH BO3
e—— SWITCH BO4

Connector Specification

Games Interface 2-123

Notes:

2-124 Games Interface

Serial Port (RS232)

The PCjr serial port is fully programmable and supports
asynchronous communications only. It will add and
remove start bits, stop bits, and parity bits. A
programmable baud-rate generator allows operation
from 50 baud to 4800 baud. Five, six, seven or eight
bit characters with 1, 1-1/2, or 2 stop bits are
supported. A fully-prioritized interrupt-system controls
transmit, receive, line status and data-set interrupts.
Diagnostic capabilities provide loopback functions of
transmit/receive and input/output signals.

wRJsAQ aseq

The nucleus of the adapter is a 8250A LSI chip or
functional equivalent. Features in addition to those
previously listed are:

« Full double-buffering eliminates the need for precise
synchronization

« Independent receiver clock input

« Modem control functions: clear to send (CTS),
request to send (RTS), data set ready (DSR), data
terminal ready (DTR)

« Even, odd, or no-parity-bit generation and detection

« False start bit detection

« Complete status reporting capabilities

« Line-break generation and detection

 Break, parity, overrun, and framing error simulation

« Full prioritized interrupt system controls

All communications protocol is a function of the system
ROM and must be loaded before the adapter is
operational. All pacing of the interface and control-
signal status must be handled by the system software.

It should be noted that Asynchronous (Async)

receive operations cannot overlap diskette operation
since all but the Diskette Interrupt are masked 'off"
during diskette operations. If Async receive

Serial Port 2-125

operations are going to be overlapped with keyboard
receive operations, the Async Receiver rate cannot
exceed 1200 baud. This is due to the processor
deserialization of the keyboard. See IBM PCjr
Cordless Keyboard in this section for more information.

Programming Note: Due to the read/write cycle-time of
the 8250A, it is recommended that back-to-back 1/0
operations to the 8250A be avoided. A good
Programming Technique would be to insert a short
'‘jump’ between every consecutive 8250 I/0
instruction. This action will flush the queue and
provide 15 clock periods between I/0O operations.

Note: This note only applies to programmers using
the 8250A directly. It is STRONGLY suggested
that the user not communicate directly with the
physical hardware, but use the system BIOS instead.

Note: It is important to note that when the IBM
PC,r has the Internal Modem installed it is logically
COM1 and the RS232 serial port is logically COM2
in BIOS, DOS, and BASIC. Without the Internal
Modem installed the RS232 serial port is logically
addressed as COM1 in BIOS, DOS ,and BASIC
even though its address is still hex 2F8 using
Interrupt level 3.

The following figure is a Serial Port Block Diagram:

2-126 Serial Port

Address AO Through A2

AO Through A2

Data Bus
-+ DO Through D7
Interrupt
Baud Clock 8250A
1.7895 - Asynchronous
MHz Communications
Element
Control Signals
EIA . EIA
Receivers Drivers
16-Pin -
Connector

Serial Port Block Diagram

Serial Port 2-127

=
g
®
72]
D
z
®
3

Modes of Operation

The different modes of operation are selected by
programming the 8250A asynchronous communications
element. This is done by selecting the I/O address (hex
2F8 to 2FF) and 'writing' data out to the card.
Address bits AO, Al, and A2 select the different
registers that define the modes of operation. Also, the
divisor-latch access-bit (bit 7) of the line-control
register is used to select certain registers.

I/0 Decode
(in Hex)

Register Selected

DLAB State

2F8
2F8
2F8
2F9
2F9
2FA

2FB
2FC
2FD
2FE
2FF

TX Buffer

RX Buffer

Divisor Latch LSB
Divisor Latch MSB
Interrupt Enable Register
Interrupt Identification
Registers

Line Control Register
Modem Control Register
Line Status Register
Modem Status Register
Scratch Register

DLAB=0 (Write)
DLAB=0 (Read)
DLAB=1
DLAB=]
DLAB=0

(Don’t Care)

(Don’t Care)
(Don't Care)
(Don’t Care)
(Don’t Care)
(Don't Care)

1/0 Decodes

Address Range hex 2F8 - 2FF

2-128 Serial Port

Note: The state of the divisor-latch access-bit
(DLAB), which is the most-significant bit of the
line-control register, affects the selection of certain
8250A registers. The DLAB must be set 'high' by
the system software to access the
baud-rate-generator divisor latches.

Interrupts

One interrupt line is provided to the system. This
interrupt is IRQ3 and is 'positive active'. To allow the
serial port to send interrupts to the system, bit 3 of the
modem control register must be set to 1 'high'. At
this point, any of the following interrupt types
‘enabled' by bits in the interrupt-enable register will
cause an interrupt: Receiver-line status, Received Data
available, Transmitter-Holding-Register empty, or
Modem Status.

WAJSAG Iseg

Interface Description

The communications adapter provides an EIA RS-232C
electrically-compatible interface. One 2 by 8-pin Berg
connector is provided to attach to various peripheral
devices.

The voltage interface is a serial interface. It supports
data and control signals as follows:

Pin AO4 Transmit Data

Pin A08 Receive Data

Pin A03 Request to Send

Pin A07 Clear to Send

Pin A06 Data Set Ready

Pin B02-B08 Signal Ground

Pin A0S Carrier Detect

Pin A02 Data Terminal Ready
Pin BO1 Shield Ground

The adapter converts these signals to/from TTL levels
to EIA voltage levels. These signals are sampled or
generated by the communications-control chip. These

Serial Port 2-129

signals can then be sensed by the system software to
determine the state of the interface or peripheral

device.

Note: The above nomenclature describes the
communications adapter as a DTE (Data Terminal
Equipment) device. Suitable adapters must be used
to attach other devices such as serial printers.

Note: Ring Indicate is not supported on the PCjr.

Voltage Interchange Information

Interface
Interchange Binary Signal Control
Voltage State Condition | Function
Positive Voltage = Binary (0) | = Spacing =On
Negative Voltage o | Binary (1) | = Marking = Off

Voltage Interchange Information

+15 Vdc
+3 Vdc
0 vdc
-3 Vdc

-15 Vdc

Invalid Levels

Invalid Levels

The signal will be considered in the 'marking'
condition when the voltage on the interchange circuit,
measured at the interface point, is more negative than

2-130 Serial Port

-3 Vdc with respect to signal ground. The signal will be
considered in the 'spacing’' condition when the voltage
is more positive than +3 Vdc with respect to signal
ground. The region between +3 Vdc and -3 Vdc is
defined as the transition region, and considered an
invalid level. The voltage which is more negative than
-15 Vdc or more positive than +15 Vdc will also be
considered an invalid level.

During the transmission of data, the 'marking'
condition will be used to denote the binary state 1, and
the 'spacing’ condition will be used to denote the
binary state O.

=
2

®

w
]

z
®

3

For interface control circuits, the functionis 'on'
when the voltage is more positive than +3 Vdc with
respect to signal ground and is 'off' when the voltage
is more negative than -3 Vdc with respect to signal
ground.

For detailed information regarding the INS8250A
Communications Controller, refer to
“Bibliography”’.

Output Signals

Output 1 (OUT 1), Pin 34: Output 1 of the 8250A is
not supported in PC;r hardware.

Output 2 (OUT 2), Pin 31: Output 2 of the 8250A is
not supported in PCjr hardware.

Accessible Registers

The INS8250A has a number of accessible registers.
The system programmer may access or control any of

Serial Port 2-131

the INS8250A registers through the processor. These
registers are used to control INS8250A operations and
to transmit and receive data. For further information
regarding accessible registers, refer to

“Bibliography”’.

INS8250A Programmable Baud Rate
Generator

The INS8250A contains a programmable baud rate
generator that is capable of taking the clock input
(1.7895 MHz) and dividing it by any divisor from 1 to
(65535). The output frequency of the Baud Rate
Generator is 16 x the baud rate [divisor number =
(frequency input) / (baud rate x 16)}. Two 8-bit
latches store the divisor in a 16-bit Einary- format.
These divisor latches must be loaded during
initialization in order to ensure desired operation of the
baud rate generator. Upon loading either of the divisor
latches, a 16-bit baud-counter is immediately loaded.
This prevents long counts on initial load.

The following figure illustrates the use of the baud rate
generator with a frequency of 1.7895 MHz. For baud
rates of 4800 and below, the error obtained is minimal.

Note: The maximum operating frequency of the

baud generator.is 3.1 MHz. In no case should the
data rate be greater than 4800 baud.

2-132 Serial Port

Desired | Divisor Used to Percent Error Per Bit
Baud Generate 16x Clock Difference Between
Rate (Decimal) (Hex) Desired and Actual
50 2237 8BD .006
75 1491 5D3 017
110 1017 1A1 .023
134.5 832 167 .054 =
150 746 12C .050 g
300 373 175 .050 &
600 186 BA 218 P
1200 93 5D 218 =g
1800 62 3E 218 3
2000 56 38 .140
2400 47 2F .855
3600 31 1F 218
4800 23 17 1.291

Baud Rate at 1.7895 MHz

Note: These divisions are different than that used
in the IBM Personal Computer. For portability, all
initialization should be done through the system

BIOS.

Note: Receive rates should not exceed 1200 baud if
the receive operation is overlapped with keyboard

keystrokes.

The following Assembly language sample program
initializes the 8250. The baud rate is set to 1200 baud.
It’s data word is defined: 8 bits long with 1 stop bit odd

parity.

Serial Port 2-133

BEGIN PROC NEAR

MOV AL,80H ; SETDLAB =1

MOV DX,2FBH ; To Line Control Register

ouT DX, AL

JMP $+2 ;. 170 DELAY

MOV DX,2F8H ; Pointto LSB of Divisor Latch

MOV AL,5DH . Thisis LSB of Divisor

ouT DX,AL

JMP $+2 ; 170 DELAY

MoV DX,2F9H ; Point to MSB of Divisor Latch

MOV AL,0 ; This is MSB of Divisor

ouT DX.AL

JMP $+2 ; 170 DELAY

MOV DX,2FBH ; Line Control Register

MOV AL,0BH ; 8 Bits/Word, 1 Stop Bit,

Odd Parity, DLAB =0

ouT DX,AL

JMP $+2 ;. 170 DELAY

MOV DX,2F8H

IN AL,DX ; In Case Writing to Port LCR Caused
; Data Ready to go high

ENDP

BEGIN

Assembly Language Sample Program

UNUSED — A1 B1 — SHIELD GND

DTR — — LOGIC GND

RTS — — LOGIC GND

TRANSMIT DATA —] A4 B4 — LOGIC GND
CARRIER DETECT —] — LOGIC GND
DSR — — LOGIC GND

CTS — — LOGIC GND

RECEIVE DATA — A8 B8 |— LOGIC GND

Connector Specifications

2-134 Serial Port

System Power Supply

The system power supply is a 33 Watt, three
voltage-level, two-stage supply. The first stage is an
external power transformer that provides a single-fuse
protected, extra low, ac-voltage output. The power
cord is 3.08 meters (10.16 feet) long. The second stage
is an internal, printed-circuit board, which is vertically
mounted into the system board. The second stage
converts the transformer’s ac-output into three
dc-output levels.

The amount of power available on the 1/O connector
for a machine that is fully configured with internal
features is 400 mA of +5 Vdc, 0 mA of +12 Vdc and 0
mA of -6 Vdc.

Power is supplied to the system board through a
printed-circuit-board edge-connector. The diskette
drive is powered through a separate four-pin connector
mounted on the front edge of the Power Board. The
power for the diskette drive fan is provided by a
three-pin Berg-type connector mounted directly below
the diskette-drive connector. Power is removed from
the system board and diskette drive by a switch
mounted on the rear of the Power Board. Both the
switch and the transformer connector are accessible
from the rear of the system.

Power Supply 2-135

wa)sAg aseg

Operating Characteristics
Power Supply Input Requirements

Current (Amps)

Voltage (Vac) Frequency
Nominal| Minimum |[Maximum | *.5 Hz Maximum
120 104 127 60 Hz .65 at 104 Vac
Voltage ac
D.C Outputs
Vde Regulation
Voltage Current (Amps) Tolerance
Nominal Minimum Maximum 1%
+5 *1.5 3.6 5
+12 .04 1.2 5
-6 0.0 .025 16
Voltage dc

* There must be a minimum of a 1.5 Amp load on the
+5 Vdc output for the -6 Vdc to be present.

2-136 Power Supply

Over-Voltage/Over-Current Protection

Input (Transformer)

The following table describes the transformer input

protection:
Voltage (Nominal)| Type Protection Rating (Amps) g
®
120 Vac Non-resettable Fuse 5SA Slo Blow &
Thermal/Over-Current g.
3

Input Protection

Output (Power Board)

The following table describes the Power Board’s output
protection:

Protection Condition

Output
Voltages Over-Voltage Over-Current

+5 Vdc *6.3 1.7 Vdc **3.9+ .25 Amps

12 Vdc *14.4 = 1.4Vdc 2.2+ .9 Amps

* Over-Voltage protection is provided by fuse F1.
**Resettable by removing the fault condition and removing
power for at least 5 seconds and then applying power.

Output Protection

Power Supply 2-137

Power Board (Component Side)

; Supply to
3 Diskette
4 Drive
; Fan Plug
Input From 1 3
Transformer 3
Grounding Pin
Connector
Connector Specifications
1 +1 2]
—2 GND
—3 GND
f— 4 +5 —
Power —15 +5 > System
Board l— 6 +5 -»| Board
fme] ey |}, et
—8 GND
o 9 GND
e] O s] 2 |
Connector Specifications
P |t 17 Vac
ower
Board GND Transformer
- 3 17 Vac

Connector Specifications

1 — +12 Vdc 1
Diskette 2 GND 2 Power
Drive 3 GND 3 Board
4 [——- +5 Vdc 4

Connector Specifications

2-138 Power Supply

Fan

1 Power

1 GND
2 +12 Vdc 2 Board
3 GND 3

Fan Connector Specifications

waIsAg aseg

Power Supply 2-139

Notes:

2-140 Power Supply

SECTION 3. SYSTEM OPTIONS

Contents
r €mory an 1ay E.xpansion RS
IBM PCjr Diskette Drive Adapter 313
Functional Description 3-13
Digital Output Register J-1]
Dnive Intertace 3.2°)
Adapter Outputs 3-22
AdapterInputs, 3-24
ita nd Current Requirements -
IBM PCjr Diskeife Drive 3-71
tunctional Descriptton .,, 321
Liskette =31
IBM_P(jr Internal Modem . 3-33
Funcfional Descripfion .. N = |
Modem Design Parameters 3-31
Programming (onsiderations 3-4(}
Command Format 340
[(Commands ' 347
Responses 3-59
Eaiting/Changing Command Lines 3-59

bdiatus Conditions -0l

Dialing and 1 oss of Carrier 3-60

72

e
z
(2]
3
Q

=]
=
S
S
7]

Defanlit dtate 3-61

Frogramming Examples 3-63
Modes ol Operation R 3-68
| eyt o S 3-/Y
Data Format 3-/U
Inferfaces 3=-70

R250A to Modem Interface 3-/0

[Celephone Company Interface 3-714

SystemI/O Channel 3-714

» » o - Q ° » 0
[ADIVE N N _J¥ SUAINEL S AP 1801 W Tial IEVILEN

Dystem Intertace 398

Programming Considerations 399

Lommand Definition 3-949

IBM Graphics Printer A 3-107
= ifical , : =

3-2

PDIP Switch Settings 3-101

[Parallel Interface Description 3-103
Data Transfer Sequence 3-103
[nterface Signals 3-104

Printer Modes 3-104

Printer Control Codes 3-107

[BM PC Compact Printer 3-133

Printer Specicationscovecieocs oo 3-139
perial Interface Description 3-139
rint Mode Combinations for the PC
Compact Printer00uvieinnnne ... 3-140

Prnter Control Codes and Functions 3-140

3-3

n

]
Z
®
3
=

°
=3
S
=
7

Notes:

IBM PCjr 64KB Memory and Display
Expansion

The 64KB Memory and Display Expansion option
enables the user to work with the higher density video
modes while increasing the system’s memory size by
64K bytes to a total of 128K bytes. The memory
expansion option plugs into the 44-pin memory
expansion connector on the system board. Only one
memory expansion is supported.

The Memory Expansion Option does not require the
user to reconfigure the system to recognize the
additional memory.

Eight 64K-by-1, 150 ns, dynamic memory modules
provide 64K bytes of storage. The memory modules
are Motorola’s MCMG6665AL 15, and Texas
Instrument’s TMS4164-15, or equivalent.

2
(>
4
(23}
3
o
=
=
=
-
7]

When inserted, the memory expansion option uses the
ODD memory space, while the system memory is
decoded as the EVEN memory. Thus, when used as
video memory, the memory expansion option has the
video attributes while the on-board system memory has
the video characters. This arrangement provides a
higher bandwidth of video characters.

In addition to the eight memory modules, the expansion
card has logic to do the EVEN/ODD address decoding,
video data multiplexing, and a CARD PRESENT wrap.

Dynamic-refresh timing and address generation are

done on the system board and used by the memory
expansion option.

64KB Memory Expansion 3-5

The following is a block diagram of the IBM PCjr
64KB Memory and Display Expansion.

64K x 8 RAM CPU LATCH
¥
DO-D7 +{Din Dyt >
MEM A0-A7 ———— | ADR Latch
CNTL G
A
CPU LATCH T
ATR LATCH
—» MDO-MD7
ATR »| Latch
LATCH G

I

Odd/Even
RAS, CAS, -WE, ————— Gating » -DISABLE E DATA
AO, CPUDLY, -DISABLE CASO
VIDEO MEMR -LCG

r& -ATRCD IN

Memory Expansion Block Diagram

3-6 64KB Memory Expansion

Signal

+RAS

+A0

-DISABLE EDATA

ATR LATCH

MDO thru MD7

DO thru D7

MEM A0 thru A7

I/O Description

O

+Row Address Strobe.
This line is inverted and
then becomes the -RAS
for the RAM modules.
Microprocessor Address
0. This is used to
determine whether the
MiCroprocessor access is
from the system board
RAM (Low) or from the
expansion RAM (High).
When the expansion
RAM card is in and the

w
microprocessor is reading [P
an ODD byte of data the
expansion card tri-states Q)
the latch for EVEN data =4
on the system board S

]

using this line.

This signal indicates that
the expansion RAM card
should 'latch’ up data
from the expansion RAM
into the attribute latch.
These data lines contain
CRT information from
the attribute latch and go
to the Video Gate Array.

I/O These data lines are from

I

the microprocessor and
are bidirectional.

These are the multiplexed
address lines for the
dynamic-RAM modules.
These lines are
multiplexed between row
address and column

64KB Memory Expansion 3-7

VIDEO MEMR I

CPU DLY I

-DISABLE CAS 0 o

+CAS I

3-8 64KB Memory Expansion

address, and also
between microprocessor
and CRT addresses.
When this signal is

'high' it indicates a
MEMR is accessing the
system board or
expansion RAM is being
accessed. This line along
with AO determines if the
expansion RAM
microprocessor latch
should 'gate' its data
onto the DO thru D7 Bus.
This line when 'high'
indicates that a
rrlicr(m/:(s)cessor RAM
cycle is occurring. It is
used to gate 'off' the
expansion RAM CAS or
used with AO to generate
the -DISABLE CAS 0
signal.

This line is used to
disable the system board
CASO when a system
microprocessor 'write' is
occurring to the
expansion RAM. This
line keeps the 'write'
from occurring to the
system board RAM.
Column Address Strobe.
This line instructs the
expansion RAM to
'latch' up the address on
the MEM AO thru A7
address lines.

-LCG

GATE

~-WE

CPU LATCH

-ATR CD IN

This line is used to
instruct the system board
that attributes or ODD
graphics data should be
‘read' from the
expansion RAM card for
use by the Video Gate
Array.

This line is 'wrapped'
and becomes the -LCG
output.

This line instructs the
memory that the cycle is
a microprocessor 'write'
cycle.

This line instructs the
expansion RAM card to
‘latch' the data from
the expansion RAM into
the microprocessor latch.
This line is a wrap of the
ground line on the
expansion RAM card. It
pulls 'down' an 8255
input so that the
microprocessor can tell if
this card is installed or
not.

2]
>
4
o
]
=]
=
=
=
=
@

64KB Memory Expansion 3-9

The following is the connector specifications for the
IBM PCjr 64KB Memory and Display Expansion.

IE@[][II][I[Illﬂllﬂ[ll]l]ﬂllllﬂﬂﬂBz

/ 2
System Board Opposite Side

Connector A1l A22

64KB Memory and Display Expansion

3-10 64KB Memory Expansion

Connector
Pin

Signal Name

Signal Name

Connector
Pin

A0l
A02
A03

A04
A05
A06
A07
A08
A09
AlO
All
Al2
Al3
Al4
AlS
Al6
Al7
Al8
Al9
A20
A21]
A22

+RAS

A0

-DISABLE
EDATA

ATR LATCH

MD4

MD5

MD6

MD7

MDO

MD1

MD2

MD3

GND

VCC

D7

D5

D3

DI

MEM A6

MEM A4

MEM A2

MEM A0

VIDEO MEMR

CPU DLY

-DISABLE
CAS 0

+CAS

-LCG

GATE

Ground

Ground

Ground

-WE

CPU LATCH

-ATR CD IN

GND

VCC

D6

D4

D2

DO

MEM A7

MEM A5

MEM A3

MEM Al

BO1
B02
B03

B04
B05
B06
BO7
B08
B09
B10
Bll
BI2
B13
Bl14
BI5
Bl6
B17
B18§
BI9
B20
B21
B22

Connector Specifications

64KB Memory Expansion 3-11

suond(Q waskg

Notes:

3-12 64KB Memory Expansion

IBM PCjr Diskette Drive Adapter

The diskette drive adapter resides in a dedicated
connector on the IBM PCjr system board. It is
attached to the single diskette drive through a flat,
internal, 60-conductor, signal cable.

The general purpose adapter is designed for a
double-density , Modified Frequency Modulation
(MFM)-coded, diskette drive and uses write
precompensation with an analog phase-lock loop for
clock and data recovery. The adapter uses the NEC
uPD765 or compatible controller, so the uPD765
characteristics of the diskette drive can be programmed.
In addition, the attachment supports the diskette drive’s
write-protect feature. The adapter is buffered on the
I/0 bus and uses the system ROM BIOS for
transferring record data. An interrupt level is also used
to indicate an error status condition that requires
processor attention.

w
e
|72}
-t
(2}
E
=
=
=.
=)
=
74

A block diagram of the diskette drive adapter follows.

Diskette Drive Adapter 3-13

19)depy aau(g MIYSIq PI-€

| Buffer C_r_>

>

a(I:rI\ZCk —>| Write Write Data
Timin Precompensate 1’>(%
ming 1 Circuit
Circuit
* > y
Write
Data Read Data
1 Data
vco SYNCA Separator
STD DATA
AData Window y
NEC - T T
Step
Floppy
Disk % D Direction
Controller [l: Write Enable
% Head Select
-— % Index
- {<‘r Write Protect
B <} Track O
} Drive A Motor On
Reset
Diaital Watch
igita Dog
Control Timer Drive A Select
Port J (3 Sec) ﬁ: >0~

]

INTR
L (

Diskette Drive Adapter Block Diagram

Functional Description

From a programming point of view, the diskette drive
adapter consists of a 4-bit digital output register (DOR)
in parallel with a NEC uPD765 or equivalent floppy
disk controller (FDC).

Digital Output Register

The digital output register (DOR) is an output-only
register used to control the drive motor and selection.
All bits are cleared by the I/O interface reset line. The
bits have the following functions:

190}
e
a
1/0 Address Hex F2 s
Bit 7 6 5 4 3 2 1 0
L. 2
b=
-y
Drive Enable s
Reserved 2
Reserved
+ Reserved
Reserved

Watch Dog Timer Enable
Watch Dog Timer Trigger

YYVvVYYyYy

FDC Reset
Note: All bits are cleared with channel reset.
Digital Output Register
Bit 0 This bit controls the motor and enable

lines to the drive. When 'high' (1), this
bit will turn 'on' the drive motor and
'enable’ the drive. When 'low' (0), this
bit will turn 'off' the drive motor and
‘disable’ the drive.

Bits 1-4 These bits are reserved.

Diskette Drive Adapter 3-15

Bit 5 When 'high' (1), this bit 'enables' the
WatchDog Timer function and interrupt.
When 'low' (0), this bit 'disables' the
WatchDog Timer and interrupt.

Bit 6 This bit controls the start of a watchdog
timer cycle. Two output commands are
required to operate the trigger. A 1 and
then a 0 must be written in succession to
'strobe’ the trigger.

Bit 7 This bit is the hardware 'reset’ for the
floppy diskette controller chip. When
'low' (0), this bit holds the FDC in its
‘reset' state. When 'high' (1), this bit
releases the 'reset' state on the FDC.

WatchDog Timer

The WatchDog Timer (WDT) is a one to three-second
timer connected to interrupt request line 6 (IRQ6) of
the 8259. This timer breaks the program out of data
transfer loops in the event of a hardware malfunction.
The WatchDog Timer starts its cycle when 'triggered.'

Floppy Disk Controller (FDC)

The floppy disk controller (FDC) contains two registers
that can be accessed by the system microprocessor: a
status register and a data register. The 8-bit
main-status register contains the status information of
the FDC and can be accessed at any time. The 8-bit
data register consists of several registers in a stack with
only one register presented to the data bus at a time.
The data register stores data, commands, parameters,
and provides floppy disk drive (FDD) status
information. Data bytes are read from or written to the
data register in order to program or obtain results after

3-16 Diskette Drive Adapter

a particular command. The main status register can
only be read and is used to facilitate the transfer of data
between the system microprocessor and FDC.

FDC Register I/0 Address
Data Register hex F5
Main Status Register hex F4

Programming Summary

The FDC is set up with the following Parameters during
system power up:

Parameter Power-up Condition %
Sector Size hex 02 for 512 Byte Sectors g
Sector Count 9 %
Head Unload hex OF - Has no effect on system -

operation.
Head Step Rate hex D - This gives a step rate of
6 milliseconds.
Head Load Time hex 1 Minimum head load time.
Format Gap hex 50
Write Gap hex 2A
Non-DMA Mode hex 1
Fill byte for Format hex F6

FDC Power-up Parameters Settings

Diskette Drive Adapter 3-17

The IBM PCjr Diskette Drive Adapter and BIOS use
and support the following FDC commands:

« Specify
+ Recalibrate
« Seek

« Sense interrupt status
« Sense Drive status

+ Read data

o Write data

» Format a track

Note: Please refer to the Diskette section of the
BIOS listing for details of how these commands are
used.

The following FDC hardware functions are not
implemented or supported by the IBM PCjr Diskette
Drive Adapter.

o DMA data transfer

+ FDC interrupt

« Drive polling and overlapped seek
o FM data incoding

o Unit select status bits

2 Heads (1 per side)

40 Cylinders (Tracks)/Side

9 Sectors/ Track

512 Bytes/Sector

Modified Frequency Modulation (MFM)

Diskette Format

3-18 Diskette Drive Adapter

Constant Value

Head Load Not Applicable
Head Settle 21 Milliseconds
Motor Start 500 Milliseconds

Drive Constants

Comments

[y

Head loads when diskette is clamped.

2. Following access, wait Head Settle time before
RD/WR.

3. Drive motor should be 'off' when not in use. Wait"
Motor Start time before RD/WR.

4. All system interrupts except IRQ6 must be

‘disabled' during diskette data transfer in order to

prevent data under-run or over-run conditions from

occurring.

w

]
Z
(1]
5
=

<
=g
=]
S
»

System I/0O Channel Interface
All signals are TTL-compatible:

Most-Positive Up-Level + 5.5 Vdc
Least-Positive Up-Level + 2.7 Vdc
Most-Positive Down-Level + 0.5 Vdc
Least-Positive Down-Level - 0.5 Vdc

The following lines are used by this adapter:

+DO0 thru 7 (Bidirectional, Load: 1 74LS,
Driver: 74LS 3-state)

Diskette Drive Adapter 3-19

+AO0 thru 3

-IOwW

-IOR

-RESET

+IRQ6

-DISKETTE
CARD
INSTALLED

3-20 Diskette Drive Adapter

These eight lines form a bus through
which all commands, status, and data
are transferred. Bit O is the
low-order bit.

(Adapter Input, Load: 1 74LS)

These four lines form an address bus
by which a register is selected to
receive or supply the byte
transferred through lines DO-7. Bit O
is the low-order bit.

(Adapter Input, Load: 1 74LS)

The content of lines D0-7 is stored
in the register addressed by lines
AO0-3 at the trailing edge of this
signal.

(Adapter Input, Load: 1 74LS)

The content of the register addressed
by lines A0-3 is 'gated’ onto lines
DO0-7 when this line is 'active.'
(Adapter Input, Load: 1 74LS)

A down level 'aborts' any operation
in process and 'clears' the digital
output register (DOR).

(Adapter Output, Driver: 74LS
3-state)

This line is made 'active’' when the
WatchDog timer times out.
(Adapter Output, Driver: Gnd.)
This line is pulled 'up' on'the

System Board and is wired to input
port bit PC2 on port hex 62 of the

-Diskette CS

A9

DRQ 0

DACK 0

8255. This line is used by the
program to determine if the diskette
drive adapter is installed.

(Adapter Input, Load: 1 74LS)

This line is shared with the modem
CS line and is 'low' whenever the
microprocessor is doing IOR or IOW
to either the diskette adapter or the
modem. This line should be
conditioned with A9 being 'low' to
generate a DISKETTE CS.

(Adapter Input, Load: 1 74LS)

This line is the microprocessor
address line 9. When this line is
'low' and -DISKETTE CS is 'low',
IOR and IOW are used by the
diskette adapter.

(adapter Output, Driver: NEC upd
765)

172]
>
4
®
3
=)
=
=,
=]
=
7]

This output would indicate to a
DMA device on the external I/O
Channel that the diskette controller
wants to 'receive’ or 'transmit' a
byte of data to or from memory.
(Adapter input, Load: NEC ppd
765)

This line should come from an
external DMA and should indicate
that a byte is being transferred
from/to the Floppy Disk Controller
to/from memory.

Diskette Drive Adapter 3-21

Drive Interface

All signals are TTL-compatible:

Most Positive Up Level + 5.5 Vdc
Least Positive Up Level + 2.4 Vdc
Most Positive Down Level + 0.4 Vdc
Least Positive Down Level -0.5 Vdc

All adapter outputs are driven by active collector gates.
The drive should not provide termination networks to
Vcce (except Drive Select which has a 2,000 ohm

resistor to Vcce).

Each attachment input is terminated with a 2,000 ohm

resistor to Vcc.

Adapter Outputs

~Drive Select

~Motor Enable

~Step

3-22 Diskette Drive Adapter

(Driver: MC3487)

This line is used to 'degate’ all
drivers to the adapter and receivers
from the adapter (except Motor
Enable) when the line is not
'active. '

(Driver: 741.S04)

The drive must control its spindle
motor to 'start' when the line
becomes 'active' and 'stop' when
the line becomes 'inactive.'
(Driver: MC3487)

The selected drive must move the
read/write head one cylinder in or

=-Direction

-Write Data

~-Write Enable

-HEAD
SELECT 1

out as instructed by the Direction
line for each pulse present on this
line.

(Driver: MC3487)

For each recognized pulse of the
step line the read/write head should
move one cylinder toward the
spindle if this line is active, and
away from the spindle if not-active.
(Driver: 74L.S04)

For each 'inactive’ to 'active'
transition of this line while Write
Enable is 'active’', the selected
drive must cause a flux change to be
stored on the diskette.

(Driver: MC3487)

The drive must 'disable' write
current in the head unless this line
is 'active.'

w
<
!‘
(2]
3
=
=
=3
S
3
»

(Driver: MC3487)

This interface signal defines which
side of a two-sided diskette is used
for data recording or retrieval. A
'high' level on this line selects the
R/W head on the side 1 surface of
the diskette. When switching from
side O to side 1 and conversely, a
100 ps delay is required before any
'read’ or 'write' operation can be
initiated.

Diskette Drive Adapter 3-23

Adapter Inputs

~Index

~Write Protect

=Track 0

-Read Data

The selected drive must supply
one pulse per diskette
revolution on this line.

The selected drive must make
this line 'active' if a
write-protected diskette is
mounted in the drive.

The selected drive must make
this line 'active' if the
read/write head is over track
0.

The selected drive must supply
a pulse on this line for each
flux change encountered on the
diskette.

Voltage and Current Requirements

The diskette drive adapter requires a voltage supply of
+5 Vdc +/- 5% and draws a nominal current of 525
mA and a maximum current of 700 mA.

3-24 Diskette Drive Adapter

Signal Cable
Connector [Keyed (Pin 5 Missing)

33 1

................. 2

YOO CICoOCar
[] I 1 11] L 11 1 LC]

i

Cacoro—al JcT)
i
A15 A1
(S::;r:::: tg:ard Opposite Side
B15 B1
Diskette Drive Adapter
2
Pin 2
At Standard TTL Levels Number =
Ground - Odd Numbers — 1 Through 33 -cf
5 (See =3
Unused 2.4.6 Note) 7
-INDEX | R—
l¢—— Unused 10
l¢—— -DRIVE SELECT 12
Diskette }-«—— Unused 14 Diskette
Drive «—— -MOTOR ENABLE 16 Drive
l «——— -DIRECTION (Stepper Motor) 18 Adapter
l«——— -STEP PULSE 20
| «——— -WRITE DATA 22
l——— -WRITE ENABLE 24
-TRACKO 26 ——>1
-WRITE PROTECT 28 >
-READ DATA 30 >
|¢———-SELECT HEAD 1 32
Unused 34

Note: Pin 5 is missing to match the key plug on the signal cable.

Connector Specifications (Part 1 of 2)

Diskette Drive Adapter 3-25

Signal Name

Diskette Drive Adapter

Signal Name

D7 >

D6 +—p—]

D5 <«—»—]
GND

AO01

AO05

A10

BO1

BOS

B10

B15

le———— +5V
<«———— -DISKETTE CS
| ———A9
————— A3

F——— GND
——— ~CARD INSTL
e————— -RESET

- +B5V

System Board

System Board

Note: All levels are TTL compatible.

Connector Specifications (Part 2 of 2)

3-26 Diskette Drive Adapter

IBM PCjr Diskette Drive

The system unit has space and power for one diskette
drive. The drive is double-sided with 40 tracks for each
side, is fully self-contained, and consists of a
spindle-drive system, a read- positioning system, and a
read/write/erase system.

Functional Description

The diskette drive uses modified frequency modulation
(MFM) to read and write digital-data, with a
track-to-track access time of 6 milliseconds.

To load a diskette, the operator rotates the load lever at
the front of the diskette drive clockwise and inserts the
diskette into the slot. Plastic guides in the slot ensure
the diskette is in the correct position. Closing the load
lever centers the diskette and clamps it to the drive hub.
This same action also loads the Read/Write heads
against the surfaces of the diskette. The load lever is
mechanically interlocked to prevent closing of the lever
if a diskette is not installed.

w
e
&
-
®
E
Q
e
=
=]
=]
7

The head-positioning system moves the magnetic head
to come in contact with the desired track of the
diskette. Operator intervention is not required during
normal operation. If the diskette is write-protected, a
write-protect sensor 'disables’ the drive’s circuitry,
and an appropriate signal is sent to the interface.

Data is read from the diskette by the data-recovery
circuitry, which consists of a low-level read-amplifier,
differentiator, zero-crossing detector, and digitizing
circuits. All data decoding is done by the adapter card.

Diskette Drive 3-27

The IBM PCjr Diskette Drive is equipped with a media
cooling fan, which gets its power from the power supply
board.

The diskette drive also has the following sensor
systems:

o The track 00 sensor, senses when the head/carriage
assembly is at track 00.

« The index sensor, which consists of an LED light
source and phototransistor. This sensor is
positioned so that when an index hole is detected, a
digital signal is generated.

« The write-protect sensor 'disables' the diskette
drive’s electronics whenever it senses a
write-protect tab on the diskette.

The drive requires power within the following

specifications:
Specification +5 Vdc Input | +12 Vdc Input

Nominal Supply +5 Vdc +]12 Vdc
Ripple (0 to 50 kHz) 100 mV 100 mV
Tolerance (Including Ripple) +5% 5%

Standby Current (Nominal) 600 mA 400 mA
Standby Current (Worst Case) 700 mA 500 mA
Operating Current (Nominal) 600 mA 900 mA
Operating Current (Worst Case) 700 mA 2400 mA

Diskette Drive Power Specifications

For interface information refer to ‘“Diskette Drive
Adapter” in this section.

For mechanical and electrical specifications see
Appendix D.

3-28 Diskette Drive

Key Signal Cable Power
Slot Connector Connector Fan Connector

™~
J

] T

2 a

(o] ite Side
; pposi 33

W
Diskette Drive Connectors %
o
=
=
=
=
S
1 p——:+12Vde ——{ 1 2
Diskette 2 GND 2 Power
Drive 3 GND 3 Board
4 | +5 Vdc 4
Connector Specifications (Part 1 of 2)
Diskette 1 GND 1
Drive 2 +12 Vde Power
Board
Fan 3 GND 3

Connector Specifications (Part 2 of 2)

Diskette Drive 3-29

Notes:

3-30 Diskette Drive

Diskette

The IBM PC;jr Diskette Drive uses a standard 133.4
mm (5.25 in.) diskette. For programming
considerations, single-sided, double-density,
soft-sectored diskettes are used for single-sided drives.
Double-sided drives use double-sided, double-density,
soft-sectored diskettes. The figure below is a simplified
drawing of the diskette used with the diskette drive.
This recording medium is a flexible magnetic disk
enclosed in a protective jacket. The protected disk, free
to rotate within the jacket, is continuously cleaned by
the soft fabric lining of the jacket during normal
operation. Read/write/erase head access is through an
opening in the jacket. Openings for the drive hub and
diskette index hole are also provided.

suond () wajsAg

0.140 Inch 0.25 + 0.01 Inch .
Oxide Coated
(3.56 mm) ——p]| (6.30 = 0.25 mm) Mylar Disk
} —_ Sealed A —
: J Protect$ - \\ [I
I P Jacket
. z {E
clE
il IS 5.25 Inch
T ol~ (133.4 mm)
o|o
© +H|H)
ofw Liner <
®|o
wg®
5 25 inch Spindle
(1 33.4 mm) Access Head

Hole Aperture Index Hole

Recording Medium

Diskette 3-31

Notes:

3-32 Diskette

IBM PC(Cjr Internal Modem

The IBM PCjr Internal Modem is a 65 mm (2.5 inch)
by 190 mm (7.5 inch) adapter that plugs into the PCjr
system board modem connector. The modem
connector is an extension of the system I/O bus. All
system control signals and voltage requirements are
provided through a 2 by 15 position card-edge tab with
0.254 cm (0.100-inch) spacing on the modem adapter.

Functional Description

The Internal Modem consists of two major parts: (1)
the INS8250A Asynchronous Communication Element,
and (2) the Smart 103 Modem. Therefore, the
programming must be consideéd in two parts. The
INS8250A communications protocol is a function of
the system ROM BIOS, and is discussed later in this
section. All 'pacing’ of the interface and control-signal
status must be handled by the system software. After
the INS8250A is initialized, the modem is controlled by
ASCII characters transmitted by the INS8250A.

72
=
z
(1]
3
=
=
=.
S
=
4

Key features of the INS8250A used in the modem
adapter are:

¢ Adds or deletes start bits, stop bits, and parity bits
to or from-the serial data stream

« Full double-buffering eliminates the need for precise
synchronization

« Independently-controlled transmit, receive, line
status, and data-set interrupts

o Programmable baud-rate-generator allows division
of the baud clock by 373 (hex 175) for a 300-bps
transmission-speed or 1017 (hex 3F9) for a 110-bps
transmission-speed to generate the internal 16 x
clock

Internal Modem 3-33

o Modem-control functions: Clear to Send (CTS),
Data Set Ready (DSR), Data Terminal Ready
(DTR), Ring Indicator (RI), and Data Carrier
Detect (DCD)

o Fully-programmable serial-interface

characteristics:
— 17, or 8-bit characters
— Even, odd, or no-parity bit generation and
detection
—~ 1 stop-bit generation
— Baud-rate generation
+ False-start bit detection
» Complete status reporting capabilities
» Line-break generation and detection
» Internal-diagnostic capabilities
— Loopback controls for communications-link
fault-isolation
— Break, parity, overrun, framing-error simulation
 Fully prioritized-interrupt system-controls

Key features of the Smart 103 Modem used on the IBM
PCjr Internal Modem are:

« Direct connection to a telephone company line
through an FCC Part-68-approved permissive
connection

« Compatible to Bell Series 100 originate /answer for
modulation and handshaking

» Ali functions controlled by ASCII characters and
INS8250A modem-control lines

« Uses modular phone-jack (USOC RJ11)

« Data rate is either 300 or 110 bits-per-second

o Auto/manual originate

o Auto/manual answer

« Communication mode is full duplex on two-wire,
switched-network channels

3-34 Internal Modem

Auto dialer; either DTMF ([dual-tone
modulated-frequency] touch-tone) or pulse-dialing
(rotary dial) by software command

Tandem dialing

Call-progress reporting
Dial-tone, ring-back tone, and busy-tone detection

w
-
4
(s
3
=)

=]
=
S
3
4]

Internal Modem 3-35

Chip Select

Data Bus

Interrupt

Clock (1.7 MHz)

8250A
Asychronous
Communications
Element

103
Demodulator

RJ11
Phone
Jack

Data
3870
Control Micro-
o controller
Interface
Circuit

IBM PC;jr Internal Modem Block Diagram

3-36 Internal Modem

Modem Design Parameters

The following tables describe the design parameters of
the Smart 103 Modem.

Dialer Type: Two modes
1. Forced Touch-Tone (DTMF) dialing
2. Forced pulse dialing

Tandem Dialing: The ASCII character P (hex 50 or 70) in
the dial string causes a delay of up to 10
seconds while the modem is searching
for another dial tone. A time out will
cause the modem to hang up and post
status. The ASCII character W (hex 57
or 77) in the dial string causes a
5-second dead wait before continuing to
dial. Multiple-ASCII W’s will cause
multiple waits.

Pulse Dialing; Rate: 10 + 1, -0 pulses per second
Duty Cycle: 60% make, 40% break
Interdigit Delay: 800 ms + 50 ms

DTMF Dialing: Tone Duration: 85 ms &+ 10 ms
Intertone Duration: 80 ms & 10 ms

Dialer Parameters (Part 1 of 2)

Internal Modem 3-37

7
-
z
1]
3
=)
=]
=
S
=
o

Tone Pair Frequencies:

ASCII Digit Code Frequency (Hz)
0 941 1336
1 697 1209
2 697 1336
3 697 1477
4 770 1209
5 770 1336
6 770 1477
7 852 1209
8 852 1336
9 852 1477
* 941 1209
941 1477

Dialer Parameters (Part 2 of 2)

Time Out Duration: A data call will time out if an answer
tone is not detected within 45 seconds of
the last digit dialed.

Failed Call Time Out Parameter

Modulation: Conforms to Bell 103/ 113 specification using
binary phase-coherent frequency shift keying
(FSK).

Modulation Parameter

3-38 Internal Modem

Mode

Originating End

Answering End

2225 Hz Mark

Transmit 1070 Space 2025 Space
1270 Mark 2225 Mark
Receive 2025 Hz Space

1070 Hz Space
1270 Hz Mark

Transmitter/Receiver Frequency Parameters

Receive Sensitivity

More negative or equal to 42 dBm.

Receive Sensitivity Parameters

Transmitter Level

Fixed at -10 dBm as per FCC Part 68
Permissive connection.

Transmitter Level Parameter

Internal Modem 3-39

2]
-
z
®
3
=
=
=
=
@

Programming Considerations

The modem and the IBM PCjr system can communicate
commands or data between each other. Any commands
sent to the modem from the IBM PCjr are stripped
from the data stream and executed but are not
transmitted to the receiving station. The data is
transparent to the modem. The modem is capable of
causing hardware interrupts as the result of certain
conditions, and in response to queries for its status.

Commands to the modem are a sequence of characters
preceded by a single command character. The
command character tells the modem that the following
character sequence, until a carriage return, is a
command. The carriage return completes the command
sequence and causes the modem to execute the
commands. The command character (represented by
[ee] in the following text) is programmable (with the
NEW command) to any ASCII character (hex 00 thru
7F). The default for the command character is Ctrl N
(ASCII hex OE).

Commands can occur anywhere in the data stream if
properly formatted but are not to be executed by the

modem until a carriage return is received.

Multiple commands are allowed if separated by commas
and preceded by a single command character.

Command Format

The following is the command format that all
commands must follow.

[cc][command word][delimiter][arguments] [,more][CR]

where:

3-40 Internal Modem

[ee] is the single ASCII command
character.

[command word] is the command word or the first
letter of the command word.

[delimiter] is always a space when separating
an argument and command word.
Any spaces thereafter are ignored
until the modem sees a comma, an
argument or a carriage return.

[arguments] is a variable that is replaced by any
character allowed by the command
definition.

[,more] is any additional commands
preceded by a comma.

[CR] is a carriage return that completes

the command sequence and causes
the modenyto execute the
commands.

The following are two examples of command format.

[cc] COUNT 5[CR]
sample test [ec] VOICE, D (408)
555-1234,QUERY [CR]

Format Guidelines

1. Commands can occur anywhere in the data stream if
properly formatted but are not be executed by the
modem until a carriage return is received.

2. Multiple commands are allowed if separated by
commas and preceded by a single
command-character.

3. Only the first character of the command word is
significant. All remaining characters are ignored up
to the first space following the command word. In
other words, the DIAL command and DUMMY are
treated identically.

Internal Modem 3-41

o
>
4
®
=
=
=
s,
=
=]
7

4. The modem does not discriminate between

‘upper-case and lower-case characters.

5. There are three ways to send the current
command-character as data to a receiving station:

a. Consecutively sending it twice:

[ec][ce]
This would send the character a single time.

b. Change the command character (with the NEW
command) to another ASCII character and then
transmit the previous command-character.

c. Place the modem in the Transparent mode and
then transmit the character.

Commands

The commands that are used with the integrated
modem are listed on the following pages in alphabetical
order.

Each of the commands has its syntax described
according to the following conventions:

1. Words in capital letters are keywords. Only the first
letter of the keyword is required, the others are
optional.

2. You must supply any arguments which are in
lower-case letters. Valid characters for arguments
are defined as:

e« m - ASCII decimal digits0to 9, *, #, I, P, and W

n - ASCII hexadecimal digits O to F

e 0 - ASCII hexadecimal digits O to 9

p - any ASCII character

3-42 Internal Modem

3. All arguments are examined for validity. If extra
characters are used in an argument, the extra
characters are ignored. If the argument is invalid,
the command is ignored.

4. An ellipsis (...) indicates an item may be repeated as
many times as you wish.

5. All command lines must begin with a command
character. The default command-character is
(CONTROL N).

6. Multiple commands separated by commas can
follow a single command-character.

An example of the DIAL command is given below:
Command format - DIAL m...m

Command line - DIAL 1 800 555 1234

w
(>3
|72}
-
2]
3
o~
g
=
=
-
7]

If an invalid argument or no argument is given, the
command is not executed. Also, a question mark (?) is
given as the error response and the command line is

aborted.
The commands are as follows:

Internal Modem 3-43

Format: ANSWER
A
Purpose: To logically take the phone off the hook and force

ANSWER mode. This is logically like a manual
answer.

Format: Break n

Purpose: To send a space or break character for a duration
equal to a multiple of 100 ms (n x 100 ms).

3-44 Internal Modem

Format:

Purpose:

Default:

COUNT n

Cn

Where n is the number of complete rings in the range
of hex 0 to hex F.

When answering an incoming call, the modem
answers the phone after n complete incoming rings,
where n is any value from hex O to F.

A value of zero specifies that the modem not answer
an incoming call, but still carry out any instructions
from the host.

When dialing, the modem waits n + 3 complete
ringbacks before cancelling the call.

If n exceeds 4, the 45-second abort timer cancels an
outgoing call with an "UNSUCCESSFUL'" response,
as more than seven ringbacks exceeds 45 seconds.

92
>
a
®
3
=)
=
=.
=3
=
*

Sets the ring count when the modem is answering an
incoming call or dialing a call.

0

Internal Modem 3-45

Format:

Purpose:

Default:

DIAL m...m
D m...m

Where m...m is a dial string of ASCII decimal digits 0
through 9, *, #,1, P, and W. A maximum of 33
characters are allowed in the dial string. The first
character of the string defaulits to P (a 10-second
delay while searching for the dial tone). W causes
the modem to delay five seconds, then continue
dialing.

W or P must start a string, can also occur anywhere
within a string, and causes the digits to be tone
dialed.

The characters * and # represent the two extra
buttons on a push-button phone, but may be used for
other things.

I causes the next digits to be pulse dialed. The I
stays in effect until a (P,), (W,),or end of command.
The modem then searches for line busy, ringing, or
incoming carriers while posting the status.

To cause the modem to dial.
P (10-second timeout). (If this command is used

without an argument, the last number dialed is
redialed once.)

3-46 Internal Modem

Format: FORMAT n
Fn

Where n is one of the following:

n Parity Data Length Stop Bit
0 Mark 7 1

1 Space 7 1

2 Odd 7 1

3 Even 7 1

4 None 8 1

5-7 Reserved

The 8250A line control register (LCR) must specify
the same format as defined in the FORMAT n
command to 'enable’ data/command
communication.

2]
e
72}
-
[1]
=
=
=
=
=}
=]
»

Do not combine this command with any other
commands except the SPEED command on a single
command line.

Note: If programming in BASIC, this command
must be used in addition to specifying the same

parity and data length in the BASIC 'open'’
statement.

Purpose: To change the parity and number of stop-bits being
transmitted at either end, to a new format.

Default: 3

Internal Modem 3-47

Format:

HANGUP

H

To perform a clean disconnect and go on-hook.
Logically the same as manually hanging up.

Format:

INITIALIZE

I

This command is executed in 10 seconds and is the
same as a cold start. An "OK" response is not

returned after execution and the integrity test code in
the QUERY command is set.

Places the modem in the power-up default-state.

3-48 Internal Modem

Format: LONG RESPONSE o
Lo
Where o is one of the following:
o Mode | Responses

0 Verbose
HBUSYII
"CONNECTED"
"NO ANSWER"
"NO DIAL TONE"
HOK"
IIRINGII'
"UNSUCCESSFUL"
"2" (Question
Mark)

9]
e
4
®
3
=
=
=
=}
=
74

1 Terse (Hex code)

30
31
32
33
34
35
36
37

Note: The dial string is not echoed in the terse
mode.

Purpose: Modifies message feedback. Information is posted in
the status area.

Default: 0 (Verbose mode)

Internal Modem 3-49

Format:

Purpose:

MODEM
M

Forces the modem into the data state where the
carrier is placed on the telephone line and proper
connection-protocols are followed.

This command is equivalent to ANSWER if the data
state started as autoanswer.

Format:

Purpose:

Defauit:

NEW p
Np
where p is any ASCII character.(hex OE)

Changes the command character to an ASCII
character.

Ctrl N (ASCII hex OE)

Format:

Purpose:

ORIGINATE
o
Logically takes the phone off-hook and forces the

ORIGINATE mode. Logically equivalent to manual
originate.

-8R0 TInternal Modem

Format:

Purpose:

PICKUP

P

Logically takes the phone off-hook and puts the
modem in the voice state.

Internal Modem 3-51

suondQ wayskg

Format: QUERY

Q

Purpose: To query the modem for its status information.

Possible characters returned by the modem are as

follows:
Responses
HO or H1

SO0 to SF

oW

zr

TO
T1

Meaning

Hook status: HO = on-hook, H1 =
off-hook.
Current ringcount setting in hex.

Line busy.

Line dead: no dial-tone found or no
ring/no busy timeout after dialing.
Successful dial and handshake.

Dial not recorded: dial tone present
after dialing.

No answer: ringcount plus 3
exceeded.

Integrity test passed.
Integrity test failed.

The first group of characters is always returned for a
QUERY command. The second group of characters
is returned only after a dialing sequence has been
started or a change has occurred in the dialing status.
The third group of characters is returned when a
TEST command has occurred. All characters except
the first group are erased by being read and do not
appear in response to the next QUERY unless the

3-52 Internal Modem

condition has recurred in the interim. The QUERY
response overrides any incoming data from the
telephone line.

Format:

RETRY
R

When placed after a DIAL command, it causes the
modem to execute up to 10 redials at a rate of one
per 40 seconds. The redials are triggered by a busy
detection after dialing.

92]
e
P24
(o]
3
=
]
=3
=
=]
w

Internal Modem 3-53

Format:

SPEED o
So

Where o is one of the following:

o bps
0- 110
1- 300
2 - Reserved

Note: Do not combine this command with other
commands except the FORMAT command on a
single command line.

The SPEED command must be issued before the
8250A baud rate is changed.

Note: If programming in BASIC, this command
must be used in addition to specifying the same
bps rate in the BASIC ‘open’ statement.

Purpose: Sets the baud rate.

y
Default: 1 (300 bps)

3-54 Internal Modem

Format:

Purpose:

TRANSPARENT n...n
T n...n

Where n...n is the number of bytes to transmit in the
range of hex O to hex FFFF.

Places the modem in the transparent mode for the
next n...n bytes.

The modem does not look for command sequences
but instead transmits every character it receives.

The argument can be up to four ASCII-coded hex
digits long. This provides a range of 65,536 bytes.

If an argument is not included with the
TRANSPARENT command, the command is ignored
because it has no defaulit.

w»
(>
4
®
3
=
=
=
=
=
7

The transparent mode is terminated when:

1. n...n characters have been transmitted.

2. Loss of carrier timeout.

3. INS8250A OUT 1 pin goes 'active.' (The
INS8250A -OUT 1 signal should remain
'active' until the transparent mode is
requested again.)

The modem exits the transparent mode before

processing the next complete character from the

host.

To re-enter the transparent mode, the sequence is:

Internal Modem 3-55

1. The INS8250A -OUT 1 pin changes to, or
remains in the 'inactive' state.

2. The command string containing the
TRANSPARENT command is issued.

An argument of 0 causes a permanent
transparent mode which can be exited by the
INS8250A -OUT 1 pin going 'active. '

Format: VOICE
\4

Purpose: Forces the modem to the voice state where no tones
or carriers are placed or searched for on the
telephone line.
This state is used for voice communication, when the
modem is an autodialer or answering device only. It
is also necessary to be in the voice state to transmit
DTMF tone-pairs.
This command 'disables' the autoanswer function.
The status responses are:

1. If a busy signal is detected "BUSY OK".

2. Any other condition "OK...(16
dots)....CONNECTED".

3-56 Internmal Modem

Format: WAIT
W

Purpose: Causes the modem to take no action, including
autoanswer, until the next command is received from
the host. All commands following the WAIT
command in a single command-line are ignored.

Format: XMIT m...m
X m...m

Purpose Instructs the modem to transmit the DTMF

tone-pairs found in the argument string m...m. This
is only valid in the voice state. Delays between digits
can be caused by inserting W’s in the string.

2

=
a
(o}
3
=

<
=3
S
=]
"

Each W causes a five-second delay.

Internal Modem 3-57

Format: ZTEST o
Zo
Where o is one of the following:
o Test

0 - Hardware Integrity Test
1 - Analog Loop Back Test

Purpose: Places the modem in the test mode specified by the
ar, gument.

For modes other than the integrity test, the modem
stays in the test mode until any other command is
received.

For the integrity test, the test is performed, status
posted, and then the modem returns to service
immediately. The integrity test takes eight to 10
seconds to execute and its completion is signaled by
an "OK'' message.

All commands following the ZTEST command in a
single command-line are ignored.

3-58 Internal Modem

Responses

Autoanswer

If -DTR is 'active’', the modem goes off-hook and
proper connection protocols including the two-second
billing delay are followed. If connection is made, the
modem sends "CONNECTED" to the host and posts
the status in the status area.

Editing/Changing Command Lines

Corrections to the command line can be performed by
aborting current-command lines and typing a new line
or by entering the correct command later on in the
current-command line.

w
-
4
@
3
=)
=
=
=
=
*

The last command entered on a single command-line
supersedes any previously entered command that
performs an opposite function.

A Control X or backspace received by the modem
immediately aborts the entire command line.

Internal Modem 3-59

Opposite Commands

The command line is scanned after its completion (after
[CR] is entered). Commands which cause an action
during the scan (for example, DIAL) are not candidates
for opposite treatment. Only commands which

'preset’ a static condition can be opposites.

They include:

Count (n) two entries, latest are used
Format (n) two entries, latest are used
New (p) two entries, latest are used
Speed (n) two entries, latest are used
Transparent n..n two entries, latest are used
Modem - Voice these are opposites only when

on-hook

Note: Answer and originate are not opposites; each
of these causes an action when scanned.

Status Conditions

The modem sends the host messages as defined in the
LONG RESPONSE command for dialing success or
failure. Hardware interrupts for carrier loss and
detecting incoming rings are provided on the 8250A.

Dialing and Loss of Carrier

The dialing process begins with the modem searching
for a dial tone if it is not in the blind dialing mode. If a
dial tone is not detected, the modem hangs up, the
appropriate status characters are posted, and the '"NO
DIAL TONE'" message is returned to the host.

If a dial tone is found, the modem continues to dial.
When a P is encountered in the dial string, the modem

3-60 Internal Modem

delays for up to 10 seconds to search for another dial
tone and returns the "NO DIAL TONE" message to
the host if a dial tone is not detected. When a W is
encountered in the dial string, the modem delays for
five seconds before continuing to dial. Consecutive
W’s are allowed in a dial string.

Anytime a P or W is not followed with an I in a dial
string, the next digits are tone-dialed. When an I
follows a P or W, all following digits are pulse-dialed
until a P, W, or end of command ([CR]) is detected.

The modem ignores any character except O through 9,
* #,1, P, or W while dialing. This allows the user to
place parentheses and dashes in the dial string for
greater legibility.

The modem checks the telephone line again after it has
dialed the digits in the dial string. If a dial tone is found
immediately, the dialed digits are not recorded and the
modem posts this to the status characters, hangs up,
and sends the "UNSUCCESSFUL" message to the
host. If the line is busy, this is also posted to the status
characters and the modem hangs up and returns the
"BUSY'" message to the host. If the line is ringing, the
modem begins counting the number of rings. If this
count exceeds the value of COUNT + 3, the modem
hangs up and takes the same actions as above. If no
answer tone is detected within 45 seconds after
completion of dialing, the modem hangs up and takes
the same actions as above.

w
>
4
@
3
=
=
=
=
=
w»

Finally, if the call is answered, the modem either looks
for a carrier and begins the handshake sequence (if it is
in the data or modem state) or remains silent (if it is in
the voice state). In the voice state, the modem looks
for busy, and transmits a response (1) when the line is

Internal Modem 3-61

found not busy, or (2) if it is found busy, in which case
it also hangs up and possibly dials again. In voice state,
ringback count and abort time out are not used.

If, during the process of establishing the data link after
dialing, the modem receives any character from the host
or - DTR goes 'inactive', the modem aborts the call
with a clean disconnect, clears the balance of the
command line, and sends an ""OK'"' message. Also, the
modem does not carry out the instruction sent from the
host, even if the character is a command character.

In the data state, the modem transmits a message after
successful completion of the handshake, or after it has
determined that the handshake failed. An unsuccessful
handshake is evidenced by absence of carrier at the
proper time.

If a carrier drops out for more than two seconds in the
data state, the modem begins a timeout lasting
approximately 17 seconds. At the end of the timeout,
the modem hangs up. Any command received during
the 17 seconds resets the timer.

The modem does not automatically reestablish the
connection if the carrier returns after this dropout
interval. This allows the user or software to intercede
by commanding the modem to go into the voice state,
to hang up immediately, or to take some other action.
The data connection may also be terminated by a
HANGUP command while carriers are still present. A
voice connection is always terminated by a HANGUP
command.

3-62 Internal Modem

Default State

Upon power up or after an INITIALIZE command is
given, the modem returns to the default state as
follows:

« A verification of hardware integrity is performed
and the result posted to the status characters.

o The remaining status characters cleared.

« The modem is placed in the data state awaiting a
dialing request or incoming ring.

e The Transparent mode is cleared.

o All loopback modes are cleared.

o The wait mode is cleared.

« The command character is set to Control-N.

« The data format is set to 7 data bits, even parity,
and one stop bit.

« Ringcount is set to 0 (auto answer 'disabled ')

e The modem is set to on-hook.

« The message mode is set to verbose.

w
e
z
(2]
3
C
=
=.
)
S
»n

Programming Examples

Call progress reporting is done in two modes, verbose
messages or terse messages as defined in LONG
RESPONSE command to the Serial In (SIN) pin of the
8250A. The power-up default is the verbose messages
mode, and these messages from the modem are in

~ capital letters. Also, in call progress reporting, the
status area is updated.

The following examples are representative of real-time

call-progress reporting. The italicized entries are user
entries.

Internal Modem 3-63

Example 1:

OK [cc]Dial 555-1234 [CR]
NO DIAL TONE
OK

In this example, no dial tone is detected within

the time out period.

Example 2:
OK
[cc]Dial 555-1234 [CR]

) 240, (€ 20 CONNECTED OK

In this example, a modem answer tone is detected.
Example 3:

OK

[cc]Dial 1(301)555-1234 [CR]

13015551234..... BUSY

OK

In this example, busy is detected.

3-64 Internal Modem

Example 4:
OK
[cc]Dial 555-1234 [CR]
5551234........

In this example, ring count is exceeded
before ringing stops.

W
‘-
»
=~
=
Example 5: o
OK =
[cc]Dial 555-1234 [CR] e
5551234......... ®
RING ..o coeeeeeeeeeeeeeeeeeeeeeresneeeas
......................... UNSUCCESSFUL

In this example, a failed-call time-out occurred because an
answer tone was not detected within the allotted time.

Internal Modem 3-65

Example 6:

OK

[cc]Dial 99P555-1234 [CR]

00 oo eeee s s e e seas s renees
............... NO DIAL TONE

OK

In this example, the second dial-tone is not detected within the
time out period.

Example 7:
OK
[cc]Dial 99P421-7229 [CR]

In this example, busy is detected within the time-out period.

3-66 Internal Modem

Example 8:

OK
[cc]Dial 99WWS555-1234 [CR]
00 e s e
4217229....
RING............ccuuu..... CONNECTED OK
In this example, the access code is dialed and two dead waits are &£
performed. Then, the second number is dialed and a modem %
answers. .3
=)
=
Example 9: S
OK *
[cc]Dial 555-1234, Retry [CR]
5551234.................... BUSY
5551234..........u...... BUSY
5551234.............. CONNECTED OK

In this example, the modem dials a number with auto redial.
The first two times, the number is busy.
The third time, a modem answers.

Internal Modem 3-67

Modes of Operation

The different modes of operation are selected by
programming the 8250A Asynchronous
Communication Element. This is done by selecting the
1/0 address (hex 3F8 to 3FF) and writing data out to
the card.

The 8250A is externally programmed to provide
asynchronous, ASCII, 10 bit character length including
start, stop, and parity on the serial-output pin (SOUT,
pin 11). The data rate is 110 or 300 bits-per-second.
The commands can be either upper-case or lower-case
characters. See the command, Format [n], earlier in this
section for additional information.

For further information refer to “Bibliography.”

3-68 Internal Modem

Hex Input/ Mode

Address | Register Selected Output | 1 | 2 | Notes

3F8 Transmit Buffer Write | XX|XX

3F8 Receive Buffer Read XX | XX

3F8 Divisor Latch LSB Write 75 | F9 **

3F9 Divisor Latch MSB Write 0l | 03 *k

3F9 Interrupt Enable Write | OF | OF *

3FA Interrupt Read [XX|[XX

ldentification

3FB Line Control Write 1A | 03

3FC Modem Control Write 01 | 01

3FD Line Status Read XX XX

3FE Modem Status Read XX XX

3FF Scratch Pad Write | XX XX <

w»n

*DLAB =0 (Bit 7 in line control Register). s
**DLAB =1 (Bit 7 in line control Register). o
Mode 1 - 300 BPS - 7 Data Bits, |1 Stop Bit, Even Parity. =
Mode 2 - 110 BPS - 8 Data Bits, 1 Stop Bit, No Parity. g

wn

8250A Register Description

Internal Modem 3-69

Interrupts

One interrupt line is provided to the system. This
interrupt is IRQ4 and is 'positive active.' The interrupt
enable register must be properly programmed to allow
interrupts.

Data Format

The data format is as follows:

Transmit
Data
Marking

[10 D£ Df Df Dit Df 4l16 Df

Start Parity Stop
Bit Bit Bit

r__l

Transmitter Output and Receiver Input Data Format

Data bit O is the first bit to be transmitted or received.
The attachment automatically inserts the start bit, the
correct parity-bit if programmed to do so, and the stop
bit.

Interfaces

8250A to Modem Interface

The following describes the 8250A to 103 modem
interface:

Signal Description

3-70 Internal Modem

INS8250A -OUT 1 The 'inactive' state enables
entry into the transparent
mode using the UNLISTEN
command. The 'active' state
'disables' the transparent

mode.
-OUT 2 No connection.
SOUT Serial output from the 8250A.
-RTS -Request To Send

No connection.
-DTR -Data Terminal Ready

1. To accept a command,
-DTR must be 'active.'

n
e
72|
4
2]
3
=)
=]
=
3
3
w

2. If -DTR goes 'inactive',
the modem does a clean
disconnect sequence.

3. In auto-answer mode, the
modem does not go
off-hook, but RI on the

8250A will be toggled if
the ringing signal is
present.
SIN Serial input to the 8250A.
-RI The ring indicator pulses with

an incoming ring voltage.

-CTS -Clear To Send

Internal Modem 3-71

-DSR

-RLSD

-RESET, +XRESET

A0,A1,A2,A9

-MODEM CS
DISKETTE CS

3-72 Internal Modem

This line is wired 'active' on
the modem adapter.

-Data Set Ready

_This line is wired 'active' on
the modem adapter.

-Received Line Signal Detect

When 'low’, this line
indicates the data carrier has
been detected. If the carrier
drops out for longer than two
seconds, this line goes
'inactive’ and starts the
timeout timer.

These lines are used to reset
or initialize the modem logic
upon power-up. These lines
are synchronized to the falling
edge of the clock. Its
duration upon power up is
26.5 ms -RESET is 'active
low'. +XRESET is 'active

high. '

Address bits O to 3 and bit 9.
These bits are used with
-MODEM CS to select a
register on the modem card.

This line is 'active' for
addresses hex OFO0 thru OFF
and 3F8 thru 3FF. Itis gated
with A9 in the 8250A to
exclusively decode hex 3F8
thru 3FF.

DO thru D7

-IOR

-IOW

BAUDCLK

+MODEM INTR

-CARD INSTALL

Data bits O thru 7:

These eight lines form a bus
through which all data is
transferred. Bit O is the least
significant bit (LSB).

The content of the register
addresses by line A0 thru A2
is gated onto lines DO thru D7
when this line is 'active’,
-MODEM CS is 'active', and
A9 is 'high.'

The content of lines DO thru
S7 is stored in the register
addressed by A0 thru A2 at
the leading edge of this signal
when -MODEM CS is
'active’', and A9 is 'high.'

w»
e
z
®
3
=
<
=
S
3
7]

This is a 1.7895 MHz clock
signal used to drive the Baud
Rate Generator.

This line is connected to the
+IQRP4 on the 8259A
Interrupt Controller.

This line indicates to the
system BIOS that an IBM
PCjr Internal Modem is
installed in the feature
location.

Internal Modem 3-73

Telephone Company Interface

The telephone company interface is a 600 Ohm,
balanced, two-wire telephone-interface design that
meets the FCC Part 68 rules. A 2.13 meter (7 foot)
modular. telephone cord is included with the modem
adapter.

Line-status detection of dial tone, ringback tone, busy,
and incoming ring is provided along with automated

routines which react to detected conditions.

The modem card has one USOC RJ11 jack.

System I/O Channel

The following shows pin assignments for the system
board modem connector. Pins Al to AlS5 are on the
component side.

3-74 Internal Modem

- Internal Modem Connectors

—

7
il g,.

D
o =
g o LKt Y
o e S

Telephone Cable
Connector

= OO
\Grounding Pin System Board / A15 A1

Opposite Side
Connector Connector

B15 B1

w
e
7
-p
®
3
=
e =]
=,
=}
=
7]

Signal Name Pin Number
UNUSED 1 F'—'
UNUSED 2
Telephone [RING 3 = Modem
Cable - TiP 4
UNUSED 5
UNUSED 6

Connector Specifications (Part 1 of 2)

Internal Modem 3-75

Signal Name

+56 Vdc
-MODEM CS/DISKETTE CS
A9

-RESET

GND

A2

A1l

AO

GND

~-IOR

-low

GND

-CARD INSTALL
+XRESET

+6 Vdc

Internal Modem

Signal Name

]
oy
et
s
]
]
e
gy

o

—]
et
fnmd

| BO1 AO1
BO5 A05
B10 A10
| B15 A15

|¢—— D7
le—— D6
[<— D5
GND
l«— D4
j—— D3
l—— D2
p——— GND
l¢—— D1
¢—— DO
—> MODEM INTERRUPT
GND

l<¢—— BAUDCLK
[~<¢—— +5 Vdc

[<—— +12 Vdc

All levels are LSTLL compatible.

Connector Specifications (Part 2 of 2)

3-76 Internal Modem

IBM PCjr Attachable Joystick

The Attachable Joystick is an input device intended to
provide the user with two-dimensional
positioning-control. Two pushbutton switches on the
joystick give the user additional input capability.

Hardware Description

Two modes of operation of the joystick are available.
In the “Spring Return” mode the control stick returns
to the center position when released. The “Free
Floating”” mode allows smooth, force free operation
with the control stick remaining in position when
released. Selection of these modes can be made for
each axis independently. Two controls are provided for
individual adjustment to the electrical center of each
axis.

92
e
&
-
(9]
3
=
=
=
=
=
@

Functional Description

Positional information is derived from two
potentiometers Rx and Ry. The resistance of these
potentiometers will vary from O to 100K ohms
nominally as the position of the control stick moves
from left to right (X-axis) and from top to bottom
(Y-axis). A linear taper is used on the potentiometers
so that a linear relationship exists between angular
displacement of the stick and the resulting resistance.
Electrical centering for each axis is accomplished with-
the controls by mechanically rotating the body of the
potentiometer. Adjustment in this manner has the
effect of varying the minimum and maximum resistance
relative to the extremes of the angular displacement.
The two pushbuttons provided on the joystick are
single-pole, single-throw, normally-open pushbuttons.

Attachable Joystick 3-77

The following are the logic diagram and specifications

for the two Attachable Joystick connectors.

A4 -+5V O—
X - Position
B2 - Rx Potentiometer
A3-Ry O— -O- 2
B4-S10Q0— O

" Switch 1

1

B3-S2 O— —0 O———1
Switch 2

A2 - GND O—
Attachable Joystick Logic Diagram

3-78 Attachable Joystick

Y --Pasition
Potentiometer

l

N/

T

J J
o

Attachable Joystick Connector

w
=
4
I
3
=
2
=)
=}
w

Signal Name Pin Number

Keyplug AO1

LOGIC GND AO02

Y-AXIS RESISTANCE AO3

[—— +5V AO04 System
Joystick SHIELD GND BO1 Board

X-AXIS RESISTANCE BO2

SWITCH BO3 >

SWITCH B04 ——»

Connector Specifications

Attachable Joystick 3-79

Notes:

3-80 Attachable Joystick

IBM Color Display

The IBM Color Display is a Red/Green/Blue/Intensity
(RGBI)-Direct-Drive display, that is independently
housed and powered.

Hardware Description

The IBM Color Display’s signal cable is approximately
1.5 meters (5 feet) in length. This signal cable must be
attached to the IBM PCjr with the IBM PCjr Adapter
Cabile for the IBM Color Display which provides a
direct-drive connection from the IBM PCjr

A second cable provides ac power to the display from a
standard wall outlet. The display has its own power
control and indicator. The display will accept either
120-volt 60-Hz power or 220-volt 50-Hz power. The
power supply in the display automatlcally switches to
match the applied power.

The display has a 340 mm (13 in.) CRT. The CRT and
analog circuits are packaged in an enclosure so the
display may be placed separately from the system unit.
Front panel controls and indicators include: Power-On
control, Power-On indicator, Brightness and Contrast
controls. Two additional rear-panel controls are the
Vertical Hold and Vertical-Size controls.

Color Display 3-81

suond() wdIsg

Operating Characteristics

Screen

« High contrast (black) screen.

o Displays up to 16 colors.

o Characters defined in an 8-high by 8-wide matrix.

Video Signal

¢ Maximum video bandwidth of 14 MHz.

¢ Red, green, and blue video-signals, vertical sync,
horizontial sync, and intensity are all independent.
All input signals are TTL compatible.

Vertical Drive

o Screen refreshed at 60 Hz with 200 vertical lines of
resolution.

Horizontal Drive

« The horizontal drive frequency is 15.75 kHz.

3-82 Color Display

7
]
4
(4
3
o
]
=4
S
S
w

Color Direct-
Drive 9-Pin
D-Shell
Connector

Color-Display Connector

Signal Name Pin

Ground
Ground
Red

IBM Color |[<—— Green
Dispiay L«— Blue
l— Intensity
Not Used
<««—— Horizontal Drive
¢—— Vertical Drive

9-Pin
Connector

O X NOO bH WN =

Connector Specifications

Color Display 3-83

Notes:

3-84 Color Display

IBM Connector for Television

The Connector for Television is a sealed Radio
Frequency (RF) Modulator that imposes the composite
video and audio signals onto the RF carrier-wave
supplied by the modulator. The connector unit has two
two-position switches. One switch selects between the
computer’s signal or the standard-TV signal from an
antenna as the input to the TV. The other switch
selects either channel 3’s or channel 4’s carrier-wave
frequency for input to the TV. This allows users to
select the weaker TV channel for their area reducing
the amount of interference with the computer’s input
signal. Signal input from the computer is provided by a
five-conductor cable with a six-pin IBM PCjr-dedicated
connector. Two spade-lug terminals provide for
TV-antenna-cable connection. One twin-lead flat-type
TV-cable provides input to the TV.

w
e
z
®
3
=
=]
=3
S
S
7]

The following is the connector specifications for the
IBM Connector for Television.

Connector for Television 3-85

Connector for TV Connector

System Unit

Connector
+12 Volts «——4 A1 B1 Logic GND
No Pin A2 B2 p— Audio
Video «+—— A3 B3 Shield GND

Connector Specifications

3-86 Connector for Television

IBM P(Cjr Keyboard Cord

The IBM PCjr Cordless Keyboard can be attached to
the PCjr using the optional Keyboard Cord. The
Keyboard Cord is a 1.8 meter (6 foot), two twisted-pair
cable, with a six-position RJ11-type connector for the
keyboard and a six-position Berg-type connector for
the system unit.

The Keyboard Cord option should be used in an
environment that is unfavorable for use of the infra-red
link. For instance, brightly lit high-intensity light areas,
or multiple IBM PCjr areas where keyboards can
conflict with one another.

Insertion of the cord’s keyboard connector into the
keyboard actuates switches internal to the keyboard.
The switches 'deactivate’ the IR transmitter by
removing the power supplied by the keyboard’s
batteries. The system unit’s infra-red (IR) receiver
circuit is 'disabled' by the -CABLE CONNECT
signal, supplied when the system-unit end of the cord is
connected.

%
e
4
(23]
3
Q
=
=
¢
S
w

The following figures show the connector specifications
for the Keyboard Cord.

Keyboard Cord 3-87

Keyboard Cord Connectors

Signal Name Pin Number
' AO1 Keyplug
2 I~ -CBLKEYBD DATA ———————AQ2 =
5 fe—+5V AD3 System
Keyboard BO1 Board
~CABLE CONNECT B02 >
3 —1: LOGIC GND BO3

Connector Specifications

3-88 Keyboard Cord

IBM PCjr Adapter Cable for Serial
Devices

The Adapter Cable for Serial Devices is a 72 mm
(3-inch) long, nine-conductor cableterminated with a
16-position Berg-type connector and a 25-pin
“D”’-shell connector. This cable allows serial devices
that terminate with a standard EIA-RS232C 25-pin
“D”-shell connector to be connected to the IBM PCjr.

The following figures show the connector specifications
for the Adapter Cable for Serial Devices.

7
t
4
(23
3
=
=]
=
5
S
7]

AN

J

25-Pin D-Shell
Connector

Adapter Cable for Serial Devices

Serial Devices Cable 3-89

System
Connector

Cable

25-Pin D-Shell
Connector

Al —
A2 ——q
A3 ——
A4 —
Ab ——i]
A6 —
A7 —
A8 —
Bl —
B2 —
B3 - B8 —

Not Used

DATA TERMINAL READY
REQUEST TO SEND
TRANSMIT DATA
CARRIER DETECT
DATA SET READY
CLEAR TO SEND
RECEIVE DATA
SHIELD GND
SIGNAL GND

Not Used

Connector Specifications

3-90 Serial Devices Cable

IBM PCjr Adapter Cable for Cassette

This option is an adapter cable that allows connection
of a cassette recorder to the IBM PCjr cassette
connector.

The cassette recorder to be connected must use the
following type connectors:

o Belden Style-51 miniture phone-plug (Auxiliary)
o Belden Style-51 miniture phone-plug (Earphone)
« Belden Style-56 subminiture phone-plug (Remote)

The following figures show the connector specifications
for the Adapter Cable for Cassette.

suondQ wajskg

HH H

A4 A1
B4 B1

Adapter Cable for Cassette Connectors

Cassette Adapter Cable 3-91

GND ———
EARPHONE ————
MIC —med
REMOTE ———

Connector Specifications (System End)

A1l
A2
A3
A4

B1
B2
B3
B4

Keyplug

——AUX.

REMOTE GND
SHIELD

(Part 1 of 2)
System
Cassette Connector Connector Pin

Signal B2
Aux. (Red)

Gnd A1l

Signal A2
Ear (Black)

Gnd A1l

Signal A4
Remote (Gray)

Gnd B3

Connector Specifications (Recorder End)
(Part 2 of 2)

3-92 Cassette Adapter Cable

IBM PCjr Adapter Cable for the IBM
Color Display

This adapter cable allows the IBM Color Display to be
connected to the IBM PCjr.

The following figures show the connector specifications
for the adapter cable for the IBM Color Display.

UHIUHI il IHQ HH

< \

w
e
4
o
=
-
=
=
=]
=
7]

Color Direct-
Drive 9-Pin
D-Shell
Connector

Adapter Cable for IBM Color Display Connectors

Color Display Connector 3-93 -

System 9-Pin Color
Connector Cable Display Connector

A1 ———— Not Used
A2 —1 Not Used
A3 ———1 Not Used
A4 —/ 1 Red

A5 —————1 Green
A6 ————e{ Blue

A7 Intensity
A8 ——— Not Used
A9 ———— Not Used
B1 Vertical e 9
B2 Not Used
B3 ==t Horizontal" p————-8
B4 Not Used
B ————{ Ground p———— 2
86 ——— Not Used
B7 ————d4 Not Used
B8 Not Used
B9 —————{ Ground e]

O wa

Connector Specifications

3-94 Color Display Connector

IBM PC;jr Parallel Printer Attachment

The Parallel Printer Attachment is provided to attach
various I/O devices that accept eight bits of parallel
data at standard TTL-logic levels. The card measures
76mm (3 inches) high by 244mm (9.6 inches) long.

The Parallel Printer Attachment attaches as a feature to
the right-hand side of the system unit. It connects to
the 60-pin Input/Output (I/O) connector where power
and system-input signals are received. A parallel
printer attaches to the Parallel Printer Attachment
through a 25-pin female “D’’-shell connector located
on the rear edge of the attachment, where a cable and
shield can be attached. The logic design is compatible
with the IBM Personal Computer printer adapter.

The attachment card has 12 TTL buffer-output points
which are latched and can be ‘written' and 'read’
under program control using the processor ‘IN' or
"Out’ instructions. The attachment card also has five
steady-state input-points that may be 'read’ using the
processors’ 'IN' instructions.

w
e
2
-
o
3
=
=
fon
=
-
7

In addition, one input can also be used to create a
processor interrupt. This interrupt can be ‘enabled’
and 'disabled' under program control. 'Reset' from
the power-on circuit is also ORed with a
program-output point allowing a device to receive a
power-on 'reset’ when the processoris 'reset.’

When the Parallel Printer Attachment is used to attach
a printer, data or printer commands are loaded into an
8-bit latched output-port, then the strobe line is
'activated' to 'write' data to the printer. The
program can then 'read’ the input ports for printer

Parallel Printer Attachment 3-95

status indicating when the next character can be written
or it may use the interrupt line to indicate not busy to
the software.

The output ports can also be 'read’ at the card’s
interface for diagnostic-loop functions. This allows
fault-isolation determination between the printer
attachment and the attached printer.

Description

During a system I/O 'read' or 'write', with the proper
address selection, data may be 'written' to or 'read’
from the Parallel Printer Attachment. The data and
Control Registers must be manipulated by the system
software to be consistent with the attaching hardware.
The following is a block diagram of the Parallel Printer
Attachment card.

3-96 Parallel Printer Attachment

25-Pin

3 Connector
Bus Buffer Data Latch
e 8
1 Enable CLK |g
8 8
-+ Trans-
- CEiver
ADRS DIR
READ
DATA 2
s
!r‘
WRITE DATA g
X10/-M o
WRITE CONTROL =]
-
=
READ STATUS Z
Command Bus Control
Decoder Buffers Latch Drivers SLCTIN
CLK STROBE
Enable 5 AUTO
-4 FD XT
INIT
»{ Enable —
ERROR
— > | CLR SLCT
PE
ACK
BUSY
Reset

Parallel Printer Interface Block Diagram

Parallel Printer Attachment 3-97

System Interface

The Parallel Printer Attachment reserves addresses hex
378, through hex 37F. 10/-M must also be 'active
high' when addressing the Parallel Printer Attachment.

A card selected signal (-CARD SLCTD) is provided to
the system I/O when the above addresses are used, and
the I0/-M bit is 'active high. "

Specific commands are decoded from AO, A1, RD, and
WR per the following table. Input A2 is not used.

Addresses (hex) Operation Comments

378 ‘Read’ Read Data Latch

379 ‘Read’ Read Status

37A ‘Read’ Read Control
Latch

37B ‘Read’ Unused

37B 'Write ' Write Data Latch

379 'Write ' Unused

37A ‘Write' Write Control
Latch

37B 'Write ' Unused

All data transfers take place over the 8-bit 1/0
data-bus with timing provided by the 8088
microprocessor. (IOR, IOW, 10/-M)

An interrupt is provided to the system through the 1/0
connector of the Parallel Printer Attachment. This

3-98 Parallel Printer Attachment

interrupt is 'positive active', Interrupt Level 7
(+IRQ7). Bit 4 of the control latch must be 'written
high' to allow interrupts. When the -ACKnowledge
signal ('low active' signal goes 'high') the I/O device
causes a level 7 interrupt. See the following figure.

3-State +IRQ7
Buffer

-ACK

J— ; i
Controf Bit 4 INV ’

+IQR7/-ACK Logic Diagram

Programming Considerations

72

-
122}
-
(2}
3
=

<
=g
S
3
4

The Parallel Printer Attachment can serve as a general
purpose peripherial driver. This section describes a
configuration which supports attachment to the IBM
Graphics Printer.

Command Definition

For the parallel-printer application, the following bit
definitions apply.

Data Latch - Address hex 378
A 'write' to this address causes data to be latched onto

the printer data bits. A 'read’ from this address
presents the contents of the data latch to the processor.

Parallel Printer Attachment 3-99

MSB 7 6 5 4 3 2 1 0 LSB
Data Data Data Data Data Data Data Data

Bit Bit Bit Bit Bit Bit Bit Bit
7 6 5 4 3 2 1 0

Data Latch Format

Printer Status - Address hex 379, hex 7D, Input Only

This port provides real-time feedback and status to the
system from the printer.

3-100 Parallel Printer Attachment

Bit

Signal
Name

Description

MSB 7

2
Through
0LSB

-BUSY

-ACK

-PE

+SLCT

-ERROR

When this signal is at a low level,
the printer is busy and cannot
accept data. It can become low
during data entry, off-line printing,
head translation, or error state.

When port B is read, this bit will
represent the current state of the
printer ACK signal. A low level
means that a character has been
received and the printer is ready to
accept another. Normally, this
signal will be low for approximately
S microseconds before BUSY goes
away.

A low level indicates that the printer
has detected an end of form.

A high level indicates that the
printer is selected.

A low level indicates that the printer
has encounted an error condition.

Unused.

Printer Status

Printer Control - Address hex 37A

This port contains printer control signals. A 'write'
latches control bits to the printer; a 'read’ presents the
contents of the latches to the processor. See the
following timing diagram:

Parallel Printer Attachment 3-101

7
=
ﬁ
(5]
3
=
=]
=
S
S
»

BUSY

— ACKNLG

- e o |- -

0.5 us Minimum

Approximately
5 us H

DATA

— STROBE

Parallel Interface Timing Diagram

The following figure describes the printer control
signals.

3-102 Parallel Printer Attachment

Signal

Bit Name Description

MSB 7 Unused.

Through

5

4 +INTERRUPT | A high level in this bit position

ENABLE will allow an interrupt to
occur when ~ACK goes high.

3 SLCTIN A low level in this bit position
selects the printer.

2 INIT A low level will initialize the
printer (50 microseconds
minimum).

1 AUTO FD XT | A low level will cause the

printer to line feed anytime a
line is printed.

v

s
4
2]
3
=)

<
=
S
=
74

LSBO STROBE A 5 microsecond (minimum)
low active pulse clocks data
into the printer. Valid data
must be present for 5
microseconds (minimum)
before and after the STROBE
pulse.

Printer Control Signal

The following are the connector specifications for the
IBM PCjr Parallel Printer Attachment.

Parallel Printer Attachment 3-103

25-Pin D-Shell
Connector

‘Parallel Printer Attachment Connectors

25-Pin “D”-Shell Connector
Pin Signal I, Max Ioy Max | Source
| -STROBE 14 ma -.6 ma Attachment
Card

2 DATA BIT 0| 24 ma -2.6 ma Attachment

Through | Through Card

9 DATA BIT 7

10 -ACK 74LS Input| 74LS Input | Printer

11 BUSY 74LS Input| 74LS Input | Printer

12 PE 74LS Input| 74LS Input | Printer

13 SLCT 74LS Input| 74LS Input| Printer

14 -AUTO 14 ma .6 ma Attachment
FD XT Card

15 -ERROR 74LS Input| 74LS Input| Printer

16 -INIT 14 ma .6 ma Printer
PRINTER

17 -SELECT 14 ma .6 ma Attachment
INPUT -Card

18 GND N/A N/A

Through

25

Connector Specifications (Part 1 of 2)

3-104 Parallel Printer Attachment

Parallel Printer
Attachment to 1/0

Signal Name Expansion Connector Signal Name
D1 — B1 Al }—— DO
D2 —— F—— +12 vdc
D4 —— ——— D3
GND — +—— b5
p7 — B5 A5 —— D6
A0 —] ——— +5 Vdc
A2 — ———— A1
GND ———§ | — A3
A5 ——] f——— A4
A6 —— B10 A10}—— GND
A8 —— ——— A7
-DACKO —— - A9
A1 ——] L A10 A
A12 —— L DRQO 2
GND — B15 A15 f—— A13 =
A15 —— —— A14 (o)
GND —— - A16 =
A17 ——— — GND S
A19 —— L — A18 @
GND ——] B20 A20 ——— -IOR
-MEMR —— —— -I0W
-MEMW —— ———GND
ALE — ———— HDLA
GND — —— CLK
10/-M ——— B25 A25 }—— RESET
READY — ——— +5 Vdc
-CARD SLCTD — ——— -HRQ
GND —— IRQ1
IRQ7 —— IRQ2
AUDIO IN —] B30 A30 Reserved

Connector Specifications (Part 2 of 2)

Parallel Printer Attachment 3-105

Notes:

3-106 Parallel Printer Attachment

IBM Graphics Printer

The IBM Graphics Printer is a self-powered,
stand-alone, tabletop unit which attaches to the system
unit through a 6-foot parallel-signal cable, and obtains
120 Vac power from a standard wall outlet through a
seperate cable. Itis an 80 CPS (characters per second),
bidirectional, wire-matrix device that can print in a
compressed mode of 132 characters per line, in a
standard mode of 80 characters per line, in a double
width-compressed mode of 66 characters per line, and
in a double width mode of 40 characters per line. It can
also print double-size and double-strike characters. It
prints the standard ASCII, 96-character, uppercase and
lowercase character sets and also has a set of 64 special
block characters. It has an extended character set for
international languages, subscript, superscript, an
underline mode, and programmable graphics. The
Graphics printer accepts commands that set the
line-feed control desired for the application.

7

e
;{5‘
(23
E
=

<
=g
S
S
7]

It attaches to the system unit through the IBM PCjr
Parallel Printer Attachment. The cable is a
25-conducter, shielded cable with a 25-pin “D”’-shell
connector at the system unit end, and a 36-pin
connector at the printer end.

Printer Specifications
Print Method: Serial-impact dot matrix
Print Speed: 80 CPS
Print Direction: Bidirectional with logic seeking

Number of Pins in Head: 9

Printers 3-107

Line Spacing: 1/16 inch (4.23 mm) or programmable
Matrix Characteristics: 9 by 9

Character Set: Full 96-character ASCII with
descenders plus 9 international characters/symbols

Graphic Characters: See ‘“Additional Printer
Specifications”

Printing Sizes:

Normal 10 characters-per-inch with a
maximum of 80 characters-per-line
Double Width 5 characters-per-inch with a
maximum of 40 characters per line
Compressed 16.5 characters-per-inch with a
maximum of 132 characters per line
Double Width-Compressed
8.25 characters-per-inch with a
maximum of 66 characters per line

Subscript 10 characters-per-inch with a
maximum of 80 characters per line
Superscript 10 characters-per-inch with a

maximum of 80 characters per line

Media Handling: Adjustable sprocket-pin-feed with
4-inch (101.6 mm) to 10-inch (254 mm) width paper,
one original plus two carbon copies (total thickness not
to exceed 0.012 inch (0.3 mm)), minimum paper
thickness of 0.0025 inch (0.064 mm)

Interface: Parallel 8-bit data and control lines

Inked Ribbon: Black, cartridge type with a life
expectancy of 3 million characters

3-108 Printers

Environmental Conditions: Operating temperature is
5 to 35 degrees centigrade (41 to 95 degrees
Fahrenheit), operating humidity is 10 to 80%
non-condensing

Power Requirements: 120 Vac, 60 Hz, 1 A maximum
with a power consumption of 100 VA maximum

Physical Characteristics:

Height 107 mm (4.2 inches)
Width 374 mm (14.7 inches
Depth 305 mm (12 inches)
Weight 5.5 kg (12 pounds)

Additional Printer Specifications
Printing Characteristics

w
>
Z
®
3
=)
-
=
=}
-
w.

Extra Character Set

Set 1 Additional ASCII numbers 160
to 175 contain European
characters. Numbers 176 to
223 contain graphic characters.
Numbers 224 to 239 contain
selected Greek-characters.
Numbers 240 to 255 contain
math and extra symbols.

Set 2 The differences in Set 2 are
ASCII numbers 3,4,5,6, and 21.
ASCII numbers 128 to 175
contain European characters.

Graphics There are 20 block characters and
programmable graphics.

Printers 3-109

DIP Switch Settings

There are two Dual-Inline-Package (DIP) switches on
the control circuit-board. In order to satisfy the user’s
specific requirements, desired control modes are
selected by the DIP switches. The functions of these
switches and their preset conditions at the time of
shipment are shown in the following figures.

DIP Switch 2

DIP Switch 1

(==

&0 [0 ¢

b 0]
n
= g |

TN

0

00

Wl

o)

O

0]

HHO

Location of DIP Switches

3-110 Printers

Switch Factory
Number Function On Off Position
1-1 Not Applicable | — — On
1-2 CR Print Print and On
Only Line Feed
1-3 Buffer Full Print Print and Off
Only Line Feed
1-4 Cancel Code Invalid Valid Off
1-5 Not Applicable | — — On
1-6 Error Buzzer Sound No Sound On
1-7 Character Set 2 Set | Off
Generator
1-8 SLCT IN Signal| Fixed Not Fixed On
Internally | Internally
Functions and Conditions of DIP Switch 1
Switch Factory
Number Function On Off Position
2-1 Form Length 12 Inches {11 Inches oft
2-2 Line Spacing 1/8 Inch 1/6 Inch Off
2-3 Auto Feed XT Fixed Not Fixed off
Signal Internally |Internally
2-4 1 Inch Skip Over {Valid Invalid Off
Perforation

Functions and Conditions of DIP Switch 2

Printers 3-111

w
A
£
[0}
3
=)
=
=
S
3
7]

Parallel Interface Description

Specifications

Data Transfer Rate 1000 cycles-per-second
(cps)-(maximum)

Synchronization By externally-supplied
STROBE pulses

Signal Exchange -ACKNLG or BUSY signals

Logic level Input data and all

interface-control signals are
compatible with the
Transistor-Transistor Logic
(TTL) level.

Connector Plug 57-30360 (Amphenol)

Connector-pin assignments and descriptions of

respective interface-signals are provided in the
following figures.

Data Transfer Sequence

The following figure shows the Parallel Interface
Timing.

3-112 Printers

BUSY

— ACKNLG

0.5 usec (Minimum)

‘Approximately
S us '

DATA

.)
. |
1]
])
\]

— STROBE

- | - -

Parallel Interface Timing Diagram

Interface Signals

-Strobe

Data 1-8

-ACKNLG

BUSY

STROBE pulse to read data in. Pulse
width must be more than 0.5 us at the
receiving terminal. The signal is
normally 'high'; however read-in of
data is performed at the 'Low’ level
of this signal.

These signals are the first to eight bits
of parallel data. Each signal is at a
'high' level when data is a logical 1
and 'low' when data is a logical 0.
Approximately 0.5 us pulse (low)
indicates that data has been received

and the printer is ready to accept data.

A 'high' signal indicates that the
printer cannot receive data. The
signal is 'high' in the following cases:
e During data entry

Printers 3-113

w
(>
72}
-
(2]
3
=
=
=
=}
-
7]

PE

SLCT

Auto Feed XT

Error

-SLCTIN

Notes:

o During printing operation

o In the “off-line” state

o During printer-error status

A 'high’' signal indicates that the
printer is out of paper.

This signal indicates that the printer is
in the selected state.

When this signal is 'low' paper is fed
one line after printing. This signal
level can be fixed 'low' by DIP
switch pin 2-3.

When this signal is 'low' the printer
controller is reset to its initial state
and the print buffer is cleared. This
signal is normally 'high' and its pulse
width must be more than 50 us at the
receiving terminal.

This signal is 'low' when the printer
is in the ‘“Paper End,” “Off Line,”
and “Error” state.

Data entry to the printer is possible
only when this signal is 'low'. This
signal can be fixed 'low' by DIP
switch 1-8.

1. All interface conditions are based on TTL level.
Both the rise and fall times of each signal must be
less than 0.2 pus.

2. Data transfer must not be carried out by ignoring
the -ACKNLG or BUSY signal. Data transfer can
only occur after confirming the -~ACKNLG signal or
when the BUSY signal is 'low'.

The following figure shows the pin assignment and
direction of each signal.

3-114 Printers

Signal Return
Signal Pin # Pin # Direction

-STROBE 1 19 In
DATA 1 2 20 In
DATA 2 3 21 In
DATA 3 4 22 In
DATA 4 5 23 In
DATAS 6 24 In
DATA 6 7 25 In
DATA 7 8 26 In
DATA 8 9 27 In
-ACKNLG 10 28 Out
BUSY 11 29 Out
PE 12 30 Out 7
SLCT 13 — Out 2
AUTO FEED XT 14 — In g
NC 15 — — o
ov 16 — — -
CHASSIS GND 17 — — =5
NC 18 — — 2
GND 19-30 — —
INT 31 - In
ERROR 32 — Out
GND 33 — —
NC 34 — —

35 — —
-SLCT IN 36 — In

Pin Assignments

Printer Modes

The IBM Graphics Printer can use any of the
combinations listed in the following table and the print
mode can be changed at any place within the line.

Modes can be selected and combined if they are in the
same vertical column.

Printers 3-115

Printer Modes

Normal X|X|X
Compressed XX [X
Emphasized
Double Strike X X
Subscript X X
Superscript

Double Width
Underline

> X

< X
> X
XK
> X
HoX
< XX
> X
KX X K
HKK K

Printer Modes

Printer Control Codes

On the following pages are complete codes for printer
characters, controls, and graphics. You may want to
keep them handy for future reference. The printer
codes are listed in ASCII-decimal numeric-order (from
NUL which is O to DEL, which is 127). The examples
given in the Printer-Function descriptions are written in
the BASIC language. The “input” description is given
when more information is needed for programming
considerations.

ASCII decimal values for the printer control codes can
be found under “Printer Character Sets.”

The Descriptions that follow assume that the printer
DIP switches have not been changed from their factory
settings.

Printer code Printer Function

NUL Null:
Used with ESC B and ESC D as a list
terminator. NUL is also used with
other printer.

3-116 Printers

BEL

LF

CR

control codes to select options (for example, ESC S).
Example:

LPRINT CHRS$ (0);

Bell:

Sounds the printer buzzer for 1 second.
Example:

LPRINT CHRS$(7);

Horizontal Tab:

Tabs to the next horizontal tab stop. Tab
stops are set with ESC D. Tab stops are set
every 8 columns when the printer is powered
on.

Example:

LPRINT CHR$(9);

Line Feed:

Spaces the paper up one line. Line spacing
is 1/16-inch unless reset by ESC A, ESC 0,
ESC 1, ESC 2, or ESC 3.

Example:

LPRINT CHR$(10);

Form Feed:

Advances the paper to the top of the next page.

w
‘-
172}
—p
(s}
3
=
]
=3
S
3
(7]

Note: The location of the paper, when the
printer is powered on, determines the top of
the page. The next top of page is 11 inches
from that position. ESC C can be used to
change the page length.

Example:

LPRINT CHR$(12);

Carriage Return:

Ends the line that the printer is on and
prints the data remaining in the printer
buffer. (No Line Feed operation takes
place.)

Printers 3-117

SO

SI

DC2

DC4

CAN

ESC

ESC -

3-118 Printers

Note: IBM Personal Computer BASIC adds a Lin
Feed unless 128 is added [for example
CHR$(141)].

Example:

LPRINT CHR$(13);

Shift Out (Double Width):

Changes the printer to the Double-Width print-mode.

Note: A Carriage Return, Line Feed or DC4
cancels Double-Width print-mode.

Example:

LPRINT CHR$(14);

Shift In (Compressed):

Changes the printer to the Compressed-Character
print-mode. Example:

LPRINT CHR$(15);

Device Control 1 (Compressed Off):

Stops printing in the Compressed print-mode.
Example:

LPRINT CHR$(18);

Device Control 4 (Double Width

Off):

Stops printing in the Double-Width print-mode.
Example:

LPRINT CHR$(20);

Cancel:

Clears the printer buffer. Control codes,
except SO, remain in effect.

Example:

LPRINT CHR$(24);

Escape:

Lets the printer know that the next data sent
is a printer command.

Example:

LPRINT CHR$(27);

Escape Minus (Underline)

ESCO

ESC1

ESC2

ESC3

ESC 6

ESC7

Format: ESC -;n;

ESC - followed by a 1, prints all of the following
data with an underline.

ESC - followed by a 0 (zero), cancels the Underline
print-mode.

Example:

LPRINT CHR$(27);CHR$(45);CHR$(1);
Escape Zero (1/8-Inch Line Feeding)

Changes paper feeding to 1/8-inch.

Example:

LPRINT CHR$(27);CHR$(48);

Escape One (7/72-Inch Line

Feeding)

Changes paper feeding to 7/72-inch.

Example:

LPRINT CHR$(27); CHR$(49);

Escape Two (Starts Variable

Line-Feeding)

ESC 2 is an execution command for ESC A. If
no ESC A command has been given, line feeding
returns to 1/6-inch.

Example:

LPRINT CHR$(27);CHR$(50);

Escape Three (Variable

Line-Feeding)

Format: ESC 3;n;

Changes the paper feeding to n/216-inch. The
example that follows sets the paper feeding

to 54/216 (1/4)-inch. The value of n must be
between 1 and 255.

Example:

LPRINT CHR$(27);CHR$(51);CHR$(54);
Escape Six (Select Character Set 2)

Selects Character Set 2. (See “Printer
Character set 2”)

Example:

LPRINT CHR$(27);CHR$(54);

Escape Seven (Select Character Set 1)

92
P
ﬁ
[22)
3
=)
=
-
z
=]
»

Printers 3-119

ESC8

ESC9

ESC <

ESCA

3-120 Printers

Selects character set 1. (See “Printer
Character Set 1)

Character set 1 is selected when the printer
is powered on or reset.

Exampie:

LPRINT CHR$(27);CHRS$(55);

Escape Eight (Ignore Paper End)

Allows the printer to print to the end of the
paper. The printer ignores the Paper End
switch.

Exampie:

LPRINT CHR$(27);CHR$(56);

Escape Nine (Cancel Ignore Paper

End)

Cancels the Ignore Paper End command. ESC 9
is selected when the printer is powered on or
reset.

Example:

LPRINT CHR$(27);CHR$(57);

Escape Less Than (Home Head)

The printer head returns to the left

margin to print the line following ESC <.
This occurs for one line only.

Example:

LPRINT CHR$(27);CHR$(60);

Escape A (Sets Variable Line

Feeding) v

Format: ESC A;n;

Escape A sets the line-feed to n/72-inch.
The example that follows tells the printer to
set line feeding to 24/72-inch. ESC 2 must
be sent to the printer before the line

feeding changes. For example, ESC A;24
(text) ESC 2 (text). The text following ESC
A;24 spaces at the previously set

line-feed increments. The text following ESC
2 prints with new line-feed

increments of 24 /72-inch. Any increment
between 1/72 and 85/72-inch may be used.

ESCC

ESCD

Example:

LPRINT

CHR$(27);CHRS$(65);CHR$(24);
CHR$(27);CHR$(50);

Escape C (Set Lines-per-Page)

Format: ESC C;n;

Sets the page length. The ESC C command must
have a value following it to specify the

length of page desired. (Maximum form length
for the printer is 127 lines.) The example
below sets the page length to 55 lines. The
printer defaults to 66 lines-per-page when
powered on or reset.

Example:

LPRINT CHR$(27);CHR$(67);CHRS$(55);

Escape C (Set Inches-per-Page)

Format: ESC C;n;m,;

Escape C sets the length of the page in
inches. This command requires a value of 0
(zero) for n, and a value between 1 and 22
for m.

Example:

LPRINT CHR$(27);CHR$(67);CHRS$(0);CHR$(12);
Escape D (Sets Horizontal Tab Stops)

Format: ESC D;n1;n2;...nk;NUL;

Sets the horizontal-tab stop-positions. The

example that follows shows the horizontal-tab
stop-positions set at printer column

positions of 10, 20, and 40. They are

followed by CHR$(0), the NUL code. They must
also be in ascending numeric order as shown.

Tab stops can be set between 1 and 80. When

in the Compressed-print mode, tab stops can

be set up to 132.

The Graphics Printer can have a maximum of 28

tab stops. The HT (CHR$(9)) is used to

execute a tab operation.

Example:

p
A
"f‘.‘
o
3
C
°
=
=
=
74

Printers 3-121

ESCE

ESCF

ESC G

ESCH

ESCJ

ESCK

3-122 Printers

LPRINT

CHR$(27); CHR$(68); CHR$(10)
;:CHR$(20):CHR $(40);

CHRS$(0);

Escape E (Emphasized)

Changes the printer to the Emphasized-print
mode. The speed of the printer is reduced to
half speed during the Emphasized-print mode.
Example:

LPRINT CHR$(27);CHR$(69);

Escape F (Emphasized Off)

Stops printing in the Emphasized-print mode.
Exampie:

LPRINT CHR$(27);CHR$(70);

Escape G (Double Strike)

Changes the printer to the Double-Strike
print-mode. The paper is spaced 1/216 of an
inch before the second pass of the print
head.

Example:

LPRINT CHR$(27);CHR$(71);

Escape H (Double Strike Off)

Stops printing in the Double-Strike mode.
Example:

LPRINT CHR$(27);CHR$(72);

Escape J (Sets Variable Line Feeding)
Format: ESC J;n;

When ESC J is sent to the printer, the paper
feeds in increments of n/216 of an inch.

The value of n must be between 1 and 255.
The example that follows gives a line feed of
50/216-inch. ESC J is canceled after the
line feed takes place.

Example:

LPRINT CHR$(27);CHR$(74);CHR$(50);
Escape K (480 Bit-Image Graphics

Mode)

Format ESC K;nl1;n2;v1;v2;...vk;

Changes from the Text mode to the Bit-Image

Graphics mode. nl and n2 are one byte, which
specify the number of bit-image data bytes to

be transferred. v1 through vk are the bytes

of the bit-image data. The number of

bit-image data bytes (k) is equal to nl

+256n2 and cannot exceed 480 bytes. At every
horizontal position, each byte can print up

to 8 vertical dots. Bit-image data may be

mixed with text data on the same line.

Note: Assign values to nl and n2 as follows:
nl represents values from 0 - 255.
n2 represents values from 0 - 1 x 256.

MSB is most-significant bit and LSB is least

7>
-significant bit. b
3
The following figures show the format. o
=
=
e
3
w
MSB LSB]
27 2% 2% 2t 2 22 2t 2°
MSB LSB |

Data sent to the printer.

lText(ZOcharacters) ESC K n=360 Bit-image data Nextdzﬂ

Printers 3-123

In text mode, 20 characters in text
mode correspond to 120 bit-image
positions (20 x 6 = 120). The
printable portion left in Bit-Image
mode is 360 dot positions (480 - 120
= 360).

Data sent to the printer.

n, n2 n

1M2
F)ata A LESC K Uinz I Data B rData CTESC [K Inﬁ nJ Data D]
Bit- Bit-
image image
data data

Text
data

Length of
data

Text
data

Length of
data

s 480 bit-image dot positions —{

Example: 1 'OPEN PRINTER IN RANDOM MODE
WITH LENGTH OF 255

2 OPEN “LPT1:”AS #1

3 WIDTH “LPT1:”,255

4 PRINT #1,CHR$(13)+CHR$(10);

5 SLASH$=CHRS$(1)+CHR$(02)
+CHR$(04)+ CHR$(08)

6 SLASH$=SLASH$+CHR$(16)+CHRS$(32)
+CHR&(64)+CHR(128)+CHRS$(0)

7 GAP$=CHR$(0)+CHR$(0)+CHRS$(0)

8 NDOTS=480

9 ’ESC K N1 N2

10 PRINT #1,CHR$(27);“K”’;CHR$(NDOTS
MOD 256);CHRS$ (FIX(NDOTS/256));

11 'SEND NDOTS NUMBER OF BIT

IMAGE BYTES

12 FOR I=1 TO NDOTS/12 '"NUMBER

OF SLASHES TO

PRINT USING GRAPHICS

13 PRINT #1,SLASHS;GAPS;

3-124 Printers

ESCL

ESCN

ESCO

ESCS

14 NEXT I
15 CLOSE
16 END

This example gives you a row of slashes
printed in the Bit-Image mode.

Escape L (960-Bit-Image

Graphics-Mode)

Format: ESC L;n1;n2;v1;v2;...vk;

Changes from the Text mode to the Bit-Image
Graphics mode. The input is similar to ESC
K. The 960 Bit-Image mode prints at half the
speed of the 480 Bit-Image Graphics mode, but
can produce a denser graphic image. The
number of bytes of bit-image Data (k) is nl
+256n2 but cannot exceed 960. nl is in the
range of 0 to 255.

Escape N (Set Skip Perforation)

Format ESC N;n;

Sets the Skip Perforation function. The
number following ESC N sets the value for the
number of lines of Skip Perforation. The
example shows a 12-line skip perforation.

This prints 54 lines and feeds the paper

72
e
Py
(4]
3
C
=
=
=
-
»

12 lines. The value of n must be between 1

and 127. ESC N must be reset anytime the
page length (ESC C) is changed.

Example:

LPRINT CHR$(27);CHR$(78);CHR$(12);
Escape O (Cancel Skip Perforation)

Cancels the Skip Perforation function.
Example:

LPRINT CHR$(27);CHR$(79);

Escape S (Subscript/Superscript)

Format: ESC S;n;

Changes the printer to the Subscript print
mode when ESC S is followed by a 1, as in the
example that follows. When ESC § is followed
by a 0 (zero), the printer prints in the

Printers 3-125

Superscript print mode.
Example:
LPRINT CHR$(27);CHR$(83);CHR$(1);
ESCT Escape T (Subscript/Superscript Off)
The printer stops printing in the Subscript
or Superscript print mode.
Example:
LPRINT CHR$(27);CHR$(84);
ESCU Escape U (Unidirectional Printing)
Format: ESC U;n;
The printer prints from left to right
following the input of ESC U;1. When ESC U
is followed by a 0 (zero), the left to right
printing operation is canceled. The
Unidirectional print-mode (ESC U) ensures a
more accurate print-start position for better
print quality.
Example:
LPRINT CHR$(27);CHR$(85);CHRS$(1);
ESC W Escape W (Double Width)
Format: ESC W;n;
Changes the printer to the Double-Width print
mode when ESC W is followed by a 1. This
mode is not canceled by a line-feed operation
and must be canceled with ESC W followed by a
0 (zero).
Example:
LPRINT CHR$(27);CHR$(87);CHR$(1);
ESCY Escape Y (960 Bit-Image Graphics
Mode Normal Speed)
Format: ESC Y nl;n2;v1;v2;...vk;
Changes from the Text mode to the 960
Bit-Image Graphics mode. The printer prints
at normal speed during this operation and
cannot print dots on consecutive dot
position. The input of data is similar to
ESCL. '
ESCZ Escape Z (1920 Bit-Image Graphics
Mode)

3-126 Printers

Format: ESC Z;n1;n2;v1;v2;...vk;
Changes from the Text mode to the 1920
Bit-Image Graphics mode. The input is
similar to the other Bit-Image Graphics

modes. ESC Z can print only every third dot
position.

»
A
!‘
(2]
3
-
=
-
S
3
1’4

Printers 3-127

3-128 Printers

[¢] 1 2 3 4 5 6 7 8 9
NUL BEL HT
10 11 12 13 14 15 16 17 18 19
LF FF | CR|SO| S 0c2
20 21 22 23 24 25 26 27 28 29
oc4 CAN ESC
30 31 32 33 34 35 36 37 38 39
Pl LI #!S|%|&I’
40 41 42 43 44 45 46 47 48 49
()| *(+].[-].]/7]0]1
50 51 52 53 54 55 56 57 58 59
2/3/4/,5/6/7/8(9]|:|;
60 61 62 63 64 65 66 67 68 69
<|=|>|?|9|A|B|C|D|E
70 71 72 73 74 75 76 77 78 79
FIGH| I |J|K|LIM|N|O
80 81 82 83 84 85 86 87 88 89
PQR|S| TIUIVIWX|Y
90 91 92 93 94 95 96 97 a8 99
Z\[|\]]|"_ |alb|c
100 101 02 103 104 105 106 107 108 109
die/f|g|h|i|j|k|Il|m
110 111 112 113 114 115 116 117 118 119
[11 olplq|r|s|tjujvjw
100 1.0 10 3 2 ks 1.6, 127 128 129
I
xiylz|{|/I1}|~ NUL

Printer Character Set 1 (Part 1 of 2)

136 137 138 139

135

131 132 133

130

149

System Options

134

[=2] (2]
2 g b 2 mT- mImD b llCl =
FSM% o, | © o | ®
= |5 8 | o~ |® 2 o m1 W g w 3 o
o~
= 2 g oI |r mlwr—_l_m T E QR 2
@ > 5 3
© N © © o © ©l ©
|8 (e o9 @ IR ® 9— 8 rmm%._.
- ~
@ o %%:Nm 8 o 9 - o o a
=S 4 G b i~ 2 2 5 Q B o 5™ |5 o
3 3 g |2 mlmImrI L 3 B il |
— o~ o~ o~
I > |2 g \3 nulglwim[_ll_ 2D Ve~
o~ o~ o~
(5 . =] = | L~ o
18 3 5 4o [ST |y 2 (O [A C
- 5 1211111 = - a
s K5 s o = f |z 3| mrr [uTu.Inr\
of w |2 o o o o ol |
BN AR Il el il EYNNE

Printer Character Set 1 (Part 2 of 2)

Printers 3-129

NUL vieé A | BEL HT
10 11 12 13 14 15 T 17 14 19
LF FF | CR| SO SI oc2
20 21 22 23 24 25 26 27 28 29
oc4 E; CAN ESC
30 31 32 33 34 35 36 37 38 39
Sp ! rs # S % & ’
40 4! 42 43 44 45 db a7 48 49
()| "+, |- /101
50 51 52 53 54 55 50 b7 58 59
2/3/4/5/6/7 8|9 ;
60 61 652 63 64 65 66 67 68 69
<|=|>|?|/A|B|C|D|E
70 71 72 73 74 75 76 77 8 79
FIGH I|J|KILIMNO
Tl) 81 82 83 84 85 86 87 88 89
PQR|SITIUVWX|Y
90 91 92 93 94 35 96 97 98 99
z [|\/1"_+|abjc
100 100 19 103 104 106 106 107 108 109
die fighl il jlk{lm
S0 111 110 113 111 11 116 117 118 114
nopqris/itiuvjw
1000 1. 1.0 23 1. 12 1.4 127 1.8 129
| ~ ..
xyz/{] Clu

Printer Character Set 2 (Part 1 of 2)

3-130 Printers

130 131 132 133 134 135 136 137 138 139
’ ~ L - o ~ we 3
éjajalalalc|ée|e|e]i
140 141 142 143 144 145 146 147 148 149
T TaTla] 2 1.7,
i|i|A|/A|E|a&| Al b o)
150 151 152 153 154 155 156 157 158 159
"~ - oo .e on
G|u O|GU[¢C|E¥R|F
160 161 162 163 164 165 166 167 168 163
ré y 4 L4 o~ A1 .
ijojuln|/N|a|o|¢i|m

201 202 203 204 205 206 207 208 209

211 212 213 214 215 216 217 218 219
220 221 222 223 224 225 226 227 228 229
230 231 232 233 234 235 236 237 238 239
nlT|QlO(0|s ||| e |N
240 241 242 243 244 245 246 247 248 249
=+ |>I< J * =] 0| ®
250 251 252 253 254 255

Printer Character Set 2 (Part 2 of 2)

Printers 3-131

7
e
2
(2]
E
=)
=]
=
S
=
72}

Notes:

3-132 Printers

IBM PC Compact Printer

The PC Compact Printer is a stand-alone, tabletop unit
that plugs into a standard wall outlet. Using an
eight-wire print head, the printer can print characters
from the standard ASCII, 96-character, uppercase and
lowercase character sets, and prints the characters in a
5-by-7 dot matrix at 56 characters-per-second (cps). It
prints in one direction (left-to-right) and has four print
modes. In the standard mode, the printer prints 80
characters-per-line; in the compressed mode, 136
characters; in the double-width mode, 40 characters,
and in the compressed double-width mode, 68
characters-per-line. The PC Compact Printer can also
underline characters, has an extended character-set for
international languages, and can accept special
characters programmed by the user.

The printer has a 1.89 meter (6-foot), 16-lead, printer
cable that connects, through an Amphenol connector,
to the serial port (RS-232-C) at the rear of the system
unit.

2]
>
4
®
3
=)
e
=,
=]
-
7]

Printers 3-133

+Vn - > VOLTAGE

P17 > LoGIC

REG. AND

SAFETY

. <'[“———:> DATA LATCH :: >
P30-37 ADR/DATA BUS SNTALS2Ts

HEAD DRIVER
ULN2803A

THERMAL
HEAD

pazlg

PULSE
LAMP/MOTOR MOTOR
! ORIVER
P10-13 ULN2013
P16
MPU -
HD68D1 ToLED
V5
P46 |¢- FROM LF KEY
FROM HOME

POSITION SWITCH

-

Olyra

J 4.91 MHz

ADDRESS
_L LATCH

2KB
STATICRAM
HMG6116

3-134 Printers

RD

PAD-44 HIGH ORDER ADDRESS
P23 |-
DRIVER/
RECEIVER
P15 —P cTs

1]

+12v -2y

T0 IBM PCijr

Printer Specifications

Print Method: Thermal, non-impact,
Dot-matrix
Print Speed: 56 cps
Print Direction: Left to right only
Number of Pins in 8 -
Print Head: <
Y
Line Spacing: 4.23 mm (1/6 in) Z
<
Matrix Pattern: 5 by 7 Dots =
3
w
Character Set: Full 96-character ASCII
with descenders, plus
international
characters/symbols
Graphics: None

Printers 3-135

Print Modes:

Standard
Double Width
Compressed

Compressed/
Double Width

Paper Feed:
Paper Width:
Copies:

Paper Path:
System Interface:

Print Color:

3-136 Printers

Characters Maximum

per Inch Characters
per Line

10 80

5 40

17.5 136

8.75 68

Friction Feed

216 mm (8.5 in)

Single sheet only

Top

Serial Data and Control Lines

Black only

Environmental

Conditions
Temperature: 5°C (+41°F) to 40°C
(104°F)
Humidity: 10 to 80% non-condensing
Power Requirement
Voltage: 110 Vac 60 Hz
Current: - 245 mA
Power Consumption: 36 watts n
(]
28
Heat Output: 57.6 kJ (54.6 BTU)/hr §
(maximum) o
Physical .1
Characteristics g'
74
Height: 88.9 mm (3.5 in)
Width: 312.4 mm (12.3 in)
Depth: 221 mm (8.7 in)
© Weight: 2.9 kg (6.6 1b)

Power Cable Length: 1.98 m (6.5 ft)
Size: 28 AWG
Printer Cable Length: 1.83 m (6 ft)

Size: 3 by 18 AWG

Printers 3-137

Character Set:

3-138 Printers

ASCII numbers 0 to 31 contain
control codes and special
characters. ASCII numbers 32 to
127 contain the standard printable
characters. ASCII numbers 128 to
175 contain European characters.
ASCII numbers 224 to 255
contain math and extra symbols.

Serial Interface Description

Specifications:
Data Transfer Rate: 1200 bps (maximum)

" Synchronization: internal clocking
Handshaking: CTS (Clear to Send) Pacing
Logic Level: Input data and all interface

control- signals are EIA
Levels
Connector Plug: 9804 (Amphenol)

The following figure shows the timing of the Serial
Interface.

suond(washg

|-<-—- Character Period ————--I

Two
Received Stop
Data @ = L __ _ L o e e e e e - e = = Bits
One
Start
Bit
< . o
* T >
High (Ready)
CTS
RDY Low (Busy) L

Serial Interface Timing Diagram

Printers 3-139

Print Mode Combinations for the PC Compact
Printer

The following figure shows the print-mode
combinations possible with the PC Compact Printer.
Modes shown in the same column can be combined. A
print mode can be changed at any time within a line:
however, the double-width mode effects the entire line.

Modes
Standard XXX
Compressed (XXX XXX XXX
Double-Width XXX | XXX XXX
Underline XXX XXX XXX XXX

Printer Control Codes and Functions

On the following pages you will find a detailed list of
the printer control codes and functions. This list also
includes descriptions of the functions and examples
of the printer control codes.

The examples (LPRINT statements) given in the
detailed descriptions of the printer control codes and
functions list, are written in BASIC. Some knowledge
of BASIC programming is needed to understand
these codes. Some of the printer control codes also
show a “Format” description when more
information is needed for programming
considerations.

3-140 Printers

CODE

CAN

CR

DC2

DC4

ESC

PRINTER FUNCTION

Cancel

Clears the printer buffer. Control codes,
except SO, remain in effect. Reinitializes
the printer to the power on defaults.
LPRINT CHR$(24);

Carriage Return

Ends the line the printer is on and prints
any data remaining in the printer buffer.
The logical character position is moved to
the left margin. (No Line Feed operation
takes place.) Note: IBM Personal
Computer BASIC adds a Line Feed unless
128 is added.

LPRINT CHR$(13);

Device Control 2 (Compressed Off)
Stops printing in the Compressed mode.
LPRINT CHR$(18);

suond(wajskg

Device Control 4 (Double Width Off)
Stops printing in the Double Width mode.
LPRINT CHR$(20);

Escape

Informs the printer that the following data
is a printer command. (See the following
ESC commands.)

LPRINT CHR$(27);

Printers 3-141 A

ESCB Escape B (Set Vertical Tabs)
Sets vertical tab stop positions. Up to 64
vertical tab stop positions are recognized by
the printer. Tab stop positions must be
received in ascending numeric order. The
tab stop numbers do not become valid until
you type the NUL code. Once vertical tab
stops are established, they are valid until
new tab stops are specified. (If the printer
is reset or switched Off, set tab stops are
cleared.) If no tab stop is set, the Vertical
Tab command acts as a Line Feed
command. ESC B followed only by NUL
cancels tab stops. The form length must be
set by the ESC C command prior to setting
tabs.
LPRINT
CHR$(27);CHR$(66); CHR$(10);CHR$(20);
CHR$(40);CHR$(0);

ESCC Escape C (Set lines per page)
Format: ESC C;n; Sets the page length.
The ESC C command must be followed by
a value to specify the length of page desired.
(Maximum form length for the printer is
127 lines.) The following example sets the
page length to 55 lines. The printer default
is 66 lines per page when switched On or

reset.
LPRINT CHR$(27);CHR$(67);CHR$(55);

3-142 Printers

ESCD

ESCK

Escape D (Set Horizontal Tab Stops)

Sets the horizontal tab stop positions. The
following example shows the horizontal tab
stop positions set at printer column
positions of 10, 20 and 40. The horizontal
tab stops are followed by CHR$(0), the
NUL code. They must also be in ascending
numeric order as shown. You can set tab
stops between 1 and 80. When in the
Compressed print mode, you can set tabs up
to column 136. The maximum number of
tabs that can be setis 112. HT (CHR$(9))
is used to execute a tab operation.

LPRINT

CHR$(27); CHR$(68);CHR$(10)CHR$(20)
CHR$(40);CHR$(0);

Escape K (480 Bit-Image Graphics Mode)
Format: ESC K;n1;n2; vl; v2;.....vk;
Changes the printer to the Bit-Image
Graphics mode. Dot density is 82.5 by 82.5
dots per inch. If the graphics data exceeds
the space remaining on the line, the printer
ignores the excess data. Only the excess
data is lost.

The numbers n1 and n2 specify, in binary
form, the number of bit image data bytes to
be transferred. Assign values to nl to
represent values from zero to 255 and
assign values to n2 to represent values from
0-1 x 256. The total number of bit image
data bytes cannot exceed 480. (nl + (n2 X
256)).

Printers 3-143

w
<~
A
4
o
3
=
S
=
g
7

ESCN

3-144 Printers

The bit-image dafa bytes are v1 through vk.

All eight of the print head wires are used to
print Bit-image graphics. Each bit of a
bit-image data byte represents a dot
position within a vertical line. The least
significant bit (LSB) represents the bottom
dot position, and the most significant bit
(MSB) represents the top dot position. For
example, if vX is hex 80, the top dot will
print only in that vertical position; if vX is
hex 01, the bottom dot will print; and if vX
is hex FF, all eight dots will print.

Dot Bit Number

Top O---8
0---7
O---6
O---5
O0---4
0---3
0---2

Bottom O---1
LPRINT CHR$(27);CHR$(75);n1;n2

Escape N (Set Skip Perforation)

Format: ESC N;n; Sets the Skip Perforation
function. The number foilowing ESC N
sets the number of lines to be skipped. The
example shows a 12-line skip perforation.
This command will print 54 lines and feed
the paper 12 lines. The value of n must be
between 1 and 127. ESC N must be reset
anytime the page length (ESC C) is
changed. The default for skip perforation is
25.4 mm (1 inch). A

LPRINT CHR$(27);CHR$(78); CHR$(12);

ESCO

ESCR

ESCW

ESCO

ESC1

ESC 2

ESC S

Escape O (Cancel Skip Perforation)
Cancels the Skip Perforation function.
LPRINT CHR$(27);CHR$(79);

Escape R (Clear Tabs)
Resets all tab stops,both horizontal and

vertical to the powered-on defaults.

LPRINT CHR$(27);CHR$(82);

Escape W (Double Width)

Format: ESC W;n; Changes the printer to
the Double Width mode when ESC W is
followed by 1. This mode is not canceled
by a line feed operation. It is canceled
when ESC W is followed by 0 (zero).
LPRINT CHR$(27);CHR$(87); CHR$(1);

Escape Zero (1/9-Inch Line Feed)
Changes the line feed to 2.82 mm (1/9
inch).

LPRINT CHR$(27);CHR$(48);

w
>
4
®
3
=)
=
=,
=}
=]
*

Escape One (1/9-inch Line Feed)
Changes the line feed to 2.82 mm (1/9
inch). ESC 1 functions the same as ESC 0.
LPRINT CHR$(27);CHR$(49);

Escape Two (Start Variable Line Feeding)
Resets line spacing to 4.23 mm (1/6 inch).
This is the powered-on default for vertical
line spacing.

LPRINT CHR$(27);CHR$(50);

Escape Five (Sets Automatic Line Feed)
With automatic line feed on, when a CR
code is received, a line feed automatically
follows after the carriage return. ESC 5 (1)
sets auto line feed; ESC 5 (0) resets it.
LPRINT CHR$(27);CHR$(53);

Printers 3-145

ESC -

ESC <

LF

3-146 Printers

Escape Minus (Underline)

Format: ESC -;n; ESC - followed by 1,
prints all of the following data with an
underline. ESC - followed by 0 (zero),
cancels the Underline print mode.

LPRINT CHR$(27);CHR(45);CHR$(1); [or
CHR$(0);]

Escape Less Than (Home Head)
The print head returns to the left margin to
print the line following ESC <. This occurs

for one line only.
LPRINT CHR$(27);CHR$(60);

Form Feed

Advances the paper to the top of the next
page. Note: The location of the paper,
when the printer power switch is set to the
On position, determines the top of the page.
The next top-of-page is 279 mm (11 inches)
from that position. ESC C can be used to
change the page length. Always separate
multiple Form Feed commands with spaces.
LPRINT CHR$(12);

Horizontal Tab

Tabs to the next horizontal tab stop. Tab
stops are set with ESC D. (Tab stops are
automatically set at every 8 columns when
the printer power switch is set to the On
position.)

LPRINT CHR$(9);

Line Feed

Advances the paper one line. Line spacing
is 4.23 mm (1/6 inch) unless reset by ESC
0, ESC 1, ESC 2.

LPRINT CHR$(10);

NUL

SI

SO

Null

Used with ESC B and ESC D as terminator
for the tab set and clear commands.
LPRINT CHR$(0);

Shift In (Compressed On)

Changes the printer to the Compressed
Character mode. This command is canceled
by a DC2 code (Compressed Off).

LPRINT CHR$(15);

Shift Out (Double Width)

Changes the printer to the Double Width
mode. Note: A Carriage Return, Line Feed
or DC4 code cancels Double Width mode.
LPRINT CHR$(14);

Vertical Tab

Spaces the paper to the next vertical tab
position. VT are set by the ESC B
sequence. The VT command is the same as
the LF command, if no tabs are set. The
paper is advanced one line after printing or
advanced to the next vertical tab stop.
LPRINT CHR$(11);

The following charts list the printer control codes
and characters in ASCII decimal numeric order, (for
example, NUL is 0 and ESC W is 87).

Printers 3-147

w
[>7)
4
o
3
=
=
=
=}
=
73

0 1 2 3 4 5 6 7 8 9
NUL VéRhAe lHT
10 1" 12 13 14 15 16 17 18 19
LF [VT | FF [CR | sO S|J><ncz|!
20 21 22 23 24 25 26 27 28 29
omﬁg-}_CAN l —|Esc| | |«>
30 31 32 33 34 35 36 37 38 39
| | H(S (% &
40 41 42 43 44 45 46 a7 48 49
(L)Y *(+]., |— /1011
50 51 52 53 54 55 56 57 58 59
2/ 314,55/ 6|7 8|9 ;
60 61 62 63 64 65 66 67 68 69
<|=|>|?|9/A|B|C|D|E
70 71 72 73 74 75 76 77 78 79
FIGH{I|J/KILIMN|O
80 81 82 83 84 85 86 87 88 89
PIQ R SITIUVWX|Y
90 91 92 93 94 95 96 97 98 99
zitINl11~ | lalble
100 101 102 103 104 105 106 107 108 109
de|figh|i|jlk{lI|m
110 111 112 113 114 115 116 117 118 119
nojplg/ris|/tjiujviw
120 121 122 123 124 125 126 127 128 129.
x|\ylz|{|}|]] [eciC|ui

Character Set (Part 1 of 2)

3-148 Printers

130 131 132 133 134 135 136 137 138 138

®
a»
o
o]
Qo
<
o
®
o

140 149 142 143 144 145 146 147 148 149

150 151 152 153 154 155 156 157 158 159

160 161 162 163 164 165 166 167 168 169

170 171 172 173 174 175 176 177 178 179

180 181 182 183 184 185 186 187 188 189

190 191 192 193 194 195 196 197 198 199

suond () waIskg

200 201 202 203 204 205 206 207 208 209

210 211 212 213 214 21§ 216 217 218 219

220 221 222 223 224 225 226 227 228 229

230 231 232 233 234 235 236 237 237 239

240 241 242 243 244 245 246 247 248 249

If
H
IV
A\
h
-
U
»

250 251 252 253 254 255

-,j’nlep

Character Set (Part 2 of 2)

Printers 3-149

Compact Printer
[Signal Cable

Ao A01
B08 BO1
16 Pin Connector

Signal Name - Description Pin

Not Used A01

Data Terminal Ready A02

' Request To Send A03

Transmit Data J J A04

] j Carrier Detect AOS’

Data Set Ready A06
Compact Clear To Send AOL. Serial Port
Printer Not Used A08 (RS-232-C)

Not Used BO1

Not Used B02

Not Used B0O3

Ground BO4

Not Used BOS

Not Used - BO6

Ground BO7

Not Used BO8

Data Terminal Ready Looped in Cable to Data Set Ready
Request to Send Looped in Cable to Carrier Detect

Connector Specifications

3-150 Printers

SECTION 4. COMPATIBILITY

WITH THE IBM PERSONAL
COMPUTER FAMILY
Contents
Compatibility Overview a3
Timing Dependencies 4-3
Dnequal Configurations - 31

I D

User Read/ Write Memory
Diskette Capacity/Operation
IBM PCr Cordless Keyboard
LColor Graphics Capability
Black and White Monochrome Display

RS232 Senal Port and IBM P(jr Internal
Modem

4-1

funquedwo)

Notes:

Compatibility Overview

The IBM PCjr is a different Computer than the IBM
Personal Computer and IBM Personal Computer XT.
Even though it is different, the IBM PCjr has a high
level of programming compatibility with the IBM
Personal Computers. It is possible to create PCjr
software applications that can run without modification
on other IBM Personal Computers. In order to create
such programs or to assess if a current program is
compatible, you must understand the differences
between the Personal Computers in the IBM family and
know the proper way to communicate with them.

Normally, it would be impossible for a program written
for one computer to run on a different computer since
the microprocessors would be different; and the
language of the application could not be executed by
different processors. In this case, the application would
have to be re-written entirely in the language of the
other processor. Since the IBM PCjr and the other
IBM Personal Computers use exactly the same
microprocessors (Intel 8088), most assembler language
programs need not be modified.

This alone is not enough, since applications normally
take advantage of a computers device services (BIOS)
and operating system (IBM DOS 2.1). In order to
allow for maximum program compatibility, the IBM
PCjr has maintained all BIOS system interrupts and
utilizes the same IBM DOS. This means that
applications which use the BIOS and the IBM DOS
interrupts on the IBM Personal Computers operate the
same on the IBM PCjr.

@)
e
3
=
B
=.
=
E
-

Note: The BIOS micro-code of the IBM PC;r is not
identical to that of the IBM Personal Computers. If
an application bypasses the BIOS interrupt calls and

Overview 4-3

directly accesses routines and/or storage locations in
one system, it may not run in the other system. Some
routines may be similar and some BIOS storage
locations may be the same. It is strongly
recommended that applications use only the BIOS and
DOS interrupt interfaces in order to achieve
compatibility in the IBM Personal Computer family.

Using the same language and the BIOS and DOS
interfaces go a long way in achieving application
compatibility. However, there are still several factors
which need to be taken into consideration:

o Timing Dependencies

« Unequal Configurations

o Hardware Differences

A4 Oworview

Compatibility Overview

The IBM PCjr is a different Computer than the IBM
Personal Computer and IBM Personal Computer XT.
Even though it is different, the IBM PCjr has a high
level of programming compatibility with the IBM
Personal Computers. It is possible to create PCjr
software applications that can run without modification
on other IBM Personal Computers. In order to create
such programs or to assess if a current program is
compatible, you must understand the differences
between the Personal Computers in the IBM family and
know the proper way to communicate with them.

Normally, it would be impossible for a program written
for one computer to run on a different computer since
the microprocessors would be different; and the
language of the application could not be executed by
different processors. In this case, the application would
have to be re-written entirely in the language of the
other processor. Since the IBM PCjr and the other
IBM Personal Computers use exactly the same
microprocessors (Intel 8088), most assembler language
programs need not be modified.

This alone is not enough, since applications normally
take advantage of a computers device services (BIOS)
and operating system (IBM DOS 2.1). In order to
allow for maximum program compatibility, the IBM
PCjr has maintained all BIOS system interrupts and
utilizes the same IBM DOS. This means that
applications which use the BIOS and the IBM DOS
interrupts on the IBM Personal Computers operate the
same on the IBM PCjr.

@
=}
3
=
=
=,
=2
:-'::
<

Note: The BIOS micro-code of the IBM PC;r is not
identical to that of the IBM Personal Computers. If
an application bypasses the BIOS interrupt calls and

Overview 4-3

directly accesses routines and/ or storage locations in
one system, it may not run in the other system. Some
routines may be similar and some BIOS storage
locations may be the same. It is strongly
recommended that applications use only the BIOS and
DOS interrupt interfaces in order to achieve
compatibility in the IBM Personal Computer family.

Using the same language and the BIOS and DOS
interfaces go a long way in achieving application
compatibility. However, there are still several factors
which need to be taken into consideration:

« Timing Dependencies

¢ Unequal Configurations

+ Hardware Differences

4.4 Owerview

Timing Dependencies

Programs running in user read/write memory normally
run slower on the PCjr than on the IBM Personal
Computers. Programs running in read-only memory
(ROM) normally run a little faster on the PC;r than on
the IBM Personal Computers. This may or may not
cause a difference depending upon the application.
Most applications are very I/O dependent in which
case the execution time is not the critical factor and
may not be noticeable. In other cases, the application
runs the same but merely take a different amount of
time.

If an application has very critical timing dependencies,
any timing differences (faster or slower) may adversely
affect its usability. Using an application’s program
execution speed to achieve a desired timing can effect
the application. In these cases, the application may
need to be modified.

Note: It is strongly recommended not to depend on
instruction execution speed to achieve specific
application timing. The system timer can provide
short interval timing for assembly language
programs. Similar timing functions are available in
BASIC.

@)
=}
3
=
£
=.
g
:.7
<

Performance of specific I/O devices (such as diskette
or printer) may also differ between the PCjr and the
other IBM Personal Computers. You should also avoid
using timing of any I/O device as a dependency for the
application.

Timing Dependencies 4-5

Notes:

4-6 Timing Dependencies

Unequal Configurations

In designing an application to run on both the IBM
PCjr and the IBM Personal Computers, you need to
make sure that the required hardware configuration is
available on all machines. This means the application’s
minimum requirements are met by all IBM Personal
Computers.

®)
=
3
=
-]
=
g
:T.
‘-

Unequal Configurations 4-7

Notes:

4-8 Unequal Configurations

Hardware Differences

To be able to run on either computer without change,
an application utilizing a specific I/O device must have
access to identical devices (or devices with identical
operating characteristics and interfaces). The IBM
PCjr and the IBM Personal Computers have very
compatible I/0 device capabilities.

The following table lists the hardware features and I/0O
devices supported by the IBM PCjr and the IBM
Personal Computers and summarizes the differences:

@)
=
3
~
=
=,
=8
E.
<

Hardware Differences 4-9

Device PC | PCXT | PCjr PCjr Comments
Maximum 640K B { 640KB | 128KB | Shares user RAM
User Memory with Video Buffer
Cordless No ' No Yes Scan codes
Keyboard compatible and full
83 key capability

83 Key Yes Yes No Compatible, but

Keyboard Hardware interface
differences

Diskette Yes Yes Yes Compatible, but

Drive different address and
no DMA support

Hard Disk No Yes No

File

Parallel Yes Yes Yes Compatible

Printer

RS 232 Yes Yes Yes Compatible, hex 2F8

Serial Port address, Interrupt
Level 3, Baud-Rate-
Frequency divisor
difference

Game Yes Yes Yes Compatible interface

Control with potential timing
differences

Cassette Yes No Yes Compatible

Internal No No Yes Compatible to PC

Modem Serial Port hex 3F8
address, Interrupt
Level 4, frequency
divisor difference

IBM Yes Yes No

Monochrome

Display

Color Yes Yes Yes Compatible, with

Graphics and some register

Display differences and
enchancements

Light Pen Yes Yes Yes Compatible

PCjr and Personal Computers Comparison (Part 1 of 2)

4-10 Hardware Differences

Device PC PCXT | PCjr PCjr Comments
Attachable Yes Yes Yes Compatible
Joystick
8253 Timer Yes Yes Yes Compatible
(time of day)

8259 Interrupt | Yes Yes Yes Some difference in
interrupt levels

Internal Yes Yes Yes Compatible but less

Sound frequency response

TI 76496 No No Yes

Sound

ROM No No Yes

Cartridge

Interface

Future I/ O Yes Yes Yes Compatible

ROM

Architecture

PCjr and Personal Computers Comparison (Part 2 of 2)

The hardware differences between the IBM PCjr and
the IBM Personal Computers may lead to
incompatibilities dépending upon the specific
application. Once again; if your application maintains
an interface to the Personal Computer Family at the
BIOS and DOS interrupt levels, then all hardware
differences are handled transparently to your
application. If your application goes below the BIOS
level and directly addresses the hardware, then there
could be an incompatibility.

Hardware Differences 4-11

@]
=}
3
=
0
=.
2.
:'-.:
<

User Read/Write Memory

Memory difference can be a problem even with
programs written for the same computer, if the
available memory is not the same from one machine to
the next. Thus, the deciding factor is to state what the
minimum memory requirement is for the application,
and require that amount on the computer in question.

It is important to understand the memory aspects of the
IBM PCjr in relationship to that of the IBM Personal
Computers. The IBM PCjr can be configured for 64K
bytes or 128K bytes (with memory expansion).
However, this user memory is not all available to the
application. The IBM PCjr video architecture utilizes a
minimum of 16K bytes (in graphic mode) and 2K bytes
(in alpha numeric mode) for the screen buffer.
Therefore (in graphics mode), the IBM PCjr really has
48K bytes or 112K bytes (with memory expansion)
available for system software. This is not the case with
the IBM Personal Computers, since the color graphics
adapter contains a separate 16K byte screen buffer.
Thus, a 64K bytes Personal Computer with color
graphics (extra 16K bytes) is an 80K byte system
compared to a 64K byte IBM PCjr. The IBM PCjr also
has graphic enhancements which allow more than the
16K bytes to be utilized for video screen buffers. If
these enhanced features are used in an application, then
even less is available for user memory.

Another aspect of available memory is the amount
taken away by operating systems and language
interpreters. In the case of the IBM DOS, both the
IBM PC,r and the IBM Personal Computers support
the same DOS. If your application requires the BASIC
interpreter, then there may be a difference. The IBM
Personal Computer Cassette BASIC resides entirely in
the system ROM; taking no user memory. However,
Disk BASIC or Advanced BASIC utilizes

4-12 Hardware Differences

approximately 10K bytes and 14K bytes respectively
from user memory. In the IBM PCjr, Advanced BASIC
capabilities (cartridge BASIC) reside in ROM, taking
no user memory.

As you can see, many items factor into user available
memory requirements. The most frequent comparison
is for the assembler language or compiled application
using a 16K-byte screen buffer operating under DOS
2.1. In this case, an application requiring 64K bytes of
user memory on an IBM Personal Computer cannot run
on the IBM PC,r without its expansion memory (128K
byte capability). This is because of the IBM PCjr video
usage of 16K bytes. Also, any application requiring
more than 112K bytes of user memory with DOS 2.1
on the IBM Personal Computers cannot run on an IBM
PCjr.

Diskette Capacity/Operation

Since the IBM PCjr maximum stand-alone
configuration is one diskette drive with a maximum
capacity of 360K bytes diskette storage , an IBM PCjr
application is either limited by this diskette capacity or
is impacted by the user having to change diskettes more
frequently. The IBM Personal Computers can have
multiple diskette drives with a capacity of 360K bytes
diskette storage each or even possess hard files with a
much larger disk storage capacity. This capacity
difference may or may not be a concern depending
upon the specific application.

®!
=}
3
=]
&
=.
g
=
-

In terms of diskette interfacing, the IBM PCjr and the
IBM Personal Computers both utilize the NEC pPD765
floppy diskette controller, but with different hardware
addresses, and the IBM PCjr does not operate through
direct memory access (DMA). Since the IBM PCjr
does not have DMA capability, application programs

Hardware Differences 4-13

cannot overlap diskette I/O operations. When diskette
I/0 takes place, the entire system is masked (operator
keystrokes and asynchronous communications cannot
take place). Therefore, the application must insure that
asynchronous operations do not take place while
diskette I/0 is active.

IBM PCjr Cordless Keyboard

The Cordless Keyboard is unique to the IBM PC;r.
Even though it does not possess all 83 keys of the IBM
Personal Computers’ keyboards, it does have the
capability to generate all of the scan codes of the
83-key keyboard.

The following shows the additional functions available

on the PCjr. '

PCjr Special Functions Required Key Combinations
Shift screen to the left Alt + Ctrl + cursor left
Shift screen to the right Alt + Ctrl + cursor right
Audio Feedback (System Alt + Ctrl + Caps Lock
clicks when a key is pressed.

Customer Diagnostics Alt + Ctrl + Ins

PCjr Special Functions

For more detail see ‘“Keyboard Encoding and Usage” in
Section 5.

Since all scan codes can be generated, any special

application requirements can be met on the Cordless
Keyboard.

4-14 Hardware Differences

The highest level of compatibility to interface to
keyboards is through BIOS Interrupt hex 16 (read
keystroke). Below that level is risky since there are
hardware differences between the PCjr keyboard and
the IBM Personal Computers’ keyboards. The PCjr
system utilizes the non-maskable (NMI) Interrupt to
deserialize the scan codes and pass it to Interrupt hex
48 for compatible mapping to 83-key format. Interrupt
level 9 remains a compatible interface for 83-key
scan-code handling. It is not recommended to replace
Interrupt level 9 even though a high degree of
compatibility is maintained. If necessary, analyze this
architecture carefully.

Color Graphics Capability

The IBM PC;jr color graphic architecture is quite
different from that of the IBM Personal Computers.
The main difference (as previously discussed) is that
the video buffer is taken from main user memory rather
than having separate memory for video (as in the IBM
Personal Computers). Normally, this would be an
incompatibility since applications directly address the
color graphics buffer at hex B8000. However, the IBM
PCjr has special hardware to redirect hex B8000
addressing to any specific 16K-byte block of its user
memory. The IBM PCjr defaults the video buffer to
the high end 16K-byte block of user memory and
applications can continue to address the video buffer at
hex B8000. In addition all IBM Personal Computers’
color graphics adapter modes are BIOS compatible and
memory structure (bit map) compatible. These modes
are:

@)
=}
3
-]
-]
=,
g
3=
-

Hardware Differences 4-15

Modes Requirements

Alphanumeric:

40x25 BW None

40x25 Color - None

80x25 Color Note

80x25 BW None

Graphics:

320x200 4 Color None

320x200 BW None

640x200 BW None

Note: PCjr requires the 64KB Memory and Display Expansion.

Modes Available on the IBM Personal Computers and PCjr

In addition the IBM PCjr provides some new enhanced
graphic modes which are not available to the IBM
Personal Computers.

Modes Requirements
Graphics:
320x200 16 Color Note
640x200 4 Color Note
160x200 16 Color None

Note: PCjr requires the 64KB Memory and Display Expansion.

Modes Available Only on PCjr

The IBM PCjr and IBM Personal Computers utilize the
6845 controller, but the hardware interface is not
completely the same. Hardware addresses hex 3D8 and

4-16 Hardware Differences

hex 3D9 are not supported by the IBM PCjr video
interface. Requests using these two addresses are not
honored.

Also there are differences in the actual video used by
the hardware. BIOS maintains compatibility by using
the appropriate PC,r video parameters (addressed
through Interrupt hex 1D) and maintains all video calls
(through Interrupt hex 10). Application can still
specify video parameter overrides by modifying
Interrupt hex 1D to address their own parameters;
however, since there are hardware differences the
recommended approach is as follows:

1. Copy the original parameters from the BIOS of the
system.

2. Change only those parameters desired.

3. Consider the specific video differences between
systems.

Other differences to be aware of are:

o The IBM PCjr defaults the colorburst mode to be
off, whereas the IBM Personal Computers default
colorburst to on. Thus applications should not
assume either default but set colorburst mode
(through BIOS call) to the desired setting.

o The IBM PCjr video supports a full gray scale
capability which the IBM Personal Computers do
not.

» There can be some color differences between the
IBM Personal Computers and the IBM PCjr;
especially when color mixing techniques are used.

@)
=
3
°©
-]
=
g
=
<

Hardware Differences 4-17

Black and White Monochrome Display

The IBM PCjr does not support the IBM Personal
Computers black and white monochrome display.
Programs which directly address the IBM Personal
Computers monochrome display are not compatible.
For example, any direct addressing of the B&W video
buffer at hex B800O is not redirected by the IBM PCjr.
Applications should support Personal Computer video
capabilities through BIOS, and the video buffer address
is either transparent to the application or the address is
provided indirectly in the BIOS data area.

RS232 Serial Port and IBM PCjr Internal
Modem

The IBM PC;jr serial port address is hex 2F8 and is
associated with hardware Interrupt level 3. This is
compatible with a second Asynchronous
Communications Adapter on the IBM Personal
Computers. The Internal Modem address is hex 3F8
and is associated with Interrupt level 4. This is
compatible with the first Asynchronous
Communications Adapter on the IBM Personal
Computers. It is important to note that when the IBM
PCjr has the Internal Modem installed it is logically
COM1 and the RS232 serial port is logically COM2 in
BIOS, DOS, and BASIC. Without the Internal Modem
installed the RS232 serial port is logically addressed as
COM1 in BIOS, DOS, and BASIC even though its
address is still hex 2F8 using Interrupt level 3. Other
hardware differences on the PC/r serial devices are:

« A different frequency divisor is needed to generate
baud rate. This is transparent to applications using
BIOS to initialize the devices (Interrupt Hex 14).

» No ring indicate capability on the RS232 serial port.

4-18 Hardware Differences

o Asynchronous communications input cannot be
overlapped with IBM PCjr diskette I/O. Since
diskette I/O operates in a non-DMA mode any
asynchronous data received during diskette activity
may be overrun (and lost). Thus, applications must
insure that no diskette activity is active while
receiving asynchronous communication data. This
can be done by pacing the asynchronous device (tell
it to hold from sending). The ASCII characters
XOFF and XON are frequently used by some host
computers for this purpose.

Summary

In summary, the IBM PCjr is a member of the IBM
Personal Computer family by way of its strong
architecture compatibility. The highest degree of
application compatibility can be achieved by using a
common high level language, and/ or accessing the
system only through BIOS and DOS interrupts. It’s not
recommended to go below the BIOS level even though
there are other hardware compatibilities. When it is
necessary to design for particular computer differences,
the application should determine at execution time
which particular computer it is running on. This can be
done by inspecting the ROM memory location at
segment address hex FOOO and offset hex FFFE for the
following values

®)
o
3
S
1]
=
g
=]
-

hex FF = the IBM Personal Computer
hex FE = the IBM Personal Computer XT
hex FD = the IBM PCjr

Once determined, dual baths would handle any
differences.

Hardware Differences 4-19

Notes:

4-20 Hardware Differences

SECTION 5. SYSTEM BIOS USAGE

Contents

BROMEBIOS . . e 5-3

nterrupt Hex 1F and hex 44 - Graphics

Character Pointers 59
nterrupt Hex 48 - Cordless Keyboard
Translation ce.. 5-1

nterrupt Hex 49 - Non-Keyboard

Other Read Write Memory Usage escocoo.n. >-13
BIOS Programming Guidelines 5-18
Adapter Cards with System-Accessible
ROM-Modules 5-18

and Usage 5-7]

Cordless Kevboard Encoding 571
Characfer Codes 578 I
Exfended Codes 530 8
Shiff Sfafes 531 =
Bpecial Handhing~ -.---- 5-34 ﬁ
Bystem Reset 534 g

Break 5-34

Paise . 5=34

Ponf Screen ... 5=34

Kcroll Tock . 5-33

5-1

Eunctions 1| thri 10 5.35§

Eunction .ock T 1]
Dereen Adjustment 5-33
Enable/Disable Keyboard Click 5-36
Run Diagnostics J-30
Phantom-Key Scan-Code (Hex 55) -3

Dther Charactenstics 2-30

Casseife Wriie 5%
[Cassette Read 349
Data Record Architecture 5-50
Error Detection 5-51

ROM BIOS

The basic input/output system (BIOS) resides in ROM
on the system board and provides device-level control
for the major I/O devices in the system. Additional
ROM modules may be located on option adapters to
provide device level control for that option adapter.
BIOS routines enable the assembly-language
programmer to perform block (diskette) or
character-level I/O-operations without concern for
device address and operating characteristics. System
services, such as time-of-day and memory-size
determination, are provided by the BIOS.

The goal is to provide an operational interface to the
system and relieve the programmer of the concern
about the characteristics of hardware devices. The
BIOS interface insulates the user from the hardware,
allowing new devices to be added to the system, yet
retaining the BIOS-level interface to the device. In this
manner, user programs become transparent to hardware
modifications and enhancements.

The IBM Personal Computer Macro Assembler manual
and the IBM Personal Computer Disk Operating System
(DOS) manual provide useful programming information
related to this section.

ades) SOId

ROM BIOS 5-3

Notes:

5-4 ROM BIOS

BIOS Usage

Access to BIOS is through the software interrupts.
Each BIOS entry-point is available through its own
interrupt, which can be found in ‘“Personal Computer
BIOS Interrupt Vectors”, later in this section.

The software interrupts, hex 10 through hex 1A, each
access a different BIOS-routine. For example, to
determine the amount of memory available in the
system,

INT hex 12

invokes the BIOS routine for determining memory size
and returns the value to the caller.

All parameters passed to and from the BIOS routines go
through the 8088 registers. The prologue of each BIOS
function indicates the registers used on the call and the
return. For the memory size example, no parameters
are passed. The memory size, in 1K byte increments, is
returned in the AX register.

If a BIOS function has several possible operations, the
AH register is used at input to indicate the desired
operation. For example, to set the time-of-day, the
following code is required:

MOV AH,1 ;function is to set time-of-day.

MOV CX,HIGH COUNT ;establish the current [

MOV DX,LOW__COUNT 2

INT 1AH ;set the time. -
%

To read time-of-day: ®

MOV AH,0 ;function is to read time of day.

INT 1AH ;read the timer.

BIOS USAGE 5-5

Generally, the BIOS routines save all registers except
for AX and the flags. Other registers are modified on
return, only if they are returning a value to the caller.
The exact register usage can be seen in the prologue of
each BIOS function.

5-6 BIOS USAGE

Chars

Address | Interrupt
(Hex) Number Name BIOS Entry
0-3 0 Divide by Zero D_EOI
4-7 1 Single Step D_EOI
8-B 2 Keyboard NMI KBDNMI
C-F 3 Breakpoint D_EOI
10-13 4 Overflow D_EOI
14-17 5 Print Screen PRINT_SCREEN
18-1B 6 Reserved D_EOI
I1D-1F 7 Reserved D_EOI
20-23 8 Time of Day TIMER_INT
24-27 9 Keyboard KB_INT
28-2B A Reserved D_EOI
2C-2F B Communications | D_EOI
30-33 C Communications | D_EOI
34-37 D Vertical retrace D_EOI
38-3B E Diskette Error DISK_INT
Handler
3C-3F F Printer D_EOI
40-43 10 Video VIDEO_IO
44-47 11 Equipment Check | EQUIPMENT
48-4B 12 Memory MEMORY_SIZE_
DETERMINE
4C-4F 13 Diskette DISKETTE_IO
50-53 14 Communications | RS232_10
54-57 15 Cassette CASSETTE_IO
58-5B 16 Keyboard KEYBOARD_IO
5C-5F 17 Printer PRINTER_IO
60-63 18 Resident BASIC | F600:0000
64-67 19 Bootstrap BOOT_STRAP
68-6B 1A Time of Day TIME_OF_DAY
6C-6F IB Keyboard Break | DUMMY_RETURN
70-73 1C Timer Tick DUMMY_RETURN
74-77 1D Video VIDEO_PARMS
Initialization
78-7B 1E Diskette DISK_BASE
Parameters
7C-7F IF Video Graphics CRT_CHARH

Personal Computer BIOS Interrupt Vectors

BIOS USAGE 5-7

adesn) SOId

Vectors with Special Meanings

The following are vectors with special meanings.

Interrupt Hex 1B - Keyboard Break Address

This vector points to the code to be executed when
Break is pressed on the keyboard. The vector is
invoked while responding to the keyboard interrupt,
and control should be returned through an IRET
instruction. The POWER-ON routines initialize this
vector to an IRET instruction, so that nothing occurs
when Break is pressed unless the application program
sets a different value.

Control may be retained by this routine, with the
following problem. The 'Break' may have occurred
during interrupt processing, so that one or more ‘End
of Interrupt' commands.must be issued in case an
operation was underway at that time.

Interrupt Hex 1C - Timer Tick

This vector points to the code to be executed on every
system-clock tick. This vector is invoked while
responding to the 'timer' interrupt, and control should
be returned through an IRET instruction. The
POWER-ON routines initialize this vector to point to
an IRET instruction, so that nothing occurs unless the
application modifies the pointer. It is the responsibility
of the application to save and restore all registers that
are modified.

5-8 BIOS USAGE

Interrupt Hex 1D - Video Parameters

This vector points to a data region containing the
parameters required for the initialization of the 6845
CRT Controller. Note that there are four separate
tables, and all four must be reproduced if all modes of
operation are to be supported. The POWER-ON
routines initialize this vector to point to the parameters
contained in the ROM video-routines. It is
recommended that if a programmer wishes to use a
different parameter table, that the table contained in
ROM be copied to RAM and just modify the values
needed for the application.

Interrupt Hex 1E - Diskette Parameters

This vector points to a data region containing the
parameters required for the diskette drive. The
POWER-ON routines initialize the vector to point to
the parameters contained in the ROM
DISKETTE-routine. . These default parameters
represent the specified values for any IBM drives
attached to the machine. Changing this parameter
block may be necessary to reflect the specifications of
the other drives attached. It is recommended that if a
programmer wishes to use a different parameter table,
that the table contained in ROM be copied to RAM
and just modify the values needed for the application.
The motor start-up-time parameter (parameter 10) is
overridden by BIOS to force a 500-ms delay (value 04)
if the parameter value is less than 04.

ades)) SOId

Interrupt Hex 1F and hex 44 - Graphics
Character Pointers

When operating in the graphics modes, the

BIOS USAGE 5-9

read/write-character interface forms the character from
the ASCII code-point, using a table of dot patterns
where each code point is comprised of 8 bytes of
graphics information. The table of dot patterns for the
first 128 code-points contained in ROM is pointed to
by Interrupt Hex 44 and the second table of 128
code-points contained in ROM is pointed to by
Interrupt Hex 1F. The user can change this vector to
point to his own table of dot patterns. It is the '
responsibility of the user to restore these vectors to
point to the default code-point-tables at the termination
of the program.

Interrupt Hex 48 - Cordless Keyboard
Translation

This vector points to the code responsible for
translating keyboard scan-codes that are specific to the
Cordless Keyboard. The translated scan-codes are then
passed to the code pointed to by Interrupt Hex 9 which
then handles the 83-key Keyboard scan codes.

Interrupt Hex 49 - Non-Keyboard Scan-Code
Translation-Table Address

This interrupt contains the address of a table used to
translate non-keyboard scan-codes (scan codes greater
than 85 excluding 255.) If Interrupt hex 48 detects a
scan code greater than 85 (excluding 255) it translates
it using the table pointed to by Interrupt Hex 49. The
address that Interrupt Hex 49 points to can be changed
by users to point to their own table if different
translations are required.

5-10 BIOS USAGE

Note: It is recommended that a programmer save
default pointers and restore them to their original
values when the program has terminated.

ades(] SOId

BIOS USAGE 5-11

Notes:

5-12 BIOS USAGE

Other Read Write Memory Usage

The IBM BIOS routines use 256 bytes of memory
starting at absolute hex 400 to hex 4FF. Locations hex
400 to 407 contzin the base addresses of any RS-232C
attachments to the system. This includes the optional
IBM PCjr Internal Modem and the standard RS232
serial-port. Locations hex 408 to 40F contain the base
addresses of any parallel printer attachments.

Memory locations hex 300 to 3FF are used as a stack
area during the power-on initialization, and bootstrap,
when control is passed to it from power-on. If the user
desires the stack in a different area, the area must be
set by the application.

The following is a list of the interrupts reserved for
BIOS, DOS, and BASIC.

ades) SOI4

Other Memory Usage 5-13

Address Interrupt

(Hex) (Hex) Function

80-83 20 DOS Program Terminate

84-87 21 DOS Function Call

88-8B 22 DOS Terminate Address

8C-8F 23 DOS Ctrl Break Exit Address

90-93 24 DOS Fatal Error Vector

94-97 25 DOS Absolute Disk Read

98-9B 26 DOS Absolute Disk Write

9C-9F 27 DOS Terminate, Fix in Storage

AO-FF 28-3F Reserved for DOS

100-115 40-43 Reserved for BIOS

116-119 44 First 128 Graphics Characters

120-131 45-47 Reserves for BIOS

132-135 48 Cordless-Keyboard Translation

136-139 49 Non-keyboard Scan-code
Translation Table

140-17F 50-5F Reserved for BIOS

100-17F 40-5F Reserved for BIOS

180-19F 60-67 Reserved for User Software
Interrupts

1A0Q-1FF 68-7F Reserved

200-217 80-85 Reserved for Basic

218-3C3 86-F0 Used by Basic Interpreter while
BASIC is running

3C4-3FF F1-FF Reserved

BIOS, BASIC, and DOS Reserved Interrupts

The following is a list of reserved memory locations.

5-14 Other Memory Usage

Addfess

(Hex) Mode Function

400-48F | ROM BIOS | See BIOS Listing

490-4EF Reserved for System Usage

500-SFF Communication Area for any
application

500 DOS Reserved for DOS and BASIC,

Print Screen Status Flag Store,
O-Print Screen Not Active or
Successful

Print Screen Operation,
1-Print Screen In Progress,
255-Error Encountered During

Print
\ Screen Operation,

504 DOS Single Drive Mode Status Byte

510-511 | BASIC BASIC’s segment Address Store

512-515 | BASIC Clock Interrupt Vector Segment:
Offset Store

516-519 | BASIC Break key Interrupt Vector
Segment: Offset Store

51A-51D | BASIC Disk Error Interrupt Vector

Segment: Offset Store

Reserved Memory Locations

The following is a list of the BASIC workspace
variables.

=
Q
n
c
»
©
o8
(43

Other Memory Usage 5-15

If you do DEF SEG (Default workspace Offset

segment): (Hex) | Length
Line number of current line being executed 2E 2
Line number of last error 347 2
Offset into segment of start of program text 30 2
Offset into segment of start of variables 358 2
(end of program text 1-1)

Keyboard buffer contents 6A 1

if 0-no characters in buffer
if 1-characters in buffer
Character color in graphics mode 4E 1
‘Set to 1, 2, or 3 to get text in colors
1to 3.
Do not set to 0.
(Default 2 3)

Example

100 Print Peek (&H2E) + 256*Peek (&H2F)
) L H
(

100 hex 64 hex 00

BASIC Workspace Variables

The following shows the mapping of the BIOS memory

5-16 Other Memory Usage

Starting Address in Hex

00000

BIOS
Interrupt
Vectors

00400

BIOS
Data
Area

00500

User
Read/Write
Memory

A0000

Reserved
for Future
Video

B8000O

Reserved
for Video

C0000

Reserved
for Future
1/0 ROM

DO000

Reserved
for
Cartridges

EO000

Reserved
for
Cartridges

FO000

BI10S/
Diagnostics/
Cassette and
BASIC
Program
Area

BIOS System Map

Other Memory Usage 5-17

ades) SOId

BIOS Programming Guidelines

The BIOS code is invoked through software interrupts.
The programmer should not 'hard code' BIOS
addresses into applications. The internal workings and
absolute addresses within BIOS are subject to change
without notice.

If an error is reported by the diskette code, you should
‘reset’ the drive adapter and retry the operation. A
specified number of retries should be required on
diskette 'reads’' to insure the problem is not due to
motor start-up.

When altering I/O-port bit-values, the programmer
should change only those bits which are necessary to
the current task. Upon completion, the programmer
should restore the original environment. Failure to
adhere to this practice may be incompatible with
present and future systems.

Adapter Cards with System-Accessible
ROM-Modules

The ROM BIOS provides a facility to integrate adapter
cards with on-board ROM-code into the system.
During the Power-On Self-Test (POST), interrupt
vectors are established for the BIOS calls. After the
default vectors are in place, a scan for additional ROM
modules takes place. At this point, a ROM routine on
the adapter card may gain control. The routine may
establish or intercept interrupt vectors to hook
themselves into the system.

The absolute addresses hex C0000 through hex DO000

are scanned in 2K-byte blocks in search of a valid
adapter card ROM. A valid ROM is defined as follows:

5-18 Other Memory Usage

Byte 0: hex 55
Byte 1: hex AA

Byte 2: length (multiple of 2K bytes) - A length
indicator representing the number of
512-byte blocks in the ROM
(length/512). A checksum is also done to
test the integrity of the ROM module.
Each byte in the defined ROM is summed
modulo hex 100. This sum must be O for
the module to be deemed valid.

When the POST identifies a valid ROM, it does a 'far
call' to byte 3 of the ROM (which should be
executable code). The adapter card may now perform
its power-on initialization-tasks. The feature ROM
should return control to the BIOS routines by executing
a 'far return’'.

3des)) SOId

Other Memory Usage 5-19

Notes:

5-20 Other Memory Usage

Keyboard Encoding and Usage

The following explains how the keyboard interacts with
BIOS and how 83-key-keyboard functions are
accomplished on the Cordless Keyboard.

Cordless Keyboard Encoding

The KEYBOARD routine provided by IBM in the
ROM BIOS is responsible for converting the keyboard
scan-codes into what is termed ""Extended ASCIL."

Extended ASCII encompasses one-byte
character-codes with possible values of 0 to 255, an
extended code for certain extended keyboard-functions,
‘and functions handled within the KEYBOARD routine
or through interrupts.

The following is the physical layout of the IBM PCjr
Cordless Keyboard.

ades) SOId

Keyboard Encoding 5-21

Suipoouy preoqhoy 7z-S

Esc1!2@3#2:550/05,\7&8-9(0)-_=+aacxspace
in e ca ca e o
TN 0wy NN LN GEEN LW R DOme Oe Gme o, ,)
16 E’Tﬁ][ﬂ Fzz]lﬁj[ﬂ@ 7 | [][2
‘cm e I F G H J K , IET e .
) 3 [Elﬂlﬁ]laﬂlaﬂ 37”38]|39] 40 |_4|_|| '
shit 4 z M < o> 5—smu 4 e I
43
) mhnEnEHEEEE 59 56
Alt CapsLock Ins Del
smes |l ﬂl l 58])] =)
====%T= [End]

IBM PCjr Cordless Keyboard Diagram

The following are charts of the scan codes for the IBM
PCjr Cordless Keyboard.

Make Break
Key Keyboard Code Code
Position Characters (Hex) (Hex)
1 ESC 1 81
2 1/! 2 82
3 2/0 3 83
4 3/# 4 84
5 4/% 5 85
6 5/% 6 86
7 6/& 7 87
8 7/ & 8 88
9 8/* 9 89
10 9/(A 8A
11 0/) B 8B
12 -/ — C 8C
13 =/+ D 8D
14 BS<__ E 8E
15 FN 54 D4
16 TAB F 8F
17 q/Q 10 90
18 w/W 11 91
19 e/E 12 92
20 r/R 13 93
21 t/T 14 94
22 y/Y 15 95
23 u/U 16 96
24 i/l 17 97
25 0/0O 18 98 =
26 p/P 19 99 5
27 [/{ 1A 9A 72
28 1/} ‘1B 9B g
29 ENTER 1C 9C =
30 CTRL 1D 9D ®
31 a/A 1E 9E

Cordless Keyboard Maxtrix Scan Codes (Part 1 of 2)

Keyboard Encoding 5-23

Make Break
Key Keyboard Code Code
Position Characters (Hex) (Hex)
32 s/S IF 9F
33 d/D 20 A0
34 f/F 21 Al
35 g/G 22 A2
36 h/H 23 A3
37 i/J 24 A4
38 k/K 25 AS
39 I/L 26 Ab
40 i/ 27 A7
41 ' 28 A8
42 CUR.UP 48 C8
43 LF.SHIFT 2A AA
44 z/Z 2C AC
45 x/X 2D AD
46 c/C 2E AE
47 v/V 2F AF
48 b/B 30 BO
49 n/N 31 Bl
50 m/M 32 B2
51 < 33 B3
52 > 34 B4
53 /]? 35 BS
54 RT.SHIFT 36 B6
55 CUR.LF. 4B CB
56 CUR.RT. 4D CD
57 ALT. 38 B8
58 SP.BAR 39 B9
59 CAPSLOCK | 3A BA
60 INSERT 52 D2
61 DELETE 53 D3
62 CUR.DWN. 50 DO
Phantom-Key Scan Code 55

Cordless Keyboard Matrix Scan Codes (Part 2 of 2)

5-24 Keyboard Encoding

The Cordless Keyboard is unique to the PCjr. Even
though it does not possess all 83 keys of the IBM
Personal Computer keyboard, it does have a way in

which you can cause all of the scan codes of the 83-key
keyboard. The following chart shows the mapping of

functions between both keyboards:

IBM Personal Computers
83-key Keyboard Function

IBM PC;jr
Cordless Keyboard Mapping

FI-F10

Ctrl Break

Ctrl PrtSc (Echo Print)
Shift PrtSc (Print Screen)
Ctrl NumLock (Pause)
Scroll Lock

Numeric keypad region:
Num Lock (Number
keypad 1 through 10
becomes key scan codes.)
PgUp key

PgDn key
Home key
End key

Numeric keypad - sign
Numeric keypad + sign
\ key

> key

! key

~ key

* with PrtSc

Numeric keypad .

All 256 extended codes:
Alt + numeric value
from numeric keypad

Function key + 1-0 (F1-F10)
Function key + B (Break)
Function key + E (Echo)
Function key + P (PrtSc)
Function key + Q (Pause)
Function key + S (ScLock)

Alt + Function key + N (1
through 0 becomes numeric-key
scan-codes)

Function key + cursor left
(PgUp)

Function key + cursor right

(PgDn)

Function key + cursor up
(Home)

Function key + cursor down
(End)

Function key plus the - sign
Function key + = sign

Alt +/

Alt +°

Alt +]

Alt +1]

Alt +.

Shift + Del

NumLock then Alt + numeric
value (1 through 0)

83-key-Keyboard Function to Cordless-Keyboard Mapping

Keyboard Encoding 5-25

adesn) SOIM

Character Codes

The following character codes are passed through the
BIOS KEYBOARD-routine to the system or
application program. A -1 means the combination is
suppressed in the KEYBOARD routine. The codes are
returned in AL. See Appendix C, ‘“‘Characters,
Keystrokes,and Color” for the exact codes.

5-26 Keyboard Encoding

Key Base Upper
Number Case Case Ctrl Alt Fn
1 Esc Esc Esc -1 **
2 1 ! —1 *’***** (Fl) *,***
3 2] Nul (000) | * ***** | (F2) * **x*
4 3 # _1 *’***** (F3)
5 4 $ 7[*’***** (F4) *’***
6 5 % —1 * Rokkokk (F5) * ***
7 6 A RSO (030) | *,***** | (F6) * ***
8 7 & -1 * kKKK K (F7) * ¥*x
9 8 * __1 *’***** (FS) *’***
10 9 (—1 * KAk (F9) * ***
11 0) —1 * okokokok (F10) * ***
12 — - uS (031) |* *oAk
13 = + 71 * %k %k
14 Backspace | Backspace| DEL (127) | -1 -1
(008) (008)
15 Fn -1 -1 -1 -1 -1
16 —>{ (009) ||<— * -1 -1 -1
17 q Q DCI (017) | * *x Hkx
(Pause)
18 w w ETB (023) | * -1
19 e E ENQ (005) | * *k Rk
(Echo)
20 R DC2 (018) | * -1
21 t T DC4 (020) | * -1
* - Refer to “Extended Codes” in this section.
** - Refer to “Special Handling” in this section.
*** - Refer to “83-Key Keyboard functions to Cordless Keyboard
Mapping Chart.”
**** _ Uppercase for cursor keys can be selected by pressing left or
right shift or entering the Numlock state (Alt + Fn + N).
***** . When Alt is pressed and the keyboard is in the Numlock

state, the upper row of digits is used to enter ASCII codes
for generating any character from the extended ASCII
character set.

Cordless-Keyboard Character Codes (Part 1 of 4)

Keyboard Encoding 5-27

ades) SOId

Key Base | Upper

Number | Case | Case Ctrl Alt Fn

22 y Y EM (025) * -1

23 u U NAK (021) |* -1

24 1 . HT (009) * -1

25) @) SI1(015) * -1

26 p P DLE (016) | * ko kokk

(PrtScreen)

27 [{ Esc (027) |(])*** |-1

28] } GS (029) (=) *¥** | -1

29 CR CR | LF (010) -1 -1

30 Ctrl -1 -1 -1 -1 -1

31 a A SOH (001) | * -1

32 S S DC3 (019) |* *k kR

(Scroll Lock)

33 d D EOT (004) |* -1

34 f F ACK (006) | * -1

35 g G BELL (007) | * -1

36 h H BS (008) * -1

37] J LF (010) * -1

38 k K VT (011) * -1

39 | L FF (012) * -1

40 ; : -1 -1 -1

41 ’ ? -1 () *¥** -1

* - Refer to “Extended Codes” in this section.

*ok - Refer to “Special Handling” in this section.

*** _ Refer to “83-Key Keyboard functions to Cordless
Keyboard Mapping Chart.”

**x* _ Uppercase for cursor keys can be selected by pressing
left or right shift or entering the Numlock state (Alt +
Fn + N).

*¥*x** - When Alt is pressed and the keyboard is in the
Numlock state, the upper row of digits is used to enter
ASCII codes for generating any character from the
extended ASCII character set. .

Cordless-Keyboard Character Codes (Part 2 of 4)

5-28 Keyboard Encoding

Key Base Upper Alt +
Number | Case Case Ctrl Alt Fn Ctrl
42 Cur.Up* 8 % %k %k %k *1 * **,***
(Home)
43 Left | -1 -1 -1 -1 -1
Shift
44 z Z SUB (026) | * -1
45 X X CAN (024) | * -1
46 c C EXT (003) | * -1
47 v A% SYN (022) | * -1
48 b B STX (002) | * *X kX
(Break)
49 n N SO (014) | *, *** | **x*
50 m M CR (013) |* -1
51 1, < -1 -1 -1
52 . > -1 *)* | -1
53 / ? -1 \ -1
54 Right | -1 -1 -1 -1
Shift
55 Cur_L * 4 *kokk * * **’*** *%
Reverse (PgUp)
Word
56 Cur.R * 6 ok kK k * * **’*** %k %k
Advance (PgDn)
Word *k
* - Refer to “Extended Codes” in this section.
ok - Refer to “Special Handling” in this section.
**x _ Refer to “83-Key Keyboard functions to Cordless
Keyboard Mapping Chart.”
k _ Uppercase for cursor keys can be selected by pressing =
left or right shift or entering the Numlock state (Alt + =)
Fn + N). n
***x*x . When Alt is pressed and the keyboard is in the %
Numlock state, the upper row of digits is used to enter o2
ASCII codes for generating any character from the
extended ASCII character set.

Cordless-Keyboard Character Codes (Part 3 of 4)

Keyboard Encoding 5-29

Key Base Upper Alt +

Number | Case Case Ctrl Alt Fn Ctrl

57 Alt -1 -1 -1 -1 -1

58 Space Space | Space | Space | Space

59 Caps | -1 -1 -1 -1 -1 *x

Lock

60 Ins. 0 ***x |] * -1 **

61 Del. * B * -1 **

62 Cur.Dn * 2 * %k %k k _1 * **’***

End

* - Refer to “Extended Codes” in this section.

*k - Refer to “Special Handling” in this section.

*** - Refer to “83-Key Keyboard functions to Cordless
Keyboard Mapping Chart.”

**x* . Uppercase for cursor keys can be selected by pressing
left or right shift or entering the Numlock state (Alt +
Fn + N).

***** - When Alt is. pressed and the keyboard is in the
Numlock state, the upper row of digits is used to enter
ASCII codes for generating any character from the
extended ASCII character set.

Cordless-Keyboard Character Codes (Part 4 of 4)

Extended Codes

An extended code is used for certain functions that
cannot be represented in the standard ASCII code. A
character code of 000 (Nul) is returned in AL. This
indicates that the system or application program should
examine a second code that indicates the actual
function. This code is returned in AH. This is the same
for both the Cordless Keyboard and 83-key keyboard.

5-30 Keyboard Encoding

Secand Code Function

3 Null Character

15 ~—

16 through 25 AtQ, W, E,R, T,Y,U,1,O, P

30 through 38 Alt A,S,D,F,G,H,J,K,L

44 through 50 AltZ,X,C,V,B,N, M

59 through 68 Fn+1,2,3,4,56,7,8,9, 0 (Functions 1
through 10)

71 Home

72 Up Arrow

73 Page Up

75 e (Cursor Left)

77 —a (Cursor Right)

79 End

80 Down Arrow

81 Page Down

82 Ins (Insert)

83 Del (Delete)

84 through 93 F11 through F20 (Upper Case F1

| through F10)
94 through 103 F21 through F30 (Ctrl F1 through F10)
104 through 113 F31 through F40 (Alt F1 through F10)

114 Fn/E or Ctrl/Fn/P (Start/Stop Echo to
Printer)

115 Ctrl @ (Reverse Word)

116 Ctrl —& (Advance Word)

117 Ctrl/ End [Erase End of Line (EOL)]

118 Ctrl/PgDn [Erase to End of Screen (EOS)]

119 Ctrl/ Home (Clear Screen and Home)

120 through 131 Alt/1,2,3,4,5,6,7,8,9,0, -, =(Keys 2
through 13)

132 Ctrl/PgUp (Top 25 Lines of Text and
Home Cur.)

133 through 149 Reserved
150 through 190 | Reserved for Non-Keyboard Scan Codes

ades)) SOId

Cordless Keyboard Extended Functions

Shift States

Most shift states are handled within the KEYBOARD
routine, transparent to the system or application

Keyboard Encoding 5-31

program. The current set of active shift states is
available by 'calling' an entry point in the ROM
KEYBOARD-routine. The following keys result in
altered shift-states:

Shift

This key temporarily shifts keys 2 thru 13, 16 thru 28,
31 thru 41, and 44 thru 53 to upper case (base case if
in Caps Lock state). The Shift key temporarily reverses
the 'Num Lock' or 'non-Num-Lock' state of keys 42,
55, 56, and 60 thru 62.

Ctrl

This key temporarily shifts keys 3, 7, 12, 14, 16 thru
28, 30 thru 38, 42, 44 thru 50, 55, and 56 to the Ctrl
state. The Ctrl key is used with the Alt and Del keys to
cause the 'System Reset' function, with the Scroll
Lock key to cause the 'Break' function, with the Num
Lock key to cause the 'Pause’ function, with the Alt
and Cursor Left or Right for 'screen adjustment', with
Alt and Ins to 'activate diagnostics', and with Alt and
CapsLock to 'activate keyboard clicking'. These
functions are described in ‘‘Special Handling” on the
following pages.

Alt

The Alt key temporarily shifts keys 2 thru 13, 17 thru
26, 31 thru 39, and 44 thru 50 to the 'Alternate state'.
The Alt key is used with the Ctrl and Del keys to cause
the 'System Reset' function described in *“Special
Handling” on the following pages. The Alt key is also
used with keys 27, 28, 41, and 53 to produce the
characters under the key.

5-32 Keyboard Encoding

The Alt key has another use. This key allows the user
to enter any character code from 0 to 255 into the
system from the keyboard. The user must first put the
keyboard in the 'Num Lock' state (concurrently press,
first Alt then Fn + n). Then while holding down the Alt
key type the decimal value of the character desired
using keys 2 thru 11. The Alt key is then released. If
more than three digits are typed, a modulo-256 result is
created. These three digits are interpreted as a
character code and are transmitted through the
KEYBOARD routine to the system or application
program. Alt is handled internal to the KEYBOARD
routine.

Caps Lock

This key shifts keys 17 thru 25, 31 thru 39, and 44 thru
50 to 'upper case'. A second press of the Caps Lock
key reverses the action. Caps Lock is handled internal
to the KEYBOARD routine.

Shift-Key Priorities and Combinations

The following keys are listed in descending priority for
translation in Interrupt Hex 48 and Interrupt hex 9
respectively:

1. Interrupt Hex 48
a. Altkey
b. Ctrl key
c. Shift key

2. Interrupt Hex 9
a. Ctrl
b. Al
c. Shift

ades) SOId

Keyboard Encoding 5-33

Of the three keys listed, only Alt and Ctrl are a valid
combination. If any other combination of the three
keys is used, only the key with the higher priority is
recognized by the system.

Special Handling
System Reset

The combination of the Alt, Ctrl, and Del keys causes
the KEYBOARD routine to initiate the equivalent of a
'System Reset'.

Break

The combination of the Fn and B keys results in the
KEYBOARD routine signaling Interrupt Hex 1A. The
extended characters (AL = hex 00, AH = hex 00) are
returned.

Pause

The combination of the Fn and Q keys causes the
KEYBOARD-interrupt routine to loop, waiting for any
key to be pressed. This provides a system or
application-transparent method of temporarily
suspending an operation such as list or print and then
resuming the operation by pressing any other key. The
key pressed to exit the 'Pause’ mode is unused
otherwise.

Print Screen

The combination of the Fn and P keys results in an
interrupt, invoking the PRINT SCREEN routine. This

5-34 Keyboard Encoding

routine works in the alphanumeric or graphics mode,
with unrecognizable characters printing as blanks.

Scroll Lock

The combination of the Fn and S key is interpreted by
appropriate application programs to indicate that the
cursor-control keys should cause 'windowing' over the
text rather than cursor movement. Pressing the 'Scroll
Lock' combination a second time reverses the action.
The KEYBOARD routine simply records the current
shift state of 'Scroll Lock'. It is the responsibility of
the system or application program to perform the
function.

Functions 1 thru 10

The combination of the Fn key (15) and one of keys 2
thru 11 results in the corresponding 'Function' with
key 2 being 'F1' up to key 11 being 'F10'.

Function Lock

Concurrently pressing first the Fn key and Shift key,
and then pressing the Esc key causes keys 2 thru 11 to
shift to their 'Function' states and remain there until
the same combination is pressed again.

Screen Adjustment

ades) SOId

The combination of the Alt key, Ctrl key, and either the
Left or Right cursor movement key causes the screen to
shift one character in the corresponding direction, up to
a maximum of four.

Keyboard Encoding 5-35

Enable/Disable Keyboard Click

The combination of the Alt, Ctrl, and Caps Lock keys
causes the keyboard audio feedback (click) to shift
between 'on' and 'off'. The Power-On default is
"off'.

Run Diagnostics

The combination of the Alt, Ctrl, and Ins keys causes
the system diagnostics stored in ROM to be initiated.

Phantom-Key Scan-Code (Hex 55)

The Phantom-Key scan-code is generated by the
keyboard when an invalid combination of three or more
keys is pressed. The keys pressed that caused the
Phantom-Key scan-code are not put into the keyboard
buffer, and are ignored by the keyboard
microprocessor. The Phantom-Key scan-code is
transmitted to BIOS where it is ignored.

Other Characteristics

The keyboard buffer is large enough to support a fast
typist. If a key is pressed when the buffer is full, the
character generated is ignored and the 'bell’ is
sounded. A larger buffer can be specified by modifying
words at labels 'Buffer-Start' (hex 480) and
‘Buffer-End' (hex 482) to point to another offset
within segment hex 40.

The KEYBOARD routine suppresses the typematic

action of the following keys: Ctrl, Shift, Alt, Caps
Lock, Insert, and Function.

5-36 Keyboard Encoding

Function

Key
Combinations

Description

System Reset

Break

Pause

Print Screen

Function Lock

Screen
Adjustment

Keyboard Click

Run Diagnostics

Keyboard
Adventure
Game

Cassette
Autoload

Alt + Ctrl + Del

Fn +B

Fn+Q

Fn+P

Fn and Shift
then Esc (Held)
concurrently)
Alt + Ctr]l +

cursor right or
cursor left

Alt + Ctrl +
CapsLock
Alt + Ctrl + Ins

Esc

Ctrl + Esc

Unconditional system
reset

Breaks program execution

Resumable pause in
program execution

Locks the number keys as
Function keys (F1-F10)
and B, Q, P, E, S, and the
cursor control keys to
their function states

Allows the user to adjust
the display’s image left or
right

Enables or disables the
keyboard audio feedback
click

Initiates system ROM
diagnostics

If the first key pressed
after the system comes up
in Cassette BASIC is Esc
(key #1) then the
Keyboard Adventure -
Game will be activated.

If this is the first key
sequence after the system
comes up in Cassette
BASIC then the screen
will display ‘L.oad
“CASI1:”,R followed by a
Carriage Return. This
allows a cassette program
to be automatically
loaded.

Cordless Keyboard Special Handling

Keyboard Encoding 5-37

ades() SOId

Keyboard Usage

“Keyboard Usage” is a set of guidelines of key-usage
when performing commonly-used functions. .

Function -

Keys

Comment

Home Cursor

Fn Home

Editors; word processors

Return to
outermost menu

Fn Home

Menu driven applications

Move cursor up

Up Arrow

Full screen editor, word
processor

Page up. scroll
backwards 25 lines

Fn PgUp

Editors; word processors

Move cursor left

Text, command entry

Move cursor right

P S,
.

Text, command entry

Scroll to end of text
place cursor at end
of line~

Fn End

Editors; word processors

Move cursor down

Down Arrow

Full screen editor, word
processor

text at cursor, shift
text right in buffer

Page down, scroll Fn PgDn Editors; word processors
forwards 25 lines

and home

Start/Stop insert Ins Text, command entry

Keyboard - Commonly Used Functions (Part 1 of 3)

5-38 Keyboard Encoding

Function Keys Comment
Delete character at | Del Text, command entry
cursor _

Destructive 4—— Key 14 | Text, command entry
backspace

Tab forward e Text entry

Tab reverse ~— Text entry

Clear screen and Ctrl Fn

home Home

Scroll up Up Arrow In scroll lock mode

Scroll down

Down Arrow

In scroll lock mode

Scroll left e In scroll lock mode

Scroll right — In scroll lock mode

Delete from cursor | Ctrl Fn Text, command entry

to EOL (end of line) | End

Exit/Escape Esc Editor, 1 level of menu
and so on

Start/Stop Echo Fn PrtSc Any time

screen to printer

Delete from cursor. Ctrl Fn Text, command entry

to EOS (end of PgDn

screen)

Advance word Ctr] =——= Text entry

Reverse word Ctrl a— Text entry

Window Right Ctr] =—a When text is too wide to

fit the screen

Keyboard - Commonly Used Functions (Part 2 of 3)

Keyboard Encoding 5-39

ades) SOIM

Function Keys Comment
Window Left Ctr] dm— When text is too wide to
fit the screen
Enter insert mode | Ins Line Editor
Exit insert mode | Ins Line Editor
Cancel current Esc Command entry, text
line entry
Suspend system Ctrl Fn Stop list, stop program,
(Pause) Pause and so on.
Resumes on any key.

Break interrupt Fn Break Interrupt current process
System reset Alt Ctrl Del | Reboot
Top of document Ctrl Fn Editors, word processors
and home cursor PgUp
Standard function | Shift Fn/F1 | Primary function keys
keys through

Fn/F10
Secondary Shift FI-F10 | Extra function keys if 10
function keys Ctrl FI-F10 | are not sufficient.

Alt FI-F10
Extra function Alt keys Line Editor
keys 2 through 13

(1 through

9,0)

("1 =))
Extra function Alt A Used when function starts
keys through Z with the same letter as one

of the alpha keys.

Keyboard - Commonly Used Functions (Part 3 of 3)

5-40 Keyboard Encoding

Function Key
Carriage return al (Enter)
Line feed Ctrl «J (Enter)
Bell Ctrl G
Home Fn Home
Cursor up Up Arrow
Cursor down Down Arrow
Cursor left -
Cursor right —
Advance one word Ctr] dem——
Reverse one word Ctr] e
Insert Ins
Delete Del
Clear screen Ctrl Fn Home
Freeze output Fn Pause
Tab advance ——
Stop Execution (break) Fn Break
Delete current line Esc
Delete to end of line Ctrl Fn End
Position cursor to end of line Fn End

BASIC Screen Editor Special Functions

=
Iy
o
9,1
o
74
13
¥e
(o]

Keyboard Encoding 5-41

Function Key
Suspend Fn Pause
Echo to printer Fn Echo
Stop echo to printer Fn Echo
Exit current function (break) Fn Break
Backspace 4— Key 14
Line feed Ctrl ol (Enter)
Cancel line Esc
Copy character Fn Fl or —>
Copy until match Fn F2
Copy remaining Fn F3
Skip character Del
Skip until match Fn F4
Enter insert mode Ins
Exit insert mode Ins
Make new line the template Fn F5
String separator in REPLACE Fn F6
End of file in keyboard input Fn F6

DOS Special Functions

Non-Keyboard Scan-code Architecture

The architecture of the IBM PCjr BIOS is designed to
also receive scan codes above those generated by the
keyboard to accommodate any future device.

The keyboard generates scan codes from hex 1 to 55
and FF. Any scan codes above hex 55 (56 thru 7E for
‘make ' codes and D6 thru FE for 'break' codes) are
processed by BIOS in the following manner:

1. If the incoming 'make' scan code falls within the
range of the translate table, whose address is
pointed to by BIOS Interrupt Hex 49, it is translated
into the corresponding scan code. Any incoming
'break’ codes above hex D5 are ignored.

5-42 Keyboard Encoding

2. If the new translated scan code is less than hex 56,
it is processed by BIOS as a keyboard scan-code
and the same data is placed in the BIOS keyboard
buffer.

3. If the translated scan-code is greater than hex 55 or
the incoming scan-code is outside the range of the
translate table, hex 40 is added, creating a new
extended-scan-code. The new extended-scan-code
is then placed in the BIOS keyboard buffer with the
character code of 00(null). This utilizes the range
hex 96 thru BE for scan codes hex 56 thru 7E
respectively.

The default translate-table maps scan codes hex 56 thru
6A to existing keyboard-values. Scan codes hex 6B
thru BE are mapped (by adding hex 40) to extended
codes of hex AB thru FE, since these are out side the
range of the default translate-table.

Users can modify Interrupt Hex 49 to address their own
translate table if mapping differences are desired.

The translate table format is:

Description
0 Length - The number of non-keyboard

scan-codes that are mapped within the table
(from 1 to n).

1ton Word with low-order byte representing the
scan-code-mapped values relative to the input
values in the range of hex 56 thru 7E.

=]
Ll
=
92
oo
174
2
¥
o

Keyboard Encoding 5-43

8-Bits

Length=1ton

L

High Byte - 0 (NUL)

Low Byte - Scan Code

High Byte - 0 (NUL)

Low Byte - Scan Code

High Byte - 0 (NUL)

‘ Low Byte - Scan Code

High Byte - 0 (NUL)

Low Byte - Scan Code

Translate Table Format

With this architecture, all keyboard scan-codes can be
intercepted thru Interrupt Hex 9 and all non-keyboard
scan-codes can be intercepted thru Interrupt Hex 48.

The following is a chart showing the default values of

the translate table in BIOS.

5-44 Keyboard Encoding

Length = 20 mapped values
Input Mapped Keyboard
Scan Code Value Character
86 72 (cursor up)
87 73 PgUp
88 77 (cursor right)
89 81 PgDn
90 80 (cursor down)
91 79 End
92 75 (cursor left)
93 71 Home
94 57 Space
95 28 Enter
96 17 w
97 18 E
98 31 S
99 45 X
100 44 z
101 43 \
102 30 A
103 16 Q
104 15 Tab
105 | Esc

Translate Table Default Values

Scan Codes
(Hex) Type of Scan Code
1-55 Normal Keyboard Scan Code (Make) §
56 - 7E Non-Keyboard Scan Code (Make) g
81 - D5 Normal Keyboard Scan Code (Break) "

D6 - FE Non-Keyboard Scan Code (Break)

FF Keyboard Buffer Full

Scan-Code Map

Keyboard Encoding 5-45

Notes:

5-46 Keyboard Encoding

BIOS Cassette Logic

Software Algorithms - Interrupt Hex 15

The CASSETTE routine is called by the request type in
AH. The address of the bytes to be 'read’ from or
'written' to the tape is specified by DS:BX and the
number of bytes to be 'read’ or 'written' is specified
by CX. The actual number of bytes 'read’ is returned
in DX. The read block and write block automatically
turn the cassette motor on at the start and off at the
end. The request types in AH and the cassette status
descriptions follow:

Request

Type Function

AH=0 Turn Cassette Motor On

AH =1 Turn Cassette Motor Off

AH =2 Read Tape Block
Read CX bytes into memory starting at
Address DS:BX
Return actual number of bytes read in DX
Return Cassette Status in AH

AH =3 Write Tape Block
Write CX bytes onto cassette starting at
Address DS:BX .
Return Cassette Status in AH

AH Request Types

ades) SOId

BIOS Cassette Logic 5-47

Cassette

Status Description

AH =00 No Errors

AH =01 Cyclic Redundancy Check (CRC) Error in
Read Block

AH =02 No Data Transitions

AH =04 No Leader

AH =80 Invalid Command

Note: The carry flag will be set on any error.

AH Cassette Status

Cassette Write

The WRITE-BLOCK routine 'writes' a tape block
onto the cassette tape. The tape block is described in
“Data Record Architecture” later in this section.

The WRITE-BLOCK routine 'turns on' the cassette
drive motor and ‘'writes' the leader (256 bytes of all

1’s) to the tape, 'writes' a synchronization bit (0), and
then 'writes' a synchronization byte (ASCII character
hex 16). Next, the routine 'writes' the number of data
bytes specified by CX. After each data block of 256
bytes, a 2-byte cyclic redundancy check (CRC) is
'written'. The data bytes are taken from the memory
location 'pointed' at by DS:BX.

The WRITE-BLOCK routine 'disassembles' and
'writes' the byte a bit-at-a-time to the cassette. The
method used is to 'set' Timer 2 to the period of the
desired data bit. The timer is 'set' to a period of 1.0
millisecond for a 1 bit and 0.5 millisecond for a 0 bit.

5-48 BIOS Cassette Logic

The timer is 'set' to mode 3, which means the timer
outputs a square wave with a period given by its count
register. The timer’s period is changed on the fly for
each data byte 'written' to the cassette. If the number
of data bytes to be 'written' is not an integral multiple
of 256, then, after the last desired data byte from
memory has been 'written', the data block is extended
to 256 bytes of writing multiples of the last data byte.
The last block is closed with two CRC bytes as usual.
After the last data-block, a trailer consisting of four
bytes of all 1 bits is 'written'. Finally, the cassette
motor is 'turned off', if there are no errors reported by
the routine. All 8259 interrupts are 'disabled’ during
cassette-write operations.

r—zsous—’l

Zero Bit

l<¢——————500 s ————>

’7One Bit

- 1000 us AI

Cassette-Write Timing Chart

Cassette Read

The READ-BLOCK routine 'turns on' the cassette
drive motor and then delays for approximately 0.5
second to allow the motor to come up to speed.

ades) SOId

The READ-BLOCK routine thén searches for the
leader and must detect all 1 bits for approximately 1/4
of the leader length before it can look for the sync (0)
bit. After the sync bit is detected, the sync byte

BIOS Cassette Logic 5-49

(ASCII character hex 16) is ‘read’. If the sync byte is
'read' correctly, the data portion can be 'read’'. If a
correct sync byte is not found, the routine goes back
and searches for the leader again. The data is 'read’ a
bit-at-a-time and 'assembled’ into bytes. After each
byte is 'assembled’, it is 'written' into memory at
location DS:BX and BX is incremented by 1.

After each multiple of 256 data bytes is 'read’, the
CRC s 'read' and 'compared’ to the CRC generated.
If a CRC error is detected, the routine exits with the
carry flag 'set' to indicate an error and the status of
AH 'set' to hex 01. DX contains the number of bytes
'written' into memory.

All 8259 interrupts are 'disabled’ during the

cassette- 'read' operations.

Data Record Architecture

The WRITE-BLOCK routine uses the following format
to record a tape block onto a cassette tape:

(CASSETTE TAPE BLOCK)

Leader | Sync | Sync | Data | CRC| Data | CRC
Bit Byte | Block Block

Motor Motor
On » off

Cassette Write-Block Format

5-50 BIOS Cassette Logic

Component Description

Leader 256 Bytes (of All 1’s)

Sync Bit One 0 bit

Sync Byte ASCII Character hex 16
Data Blocks 256 Bytes in Length

CRC 2 Bytes for each Data Block

Data Record Components

Error Detection

Error detection is handled through software. A CRC is
used to detect errors. The polynomial used is G(X) =
X16 + X12 + X5 + 1, which is the polynomial used by
the synchronous data link control interface.

Essentially, as bits are 'written' to or 'read' from the
cassette tape they are passed through the CRC register
in software. After a block of data is 'written', the
complemented value of the calculated CRC register is
'written' on the tape. Upon reading the cassette data,
the CRC bytes are 'read' and 'compared’ to the
generated CRC value. If the read CRC does not equal
the generated CRC, the processor’s carry flag is 'set'
and the status of AH is 'set' to hex 01, which indicates
a CRC error has occurred. Also, the routine is exited
on a CRC error.

ades) SOId

BIOS Cassette Logic 5-51

Notes:

5-52 BIOS Cassette Logic

Appendixes

Contents

Appendix A. ROM BIQ NG A}

Appendix B. LOGIC DIAGRAMS........... B-1

ppendix C. R , an
COLOR C-1

Appendix 1), UNIT SPECIFICATIONS D-]
M“M

Dize: D-1
Weight: D-1
[Iransformer: D-1
Environment: D-1
Lordless keyboardD-2
Dize: D-2
Welght: D-2
Dptional Cable: D32
Diskette Drive |DER |
Nize: 1)-4
Weight: D-3
Power: D3
Mechanical and Flecfrical D-4
Color Display D-3
Nize: D=3
Weight: D-3
HeatOufput: D3
Power (ables:
Graphics Printer
Nize: '
Welght:

>
=]
=

®

-

=
»

-2

HeatOQutput: D-§
PowerCable: D-6
%%: D-6
ctrical: eeeeee... D-
[nternal Modem e D-7
Power: . e D-1
[nterface e D-1
EomEact Printeriieuiiueneanene o D-8
i1ze . D-
Weightttt iieininnn s D-§
HeatOutput D-§
owerCable00c00ieun.. .. D-
SignalCable D-§
lectrical . . D-

Nibpilb mborropt veetors 2 ﬁ’m‘ra/
on page /4’/0{7. Use Hat st o

find & /)a//féu/af Aaﬂa//ﬂr.

0060
0038
0007
0061
0062
0063
0089
0020
0021
0020
0040
0043
0040
0061
030A
00A0
0080
03DF
0060
4000
2000

LU L L LT T T I T L T L T TR T TR T T

00F2
oogo

0020
0040
0001

00F4
0020
0040
0080
O0FS

<CAVEAT EMPTOR):

NOT FOR REFERENCE

THE BI0S ROUTINES ARE MEANT T0 BE ACCESSED THROUGH
SOFTWARE INTERRUPTS ONLY
THE LISTINGS ARE INCLUDED ONLY FOR COMPLETENESS,
APPLICATIONS WHICH REFERENCE
ABSOLUTE ADDRESSES WITHIN THIS CODE VIOLATE THE
STRUCTURE AND DESIGN OF BI10OS

ANY ADDRESSES PRESENT IN

i
i
i
;
i

EQUATES
i
PORT_A EQU 60H ; 8255 PORT A ADDR
CPUREG EQu 38H ; MASK FOR CPU REG BITS
CRTREG EQU 7 ;i MASK FOR CRT REG BITS
PORT_B EQU 61H ; 8255 PORT B ADDR
PORT_C EQu 62H ; 8255 PORT C ADDR
CMD_PORT EQU 63H
MODE_8255 EQU 100010018
INTAOO EQU 20H ; 8259 PORT
INTAOL EQU 214 ; 8259 PORT
EO1 EQuU 20H
TIMER EQU 40H
TIM_CTL EQu 43H ; B253 TIMER CONTROL PORT ADDR
TIMERO EQU 40H ; 8253 TIMER/CNTER O PORT ADDR
KB_CTL EQU 61H ;i CONTROL BITS FOR KEYBOARD
VGA_CTL EQu 3DAH ; VIDEO GATE ARRAY CONTROL PORT
NMI_PORT EQu OAOH ; NMI CONTROL PORT
PORT_BO EQU 0BOH
PAGREG EQU 030FH ; CRT/CPU PAGE REGISTER
KBPORT EQU O060H ; KEYBOARD PORT
DIAG_TABLE_PTR EQU 4000H
MINI EQU 2000H

i

DISKETTE EQUATES

NEC_CTL

CONTROL PORT FOR THE DISKETTE
RESETS THE NEC (FLOPPY DISK
CONTROLLER). O RESETS,

1 RELEASES THE RESET

ENABLES WATCH DOG TIMER IN NEC
STROBES WATCHDOG TIMER
SELECTS AND ENABLES DRIVE

STATUS REGISTER FOR THE NEC

BIT = 0 AT END OF EXECUTION PHASE
INDICATES DIRECTION OF TRANSFER
REQUEST FOR MASTER

DATA PORT FOR THE NEC

EQU OF2H ;
FDC_RESET EQU 80H ;
i
i
WD_ENABLE EQU 20H ;
WD_STROBE EQU 40H ;
DRTVE_ENABLE EQU O1H i
NEC_STAT EQU OF4H i
BUSY_BIT EQU 20H i
o10 EQU 40H ;
RQM EQU 80H ;
NEC_DATA EQU OFSH ;
i :
i 8088 INTERRUPT LOCATIONS
i
ABSO SEGMENT AT 0
ORG 2%4
NMI_PTR LABEL WORD
ORG 3n4
INT3_PTR LABEL WORD
ORG e
INTS_PTR LABEL WORD
ORG and
INT_PTR LABEL DWORD
ORG 10H4
VIDEO_INT LABEL WORD
ORG 1CHu 4
INTI1C_PTR LABEL WORD
OR 10Hu4 .
PARM_PTR LABEL DWORD
ORG 18Hu4
BASIC_PTR LABEL WORD ;
ORG O1EH"4 i
DISK_POINTER LABEL DWORD
ORG 01FHk4 ;
EXT_PTR LABEL DWORD i
ORG 044Hn4
CSET_PTR LABEL DWORD
ORG 048H" 4 .
KEVE2_PTR LABEL WORD i
ORG 049H" 4
EXST LABEL WORD ;
ORG 081Hua
INTE1 LABEL WORD
ORG 0B2H#* 4
INTE2 LABEL WORD
ORG 089Hk4
INTBS LABEL WORD
0RG 400H
DATA_AREA LABEL BYTE ;
DATA_WORD LABEL WORD
ORG 7C00H
800T_LOCN LABEL FAR

ABSO ENDS

POINTER TO VIDEO PARMS

ENTRY POINT FOR CASSETTE BASIC
INTERRUPT 1EH

LOCATION OF POINTER
POINTER TO EXTENSION

POINTER TO DOT PATTERNS
POINTER TO 62 KEY KEYBOARD CODE

POINTER TO EXT. SCAN TABLE

ABSOLUTE LOCATION OF DATA SEGMENT

ROM BIOS A-3

0000
0000

0100
0100

0000
0000

0008

0010
0012
0013’
0015

0017 7?2

= 0040
0020
o008
0004
0002
0001

©
—-
@
d
N

0080
0040
0020
0010
0008
0004

Wi nenul

0002

0019 2?7

80
27272

2727

ki add

001A 1?7277
001C ??2?

001E

0045
0046
0038
001D
003A
002A
0036
0052
0053

[T 0 B TR T

003E 7?7

003F 2?7

0040 ??
= 0025

0041 ??
0080
0040
0020
0010
0009

0008
0004
0003

0002
0001
042

oun

0020
012c

"

O0AF
= 0003

0019
0004

A-4

7777

o7
22

ROM BIOS

USED DURING INITIALIZATION ONLY

éTACK SEGMENT AT 30H
oW 128 DUP(?)

T0S LABEL WORD
STACK ENDS

ROM BIOS DATA AREAS

DATA SEGMENT AT 40H

RS232_BASE oW 4 DUP(?) ; ADDRESSES OF RS232 ADAPTERS
PRINTER_BASE L] 4 DUP(?) ; ADDRESSES OF PRINTERS
EQUIP_FLAG oW ? ; INSTALLED HARDWARE

KBD _ERR oB ? ; COUNT OF KEYBOARD TRANSMIT ERRORS
MEMORY_SI2E 1) ? ; USABLE MEMORY SIZE IN K BYTES
TRUE_MEM ow ? ; REAL MEMORY SIZE IN K BYTES

KEYBOARD DATA AREAS

KB_FLAG o8 2
- SHIFT FLAG EQUATES WITHIN KB_FLAG
caps STATE EQu 40H ; CAPS LOCK STATE HAS BEEN TOGGLED
NUM_STATE €QU 20H ; NUM LOCK STATE HAS BEEN TOGGLED
ALT_SHIFT EQU 08H ; ALTERNATE SHIFT KEY DEPRESSED
CTL_SHIFT EQU 04H ; CONTROL SHIFT KEY DEPRESSED
LEFT_SHIFT EQU 02H ; LEFT SHIFT KEY DEPRESSED
RIGHT_SHIFT EQU 01H ; RIGHT SHIFT KEY DEPRESSED
KB_FLAG_1 0B 2 ; SECOND BYTE OF KEYBOARD STATUS
INS_SHIFT - EQU 80H ; INSERT KEY IS DEPRESSED
CAPS_SHIFT EQU 40H ; CAPS LOCK KEY 1S DEPRESSED
NUM_SHIFT EQU 20H ; NUM LOCK KEY IS DEPRESSED
SCROLL_SHIFT EQU 10H ; SCROLL LOCK KEY 1S DEPRESSED
HOLD_STATE EQU 08H ; SUSPEND KEY HAS BEEN TOGGLED
CLICK_ON EQU 04H ; INDICATES THAT AUDIO FEEDBACK 1S
; ENABLED
CLICK_SEQUENCE EQU o2H ; OCURRNCE OF ALT-CTRL-CAPSLOCK HAS
; OCCURED
ALT_INPUT o8 2 ; STORAGE FOR ALTERNATE KEYPAD
; ENTRY
BUFFER_HEAD 0w ? ; POINTER TO HEAD OF KEYBOARD BUFF
BUFFER_TAIL oW 2 ; POINTER TO TAIL OF KEYBOARD BUFF
KB_BUFFER ow 16 DUP(?) ; ROOM FOR 15 ENTRIES

------- HEAD = TAIL lNDICATES THAT THE BUFFER IS EMPTY

NUM_KEY EQu SCAN CODE FOR NUMBER LOCK
SCROLL_KEY EQU 70 SCROLL LOCK KEY

ALT_KEY EQU 56 ALTERNATE SHIFT KEY SCAN CODE
CTL_KEY EQU 29 SCAN CODE FOR CONTROL KEY
CAPS_KEY EQU 58 SCAN CODE FOR SHIFT LOCK
LEFT_KEY EQu a2 SCAN CODE FOR LEFT SHIFT
RIGHT_KEY EQu 54 SCAN CODE FOR RIGHT SHIFT
INS_KEY EQu 82 ; SCAN CODE FOR INSERT KEY
DEL_KEY EQU a3 ; SCAN CODE FOR DELETE KEY

; DISKETTE DATA AREAS

éEEK_STATUS -] ? ; DRIVE RECALIBRATION STATUS

BIT 0 = DRIVE NEEDS RECAL BEFORE
NEXT SEEK IF BIT 1S = O

i
MOTOR_STATUS [1:] 2 ; MOTOR STATUS
; BIT 0 = DRIVE 0 15 CURRENTLY
i RUNNING
MOTOR_COUNT 1] ? ; TIME OUT COUNTER FOR ORIVE
; TURN OFF
MOTOR_WAIT EQU 37 ; 2 SECS OF COUNTS FOR MOTOR
; TURN OFF
DISKETTE_STATUS DB 2 ; RETURN CODE STATUS BYTE
TIME_OUT EQU BOH ; ATTACHMENT FAILED TO RESPOND
BAD_SEEK EQU 40H ; SEEK OPERATION FAILED
BAD_NEC EQU 20H ; NEC CONTROLLER HAS FAILED
BAD_CRC €Qu 10H ; BAD CRC ON DISKETTE READ
DMA_BOUNDARY EQU 09H ; ATTEMPT TO DMA ACROSS 64K
; BOUNDARY
BAD_DMA EQU 0BH ; DMA OVERRUN ON OPERATION
RECORD_NOT_FND EQU 04H ; REQUESTED SECTOR NOT FOUND
WRITE_PROTECT EQU 03H ; WRITE ATTEMPTED ON WRITE
; PROTECTED DISK
BAD_ADDR_MARK EQU 02H . ADDRESS MARK NOT FOUND
BAD_CMD EQU 01H ; BAD COMMAND GIVEN TO DISKETTE 1/0
NEC_STATUS 08 7 DUP(?) ; STATUS BYTES FROM NEC
SEEK_END EQU 20H
THRESHOLD EQU 300 ; NUMBER OF TIMER-0 TICKS TILL
; ENABLE
PARMO EQU OAFH ; PARAMETER O IN THE DISK_PARM
; TABLE
PARM1 EQU 3 ; PARAMETER 1
PARM9 EQU 25 ; PARAMETER 9
PARM10 EQU a ; PARAMETER 10

0049
004A
004C
004E
0030

0060
0062
0063

0065

0066

0067
0069
0068

006C
006E
0070

0071
0072

0074
0075
0076
0077

0078

007¢C

0080
0082
0084

0085
0086

= 000F
0087
0088
= 0004

= 0080
0040
0020
0010
0008
0004
0002

ooe9

00BA
ooe8

0000
0000

0001
0002

0004

2772
2722?
??

??
?22??

??
??
?”?
??

04

04

2772
2772
»?

??
??

??
??

??

??

??

??
2772

27

??

”

B
VIDEO DISPLAY DATA AREA

5
CRT_MODE oB ? ;
CRT_COLS ow ?

CRT_LEN bW ?
CRT_START ow ? ;
CURSOR_POSN oW 8 DUP(?)

CURSOR_MODE oW 2 ;
ACTIVE_PAGE o8 ? ;
ADDR_6845 oW ? ;
CRT_MODE_SET oe ?

CRT_PALLETTE] ?

CURRENT CRT MODE

NUMBER OF COLUMNS ON SCREEN

LENGTH OF REGEN IN BYTES

STARTING ADDRESS IN REGEN BUFFER
CURSOR FOR EACH OF UP TO 8 PAGES

CURRENT CURSOR MODE SETTING
CURRENT PAGE BEING DISPLAYED
BASE ADDRESS FOR ACTIVE DISPLAY
CARD

CURRENT SETTING OF THE

CRT MODE REGISTER

CURRENT PALETTE MASK SETTING

B

B CASSETTE DATA AREA

EDGE_CNT oW 2 ;
CRC_REG oW 2 ;
LAST_vaAL 08 2 ;

TIME COUNT AT DATA EDGE
CRC REGISTER
LAST INPUT VALUE

TIMER DATA AREA

TIMER_LOW oW 2

TIMER_HIGH oW ?
TIMER_OFL o8 ? i

LOW WORD OF TIMER COUNT

HIGH WORD OF TIMER COUNT

TIMER HAS ROLLED OVER SINCE LAST
READ

i
SYSTEM DATA AREA

BI0S_BREAK o8 2 ;
RESET_FLAG ou 2

BIT 7=1 IF BREAK KEY HAS BEEN HIT
WORD=1234H IF KEYBOARD RESET
UNDERWAY

EXTRA DISKETTE DATA AREAS

TRACKO 1]

2

TRACK1 1] ?
TRACK2 (1] ?
-] ?

i
i

PRINTER AND RS232 TIME-OUT VARIABLES

PRINT_TIM_OUT 08 4 DUP(?)

RS232_TIM_OUT 0B 4 DUP(?)

ADDITIONAL KEYBOARD DATA AREA

éUFFER_START oW ?
BUFFER_END oW ?
INTR_FLAG [.1:3 ? ;

FLAG TO INDICATE AN INTERRUPT
HAPPENED

62 KEY KEYBOARD DATA AREA

i

CUR_CHAR 0B 2 ;
VAR_DELAY 08 2 :
DELAY_RATE EQu OFH ;
CUR_FUNC o8 ? i
KB_FLAG_2 o8 2 :
RANGE EQu a ;

;

CURRENT CHARACTER FOR TYPAMATIC
DETERMINES WHEN INITIAL DELAY IS
OVER

INCREASES INITIAL DELAY

CURRENT FUNCTION

3RD BYTE OF KEYBOARD FLAGS
NUMBER OF POSITIONS TO SHIFT
DISPLAY

BIT ASSIGNMETS FOR KB_FLAG_2

B

i
FN_FLAG EQU 80H
FN_BREAK EQU 40H
FN_PEND ING EQU 20H
FN_LOCK EQU 10H
TYPE_OFF EQU 08H
HALF_RATE EQU 04M
INIT_DELAY EQU 02H
PUTCHAR EQU 01H
HORZ_POS o8 ? ;
PAGDAT 1] ? i

DATA ENDS

CURRENT VALUE OF HORIZONTAL
START PARM
IMAGE OF DATA WRITTEN TO PAGREG

EXTRA DATA AREA

i

XXDATA SEGMENT AT S0H
STATUS_BYTE [:1:] ?

THE FOLLOWING AREA IS USED ONLY
(POST AND ROM RESIDENT)

DCP_MENU_PAGE 0B ? i
DCP_ROW_COL oW 2 ;
WRAP_FLAG o8B 2

DURING DIAGNOSTICS

TO CURRENT PAGE FOR DIAG. MENU
CURRENT ROW/COLUMN COORDINATES
FOR DIAG MENU
INTERNAL/EXTERNAL 8250 WRAP
INDICATOR

>
=
o
(¢
=
=
>
>

ROM BIOS A-5

0005
0006

0008
000A
000C

000E
0010

0011

0012

0014

0016
0018

0019

0022
0024

0026
0028

0029
0028
0020
002F
0031
0033
0035
0037
0039
0038
003D

0000
0000
0001
0002
0003
0004
0008
0006
0007
ooog

0009

= 0200
0029

0229

0429
0424
0428
042C
042E

0430
0432
0434
0436
0428
043A
043C
043E
0440
0442

A-6 ROM BIOS

22
2772

2722
2772
2722

2772
27

??

272?

2777

2772
??

09

2727
2727

27
27
27
27
7
27
27
27

08

0200

0100 [

??

00

on

MFG_TST
MEM_TOT

MEM_DONES
MEM_DONEO
INT1CO

INTICS
MENU_UP

DONE 128

KBDONE

1]
(1]

ow

1]

(]

oW
[}1:]

oB

1]

INITIALIZATION FLAG

WORD EQUIV. TO HIGHEST SEGMENT IN
MEMORY

CURRENT SEGMENT VALUE FOR
BACKGROUND MEM TEST

CURRENT OFFSET VALUE FOR
BACKGROUND MEM TEST

SAVE AREA FOR INTERRUPT 1IC
ROUTINE

FLAG TO INDICATE WHETHER MENU 1§
ON SCREEN (FF=YES, O0=NO)

COUNTER TO KEEP TRACK OF 128 BYTE
BLOCKS TESTED BY BGMEM

TOTAL K OF MEMORY THAT HAS BEEN
TESTED BY BACKGROUND MEM TEST

POST DATA AREA

10_ROM_INIT

10_ROM_SEG
POST_ERR

MODEM_BUFFER

MFG_RTN

ouw

ow
[:]

[4:]

ow
bW

R

DUP(?)

POINTR TO OPTIONAL 1/0 ROM INIT
ROUTINE
POINTER TO 10 ROM SEGMENT

FLAG TO INDICATE ERROR OCCURRED
DURING POST

MODEM RESPONSE BUFFER

{MAX 9 CHARS)
POINTER TO MFG. OUTPUT ROUTINE

SERIAL PRINTER DATA

SP_FLAG
SP_CHAR

NEW_STICK_DATA

XXDATA ENDS

oW
[]:]

RNy

R EURS RN RN PR PRI

THE FOLLOWING SIX ENTRIES ARE
DATA PERTAINING TO NEW STICK
RIGHT STICK DELAY

RIGHT BUTTON A DELAY

RIGHT BUTTON B DELAY

LEFT STICK DELAY

LEFT BUTTON A DELAY

LEFT BUTTON B DELAY

RIGHT STICK LOCATION

UNUSED

UNUSED

LEFT STICK POSTITON

DISKETTE DATA AREA

DKDATA SEGMENT

RUESRURN RN RN PPN

8 DUP(0,0,0,0) ; TRACK, HEAD, SECTOR, NUM OF

SECTOR

READ AND WRITE OPERATION
512 ;
DK_BUF_LEN DUP(0)

AT 60H
NUM_DRIVE o8
DUAL 0B
OPERATION o8
ORIVE o8
TRACK o8
HEAD pB
SECTOR [
NUM_SECTOR 08
SEC o8
; FORMAT 1D
TK_HD_SC 0B
; BUFFER FOR
DK_BUF _LEN EQU
READ_BUF 1)
WRITE_BUF o8
; INFO FLAGS
REQUEST_IN o8
DK_EXISTED 08
DK_FLAG o8
RAN_NUM ow
SEED ow
; SPEED TEST VARIABLE
DK_SPEED oW
TIM_1 oW
TIM_L_1 ow
TIM_2 oW
TIM_L_2 oW
FRACT_H oW
FRACT_L DW
PART_CYCLE oW
WHOLE_CYCLE ow
HALF_CYCLE oW

512 BYTES/SECTOR

(DK_BUF_LEN/2) DUP(EDH, OBH)

NEX RN

RN R EREN RN RN PNERE "]

; SELECTION CHARACTER

0444
0445
0446
0447

0448

0443

0000
0000

4000

0000

0000

0018
0010
001F
0021
0023
0025
o028
0024
002C
002€E

0043
0043
0045
0047
0049
0048
0040

004E

0051
0054
0057
0059
00SA

00SF

0061
0063
0066
0067
0069
006A
006C

??
??
??

??

4000 €

31

35 30

??

34

36 20 43 4F

20 45
39 38
38 33

0378
0278

EF
F7

108F
00CO
0004
ca

ca 20
A0

F2
030A

04

42
31

30 33
50 52
40 20
2C 31

ERROR PARAMETERS

i
DK_ER_OCCURED ? ; ERROR HAS OCCURRED
OK_ER_L1 08 ? ; CUSTOMER ERROR LEVEL
DK_ER_L2 oe ? ; SERVICE ERROR LEVEL
ER_STATUS_BYTE 0B ? ;STATUS BYTE RETURN FROM INT 13H
H LANGUAGE TABLE
LANG_BYTE o8 PORT BO TO DETERMINE WHICH
LANGAGE TO USE
DKDATA ENDS
H VIDEO DISPLAY BUFFER
VIDEO_RAM SEGMENT AT 0BBOOH
[]:] 16384 DUP(?)

VIDEO_RAM ENDS

H

ROM RESIDENT CODE

CODE SEGMENT PAGE
ASSUME CS: CODE,DS: ABSO,ES: NOTHING, S5: STACK

o ‘1504036 COPR. IBM 1981, 1983’ ; COPYRIGHT NOTICE
21 .U} L2 ; RETURN POINTERS FOR RTNS CALLED
-] Liq ; BEFORE STACK INITIALIZED
ow L16
ow L19
oW L24
F38 o8 ‘K8’
EX_0 (1] OFFSET EBO
bw OFFSET ESBO
bW OFFSET TOTLTPO
EX1 ow OFFSET MO1

; MESSAGE AREA FOR POST

i
ERROR_ERR [1:] ‘ERROR’ ; GENERAL ERROR PROMPT
MEM_ERR 1] ‘A’ ; MEMORY ERROR
KEY_ERR [}]:] g:N ; KEYBOARD ERROR MSG
CASS_ERR [:1:] ‘c’ ; CASSETTE ERROR MESSAGE
COM1_ERR [:] ‘0’ ; ON-BOARD SERIAL PORT ERR. MSG
COM2_ERR b8 ‘E” ERIAL PORTION OF MODEM ERROR
ROM_ERR [1:] ‘Fe ; OPTIONAL GENERIC B10S ROM ERROR
CART_ERR 0B ‘G’ ; CARTRIDGE ERROR
DISK_ERR o8 ‘H’ ;DISKETTE ERR
Fa LABEL WORD PRINTER SOURCE TABLE

bW 378H

oW 278H
F4E LABEL WORD
IMASKS LABEL BYTE ; INTERRUPT MASKS FOR 8259

; INTERRUPT CONTROLLER
oe OEFH ; MODEM INTR MASK
0B OF7H ; SERIAL PRINTER INTR MASK
SETUP

DISABLE NMI, MASKABLE INTS.
SOUND CHIP, AND VIDEO.
TURN DRIVE O MOTOR OFF

ASSUME CS:CODE, DS: ABSO, ES: NOTHING, SS: STACK
RESET LABEL AR

START: MOV aL, 0

oyt 0AOH, AL ; DISABLES NMI

DEC AL ; SEND FF TO MFG_TESTER

oyt 10H, AL

N AL, OAOH ; RESET NMI F/F

[; DISABLES MASKABLE INTERRUPTS
. DISABLE ATTENUATION IN SOUND CHIP

MoV AX, 108FH ; REG ADDRESS IN AH, ATTENUATOR OFF
;oM oA

MOV DX, 00COH ; ADDRESS OF SOUND CHIP

MoV cx, 4 ; 4 ATTENUATORS TO DISABLE

L1 OR AL, AH ; COMBINE REG ADDRESS AND DATA

oyt ox, AL

ADD AH, 20H ; POINT TO NEXT REG

Loor L1

MoV AL, WD_ENABLE+FDC_RESET ; TURN DRIVE O MOTOR OFF,
; ENABLE TIMER

out OF2H, AL

MoV DX, VGA_CTL ; VIDEO GATE ARRAY CONTROL

N AL, OX ; SYNC VGA TO ACCEPT REG

MOV AL, 4 ; SET VGA RESET REG

our DX, AL ; SELECT IT

MoV AL, 1 ; SET ASYNC RESET

out 0X, AL ; RESET VIDEO GATE ARRAY

TEST 1
8088 PROCESSOR TEST
DESCRIPTION

VERIFY 8088 FLAGS, REGISTERS
AND CONDITIONAL JUMPS

MFG. ERROR CODE 0001H

ROM BIOS A-7

>
e]
S

(9%

=

o
<

>

0060
006F
0070
0072
0074
0076
0078
0079
0078
007D
007F
0081
0083
0085
0087
0088

008A
008C
008E
008F
0081
0093
0095
0097

0099
009C
0090
009F
00Al
00A3
00A5
00A7
00A9
00AB
00AD
00AF
00B1
00B3
0085
00B7
ooB8
00BA
00BC
QOBE
ooC1
00C3
ooca
00CS
00C6
ooca
00Co
ooca

00CA
ooccC
00CE
0000
0oD2
oon4
0006
oooB
00DA
ooocC
00DE
00E0
00E2
00E4
00E6
00ES
00EA
©OQED
OQEF
00F 1
00F3
00F5
00F7
OOF9
00FB
OOFE
QOFF
0101

L1

ac

a6

32
30

05
EC
29
E4
25

FFFF

o8
[1:}
c3
Cct
01
02
E2
EC
F5
FE
o7
c7
07

E3
c7

0010
00

ROM BIOS

MoV AH, ODSH

SAHF
JNC L4
JNZ La
JNP L4
JNS L4
LAHF

JNC

MOV AL, 40H
SHL aL, 1
JNO L4
XOR AH, AH
SAHF

JBE La

Js L4

N3 L4
LAHF

MoV cL,5
SHR AH, CL
Je L4
SHL AH, 1
J0 La

SET SF, CF, ZF, AND AF FLAGS ON

GO TO ERR ROUTINE IF CF NOT
GO TO ERR ROUTINE I[F ZF NOT
GO TO ERR ROUTINE I1Ff PF NOT
GO TO ERR ROUTINE IF SF NOT
LOAD FLAG IMAGE TO AH

LOAD CNT REG WITH SHIFT CNT
SHIFT AF INTO CARRY 8IT POS
GO TO ERR ROUTINE IF AF NOT
SET THE OF FLAG ON

SETUP FOR TESTING

GO TO ERR ROUTINE IF OF NOT
SET AH = 0

CLEAR SF, CF, ZF, AND PF

GO TO ERR ROUTINE IF CF ON
GO TO ERR ROUTINE IF ZF ON
GO TO ERR ROUTINE IF SF ON
GO TO ERR ROUTINE IF PF ON
LOAD FLAG IMAGE TO AH

LOAD CNT REG WITH SHIFT CNT

SET
SET
SET
SET

SHIFT “AF’ INTO CARRY BIT POS

GO TO ERR ROUTINE IF ON
CHECK THAT ‘OF‘ 1S CLEAR
GO TO ERR ROUTINE IF ON

READ/WRITE THE 8088 GENERAL AND SEGMENTATION REGISTERS
WITH ALL ONE 'S AND ZEROES'S.

MOV AX, OFFFFH ; SETUP ONE’S PATTERN IN AX
sTC

L2: MoV DS, AX WRITE PATTERN TO ALL REGS
MOV 8X,05
MOV ES, BX
MoV CX,ES
MOV s§,Cx
MOV DX, SS
MOV SP, DX
MOV BP, SP
MoV s1,8P
MOV ot,st
JINC L3
XOR AX,D1 ; PATTERN MAKE IT THRU ALL REGS
INZ L4 ; NO ~ GO TO ERR ROUTINE
cLe
JMp L2

L3: oR AX, D1 ; ZERO PATTERN MAKE IT THRU?
9z L5 ; YES - GO TO NEXT TEST

La: MOV DX, 00 10H ; HANDLE ERROR
MOV AL, o
out DX, AL ; ERROR 0001
INC oX
out DX, AL
INC AL
out DX, AL
HLT ; HALT

Ls

TEST 2

DESCRIPTION

ARE LATCHED OUTPUT
BUFFERS. C IS INPUT
MFG. ERR. CODE =0002H

FIRST INITIALIZE 8255 PROG
PERIPHERAL INTERFACE. PORTS A%8

8255 INITIALIZATION AND TEST

MOV AL, OFEH
ouT 10H, AL
MOV AL, MODE_8255
ouT CMD_PORT, AL
sue AX, AX

L6: MOV AL, AH
ouT PORT_A, AL
IN AL,PORT_A
ouT PORT_B, AL
IN AL,PORT_B
cHP AL, AH
JNE L7
INC AH
INZ L6
JMP SHORT L8

L7: MOV BL, 02H
JMP E_MSG

Le: XOR AL, AL
ouT KBPORT, AL
N AL, PORT_C
AND AL, 000010008
MOV AL, 1BH
INZ L9
MOV AL, 3FH

L9: MOV DX, PAGREG
out OX, AL
MOV AL, 000011018
ouT PORT_8, AL

SEND FE TO MFG

CONFIGURES 1/0 PORTS
TEST PATTERN SEED = 0000

WRITE PATTERN TO PORT A
READ PATTERN FROM PORT A
WRITE PATTERN TO PORT B
READ OUTPUT PORT

DATA AS EXPECTED?

IF NOT, SOMETHING IS WRONG
MAKE NEW DATA PATTERN

LOOP TILL 255 PATTERNS DONE
CONTINUE IF DONE

SET ERRQOR FLAG (BH=00 NOW)
GO ERROR ROUTINE

CLEAR KB PORT

64K CARD PRESENT?
PORT SETTING FOR 64K SYS

PORT SETTING FOR 128K SYS

INITIALIZE OUTPUT PORTS

PART 3
SET UP VIDEO GATE ARRAY AND 6845 TO GET MEMORY WORKING

0103 BO FD MOV, AL, OFOH
0105 E6 10 ouT 10H, AL ;
0107 BA 0304 MOV DX, 03D4H ; SET ADDRESS OF 6845
010A BB FOA4 R MOV BX, OFFSET VIDEO_PARMS ; POINT TO 6845 PARMS
010D B9 0010 90 MoV CX, M0O040 ; SET PARM LEN
o111 32 €4 XOR AH, AH ; AH IS REG %
0113 B8A C4 L10: MOV AL, AH ; GET 6845 REG #
0115 EE ouT DX, AL
o116 42 INC DX ; POINT TO DATA PORT
0117 FE C4 INC AH ; NEXT REG VALUE
0119 2€E: 8A 07 MoV AL, CS: [BX] ; GET TABLE VALUE
011C EE out DX, AL ; OUT TO CHIP
0110 43 INC BX ; NEXT IN TABLE
OLIE 4A DEC DX ; BACK TO POINTER REG
OLIF E2 F2 LooP L10
START VGA WITHOUT VIDEO ENABLED

0121 BA 030A MoV DX, VGA_CTL ; SET ADDRESS OF VGA
0124 EC IN AL, 0% ; BE SURE ADDR/DATA FLAG 1S

; IN THE PROPER STATE
0125 B9 0005 MOV cx,5 ; % OF REGISTERS
0128 32 E4 XOR AH, AH ; AH IS REG COUNTER
0124 8A C4 L1t MoV AL, AH ; GET REG #
012¢ €E out 0X, AL ; SELECT IT
0120 32 CO XOR AL, AL ; SET ZERO FOR DATA
012F EE out 0X, AL
0130 FE C4 INC AH ; NEXT REG
0132 €2 F6 LOOP Li1

TEST 4
PLANAR BOARD ROS CHECKSUM TEST
DESCRIPTION

A CHECKSUM TEST 1S DONE FOR EACH ROS

MODULE ON THE PLANAR BOARD TO. :

MFG ERROR CODE =0003H MODULE AT ADDRESS
F000: 0000 ERROR :
0004H MODULE AT ADDRESS :
F800: 0000 ERROR ;

0134 80 FC MOV AL, OFCH
0136 E6 10 ouT 10H, AL ; MFG OUT=FC
; CHECK MODULE AT FQ00:0 (LENGTH 32K)
0138 33 F6 XOR S1,S1 ; INDEX OFFSET WITHIN SEGMENT OF
; FIRST 8YTE
013A 8C C8 MoV AX,CS ; SET UP STACK SEGMENT
013C B8E DO MOV §S, AX
O13E BE 08 MOV DS, AX ; LOAD DS WITH SEGMENT OF ADDRESS
; SPACE OF BIOS/BASIC
0140 B9 8000 MOV €X, 8000H ; NUMBER OF BYTES TO BE TESTED, 32K
0143 BC 001B R MOV SP, OFFSET 21 ; SET UP STACK POINTER SO THAT
; RETURN WILL COME HERE
0146 €9 FEEB R JMP ROS_CHECKSUM ; JUMP TO ROUTINE WHICK PERFORMS
; CRC CHECK
0149 74 06 L12: Jz L13 ; MODULE AT F000:0 OK, GO CHECK
; OTHER MODULE AT F000: 8000
0148 BB 0003 MoV BX, 0003H ; SET ERROR CODE
0l14E €9 09BC R JMP E_MSG ; INDICATE ERROR
0151 B9 8000 L13: MOV CX, B000H ; LOAD COUNT (SI POINTING TO START
0154 E9 FEEB R JMP ROS_CHECKSUM ; OF NEXT MODULE AT THIS POINT)
0157 74 06 L14: Jz L1S ; PROCEED IF NO ERROR
0159 8B 0004 MOV B8X, 0004H ; INDICATE ERROR
015C E9 09BC R JMP E_MSG ;
015F L1S:
TEST 5§
BASE 2K READ/WRITE STORAGE TEST
DESCRIPTION

WRITE/READ/VERIFY DATA PATTERNS

AA,58, AND 00 TO IST 2K OF STORAGE
AND THE 2K JUST BELOW 64K (CRT BUFFER)
VERIFY STORAGE ADDRESSABILITY

ON EXIT SET CRT PAGE TO 3. SET
TEMPORARY STACK ALSO.

MFG. ERROR CODE 04XX FOR SYSTEM BOARD MEM.
0SXX FOR 64K ATTRIB. CD. MEM
06XX FOR ERRORS IN BOTH
(XX= ERROR BITS)

i

015F BO FB MoV AL, OFBH
0161 E6 10 out 10M, AL ; SET MFG FLAG=FB
0163 B89 0400 MOV CX, 0400H ; SET FOR 1K WORDS, 2K BYTES
0166 33 CO XOR AX, AX
0168 B8E CO MOV ES, AX ; LOAD ES WITH 0000 SEGMENT
016A ES OB59 R JMP PODSTG
0160 75 19 L16: INZ L20 ; BAD STORAGE FOUND
016F BO FA MOV AL, OFAH . MFG OUT=Fa
0171 E6 10 ouT 10H, AL
0173 B9 0400 mov Cx, 400H ; 1024 WORDS TO BE TESTED IN THE
; REGEN BUFFER

0176 E4 60 N AL, PORT_A ; WHERE 1S5 THE REGEN BUFFER?
o178 3C 1B cme AL, 1BH i TOP OF 64K? >
017A 88 OF80 MoV AX, OFBOH ; SET POINTER TO THERE IF IT IS -
0170 74 02 JE L18 S
O17F B4 IF MOV AH, IFH ; OR SET POINTER TO TOP OF 128K
0181 8E CO L18: MOV ES, AX . o
0183 ES 0B59 R JMP PODSTG ; =1
0186 74 23 L19: Jz L23 o

>

ROM BIOS A-9

o188
018A
018C
01i8E
0190
0192
0194
0196
0199
0198
0190
019F

01Aa1
01a4
0146

01A8

o148
01AD
O $AF
0182

0185
0187
018A
018C
01BF

01C2
01CS
01c7
01CA
oi1cc

0ICE

0104
o107
0109
oipe
o100
O1DF
01E2
01E4
(312

OlEB
O1EE
0iF0

OIFS
OlIF8
OIFE
0200

B8
E
ce

E8
[+4

A3

A-10

FC 01

©
-
o
o
n

06 0462 R 0007

0040

62

o8

18

0s

C3 40

3F

1E 041S R
048A R

-——- R
08
06 0008 R F8

EEDE8 R
06 0022 R 0A61 R
ce

0024 R

F7
06 0124 R 1090 R
0040 R

FFO3 R
0010

FB
0200

4000
0010

ROM BIOS

L20: MoV 8H, 04H ; ERROR 04. ..
IN AL, PORT_C ; GET CONFIG BITS
AND AL, 000010008 ; TEST FOR ATTRIB CARD PRESENT
Jz L21 ; WORRY ABOUT ODD/EVEN IF IT IS
MoV BL,CL
oR BL,CH ; COMBINE ERROR BITS IF IT ISN’T
JMP SHORT L22 B

L21: cHP AH, 02 ; EVEN BYTE ERROR? ERR 04XX
MoV 8L, cL
JE L22
INC “BH MAKE INTO OSXX ERR
oR BL,CH MOVE AND POSSIBLY COMBINE

ERROR BITS

cup AH, 1 00D BYTE ERROR
JE L22
INC BH ; MUST HAVE BEEN BOTH

- MAKE INTO 06XX
L2 JMP E_| JUMP TO ERROR OUTPUT ROUTINE
@ETEST HIGH 2K USING 88000 ADDRESS PATH

L2 MoV AL, OF9H ; MFG OUT =F5
out 10, AL
MoV CX, 0400H ; 1K WORDS
oV AX, 0BBBOH ; POINT TO AREA JUST TESTED WITH
; DIRECT ADDRESSING
MoV €S, AX
JNP PODSTG
L24: g2 L2s
MOV 8X, 0005H ; ERROR 0005
JMP E_MSG
jmm——- SETUP STACK SEG AND SP
L2s: MOV AX, 0030H ; GET STACK VALUE
MOV S5, AX ; SET THE STACK UP
MoV SP,OFFSET TOS ; STACK IS READY TO GO
xon AX, AX ; SET UP DATA SEG
DS, AX
j == s:Tur CRT PAGE
Hov DATA_WORDLACTIVE_PAGE-DATA}, 07
s:r PRELIMINARY MEMORY SIZE WORD
8X, 64
IN AL, PORT_C ;
AND AL, 08H ; 64K CARD PRESENT?
MoV AL, 1BH ; PORT SETTING FOR 64K SYSTEM
INZ L26 ; SET TO 64K IF NOT
abD BX, 64 i ELSE SET FOR 12K
MoV AL, 3FH PORT SETTING FOR 128K SYSTEM
L26: noV DATA_WORDL TRUE_MEM-DATAJ, 8X
MoV DATA_AREALPAGDAT-DATAI, AL
PART 6
INTERRUPTS
DESCRIPTION

32 INTERRUPTS ARE INITIALIZED TO POINT TO A
OUMMY HANDLER. THE B10S INTERRUPTS ARE LOADED.
DIAGNOSTIC INTERRUPTS ARE LOADED

SYSTEM CONFIGURATION WORD IS PUT IN MEMORY.
THE DUMMY INTERRUPT HANDLER RESIDES HERE.

B

ASSUME DS: XXDATA

MOV AX, XXDATA

MoV DS, AX

MoV MFG_TST, OF8H ; SET UP MFG CHECKPOINT FROM THIS
; POINT

CALL MFG_UP ; UPDATE MFG CHECKPOINT

MOV MFG_RTN, OFF SET HFG OuUT

MoV Ax, CS

MOV NFG_RTN*I,AX ; SET DOUBLEWORD POINTER TO MFG.

ERROR OUTPUT ROUTINE SO DIAGS.
; DON’T HAVE TO DUPLICATE CODE

ASSUME CS: CODE, DS: ABSO

MOV AX, 0
MOV DS,

jom—= SET UP THE INTERRUPY VECTORS TO TEMP INTERRUPT
MOV CX, 255 ; FILL ALL INTERRUPTS
suB 01,01 ; FIRST INTERRUPT LOCATION IS 0000
MoV ES,DI ; SET ES=0000 ALSO

D3: movV AX,OFFSET D11 ; MOVE ADDR OF INTR PROC TO TSL
STOSW
MOV Ax,cs ; GET ADDR OF INTR PROC SEG
STOSW
LOOP 03 VECTBLO

EXST, OFFSET E)(TAB ;i SET UP EXT. SCAN TABLE
; SET uP BIOS lNTERRUPTS
MoV 01,0FFSET VIDEQ_INT ; SET UP VIDEO INT

PUSH cs
POP os ; PLACE CS IN DS
MoV SI,OFFSET VECTOR_TABLE+ 16
MOV cx,
pa: MOVSW ; MOVE INTERRUPT VECTOR TO LOW
; MEMORY
INC 01
INC o1 ; POINT TO NEXT VECTOR ENTRY
LooP D4 ; REPEAT FOR ALL 16 BI10S INTERRUPTS
; SET up oucnosnc INTERRUPTS
o1, START WITH INT. 8OH
oV st, ouc _TABLE PTR ; POINT TO ENTRY POINT TABLE
MOV cX, 16 ; 16 ENTRIES
0s: HOVSW ; MOVE INTERRUPT VECTOR TO LOW

MEMORY

0236
0239
023A
023C
023E
0244
0244

0250

0253
0255
0287
0259
02s¢C

0260
0263

0265
0267
0269
0268

0260

026F
0271
0273
0275
0277
0279
0278
0270
027F
02B1

0283

0285
0286
0289
0288

028F
0291
0293
0295
0298

0298
029A
028¢C
029E

F8
89

2
BA
OA
74
E9
80
E6

€6

06 0204 R 1B63
06 0208 R 1A2A
06 0224 R 1BAS

1118

62

o8

03

cB 04

1E 0410 R

EEDS R
13

20
0B

09

21

0050

E
1€ 0484 R

INC oI

INC (3% i POINT TO NEXT VECTOR ENTRY

LoOP [1.3 ; REPEAT FOR ALL 16 810S [NTERRUPTS
"oV 0s, CX ; SET DS TO ZERO

MOV lNTBl OFFSET LOCATE[

MOV INT82, OFFSET PRNT3

MOV lNTBB, OFFSET JOYSTICK

SET UP DEFAULT EQUIPMENT DETERMINATION WORD
BIT 15,14 = NUMBER OF PRINTERS ATTACHED
BIT 13 = 1 = SERIAL PRINTER PRESENT
BIT 12 = GAME 1/0 ATTACHED
BIT 11,10,9 = NUMBER OF RS232 CARDS ATTACHED
BIT B = DMA (0O=DMA PRESENT, 1=NO DMA ON SYSTEM
BIT 7,6 = NUMBER OF DISKETTE DRIVES
00=1, 01=2, 10=3, 11=4 ONLY IF BIT 0 = 1
8IT 5,4 = INITIAL VIDEO MODE
00 - UNUSED
01 - 40X25 BW USING COLOR CARD
10 - BOX25 BW USING COLOR CARD
11 - 80X25 BW USING BW CARD

BIT 3,2 = PLANAR RAM SIZE (10=48K, 11=64K)
BIT 1 NOT USED
8IT 0 = 1 (IPL DISKETTE INSTALLED)
ASSUME CS: CODE, DS: ABSO
MoV 8X, 1118H ;DEFAULT GAMEIO, 40X25,NO DMA, 48K ON
; PLANAR
IN AL, PORT_C
AND AL, 08H ; 64K CARD PRESENT
INZ 055 ; NO, JUMP
orR aL, 4 ; SET 64K ON PLANAR
0SS Mov DATA_WORDCEQUIP_FLAG-DATAJ, BX
TEST 7

INITIALIZE AND TEST THE 8259 INTERRUPT CONTROLLER CHIP

MFG ERR. CODE 07XX (XX=00, DATA PATH OR INERNAL FAILURE,

XX=ANY OTHER BITS ON=UNEPECTED INTERRUPTS

H
B

CALL MFG_UP ; MFG CODE=F7

ASSUME DS: ABS0O, CS: CODE

MoV AL, 13H ; 1CW1 - RESEY EDGE SENSE CIRCUIT,
;SET SINGLE 8259 CHIP AND ICW4 READ

ouT INTACO, AL

MoV AL, 8 ; 1CW2 - SET INTERRUPT TYPE 8 (B-F)

out INTAOL, AL

MoV AL, 9 ; 1CM4 - SET BUFFERED MODE/SLAVE

AND 808% MODE
out INTAO1, AL

_ TEST ABILITY TO WRITE/READ THE MASK REGISTER

MoV AL, O ; WRITE ZEROES TO IMR
MoV BL, AL ; PRESET ERROR INDICATOR
out INTAOL, AL ; DEVICE INTERRUPTS ENABLED
IN AL, INTAOL ; READ IMR
oR AL, AL ; IMR = 0?
INZ GERROR ; NO - GO TO ERROR ROUTINE
MoV AL, OFFH ; DISABLE DEVICE INTERRUPTS
out INTAOL, AL ; WRITE ONES TO 1MR
IN AL, INTAOL ; READ 1MR
ADD AL, 1 ; ALL IMR BITS ON?

; (ADD SHOULD PRODUCE 0}
INZ GERROR ; NO - GO TO ERROR ROUTINE

CHECK FOR HOT INTERRUPTS

INTERRUPTS ARE MASKED OFF NO INTERRUPTS SHOULD OCCUR.
sTI - ENABLE EXTERNAL INTERRUPTS

MOV CX, SOH
HOT1: LOOP HOT1 WAIT FOR ANY INTERRUPTS
MOV BL,DATA AREA[]NTR _FLAG-DATA) ; DID ANY INTERRUPTS
; OCCUR?
OR BL,BL
Jz _END_TESTG ; NO - GO TO NEXT TEST
GERROR: MOV BH, O7H i SET 07 SECTION OF ERROR MSG
JMP E_MSG
END_TESTG:
; FIRE mE DISKETTE WATCHDOG TIMER
AL, WD_ENABLE +WD_STROBE+FDC_RESET
our OF 2H, AL
MOV AL, UD _ENABLE+FDC_RESET
oyt OF2H, AL
ASSUME CS:CODE, DS: ABSO
8253 TIMER CHECKOUT
DESCRIPTION

VERIFY THAT THE TIMERS (0, 1, AND 2) FUNCTION PROPERLY
THIS INCLUDES CHECKING FOR STUCK BITS IN ALL THE TIMERS,
THAT TIMER 1 RESPONDS TO TIMER O QUTPUTS, THAT TIMER 0
INTERRUPTS WHEN [T SHOULD, AND THAT TIMER 2‘S OUTPUT WORKS
AS IT SHOULD.

THERE ARE 7 POSSIBLE £RRORS DURING THIS CHECKOUT

BL VALUES FOR THE CALL TO E_MSG INCLUDE:

0) STUCK BITS IN TIMER O

1) TIMER 1 DOES NOT RESPOND TO TIMER O OUTPUT

2) TIMER O INTERRUPT DOES NOT OCCUR

3) STUCK BITS IN TIMER 1

4) TIMER 2 OUTPUT INITIAL VALUE IS NOT LOW

5) STUCK BITS IN TIMER 2

6) TIMER 2 OUTPUT DOES NOT GO HIGH ON TERMINAL COUNT

apuaddy

Vv

ROM BIOS A-11

0240
0243
02A6
0249
02AC

024AF

0282
0284

0286
o288
0288

028D

028F

02c2
02C2
02Cq
02C6
o2ce
o2ce
02C0
02CF

0202
0202
0203
0205
0207
0208
0200
02€0
02€0
02ES
02E7
02E9
02€8B

02ED
02ED

02EE
02F1
02F2
02F4
02F6
02F8
02FA
02FC

0302

0308
030A
030C

0300
030F

0311
0313
0316
0318
031A

031C
031C
031F
0322

0325
0327
0329

A-12 ROM BIOS

8O
E6

E6D8 R
0176
FFFF
FFEO R
0036

FFEO R

20
A0

21
FE
06 0484 R
2

1
FFFF

F6 .06 0484 R 01

75
E2
B3
EB

[:3)
E6

E8

€4
E6

06
F7
02
75

06 0020 R 1880 R
06 0070 R 188D R

FE
21

00

AO

ol
036C R
46
0286

FFFF
FFEO R

61

61

T

;
‘
T

INITIALIZE TIMER 1 AND TIMER O FOR TEST

caLL MFG_UP MFG CKPOINT=Fé&
MoV AX,0176H SET TIMER 1 TO MODE 3 BINARY

H

MOV BX, OFFFFH ; INITIAL COUNT OF FFFF

CALL INIT_TIMER ; INITIALIZE TIMER 1

MoV AX, 0036H ; SET TIMER O TO MODE 3 BINARY
; INITIAL COUNT OF FFFF

caLL INIT_TIMER ; INITIALIZE TIMER O

SET BIT § OF PORT A0 SO TIMER 1 CLOCK WILL BE PULSED BY THE
TIMER O OUTPUT RATHER THAN THE SYSTEM CLOCK

MoV AL, 001000008
our OAQH, AL

CHECK IF ALL BITS GO ON AND OFF IN TIMER O (CHECK FOR STUCK
BITS)

MoV AH, 0 ; TIMER O

CcaALL BITS_ON_OFF ; LET SUBROUTINE CHECK IT

JNB TIMER1_NZ ;NO STUCK BITS (CARRY FLAG NOT SET)
MOV BL,O ; STUCK BITS IN TIMER O

JMP TIMER_ERROR

SINCE TIMER O HAS COMPLETED AT LEAST ONE COMPLETE CYCLE,
TIMER 1 SHOULD BE NON-ZERO. CHECK THAT THIS IS THE CASE

IMER1_NZ:
IN AL, TIMER+1 ; READ LSB OF TIMER 1
MoV AH, AL ; SAVE LS8
IN AL, TIMER+1 ; READ MSB OF TIMER 1
cHP AX, OFFFFH i STILL FFFF?
JNE TIMERO_INTR ; NO - TIMER 1 HAS BEEN BUMPED
MoV eL, 1 ; TIMER 1 WAS NOT BUMPED BY TIMER O
JHP TIMER_ERROR
CHECK FOR TIMER O INTERRUPT

IMERO_INTR:
STI ; ENABLE MASKABLE EXT INTERRUPTS
N AL, INTAOL
AND AL, OFEH ; MASK ALL INTRS EXCEPT LVL 0
AND DATA_AREALINTR_FLAG-DATA), AL ; CLEAR INT RECEIVED
ouT INTAO1, AL ; WRITE THE 8259 IMR
MOV CX, OFFFFH ; SET LOOP COUNT

WAIT_INTR_LOOP:

TEST DATA_AREALINTR_FLAG-DATA], 1 ; TIMER O INT OCCUR?
JNE RESET_INTRS ; YES - CONTINUE

LOOP WAIT_INTR_LOOP ; WAIT FOR INTR FOR SPECIFIED TIME
L1 BL,2 ; TIMER O INTR DIDN’T OCCUR

JMP SHORT TIMER_ERROR

HOUSEKEEPING FOR TIMER O INTERRUPTS

RESET_INTRS:

e

T

cL1
SET TIMER INT. TO POINT TO MFG. HEARTBEAT ROUTINE IF IN MFG MODE
MOV DX, 201H
N AL, DX ; GET MFG. BITS
AND AL, OFOH
CHP AL, 10H ; SYS TEST MODE?
JE 06
[AL, AL ; OR BURN-IN MODE
INZ TIME_1L
6: MoV INT_PTR, OFFSET MFG_TICK ; SET TO POINT TO MFG.
; ROUTINE
MoV INT1C_PTR, OFFSET MFG_TICK ; ALSO SET USER TIMER INT
; FOR DIAGS. USE
MOV AL, OFEH
out INTAOL, AL
sTI
RESET DS OF PORT AO SO THAT THE TIMER 1 CLOCK WILL BE
PULSED BY THE SYSTEM CLOCK.
IME_1: MOV AL, 0 ; MAKE AL = 00
ouT ‘0AOH, AL

CHECK FOR STUCK BITS IN TIMER 1

MOV AH, 1 ; TIMER 1
CALL BITS_ON_OFF

JNB TIMER2_INIT ; NO STUCK BITS

MoV 8L, 3 ; STUCK BITS IN TIMER 1
P SHORT TIMER_ERROR

INITIALIZE TIMER 2

IMER2_INIT:
MoV AX, 02B6H ; SET TIMER 2 TO MODE 3 BINARY
MoV BX, OFFFFH ; INITIAL COUNT

CALL INIT_TIMER

SET PBO OF PORT_B OF 8255 (TIMER 2 GATE)

N AL,PORT B ; CURRENT STATUS
OR AL, 000000018 ; SET BIT 0 - LEAVE OTHERS ALONE
ouT PORT_B, AL

CHECK FOR STUCK BITS IN TIMER 2

0328 B4 02 MoV AH, 2 ; TIMER 2

0320 EB 036C R caLL BITS_ON_OFF

0330 73 04 JNB REINIT_T2 ; NO STUCK BITS

0332 B3 05 MoV 8L,5 ; STUCK BITS IN TIMER 2
0334 EB 2C JMP SHORT TIMER_ERROR

RE_INITIALIZE TIMER 2 WITH MODE O AND A SHORT COUNT

0336 REINIT_T2:
. ; DROP GATE TO TIMER 2
0336 EA4 61 IN AL, PORT_B ; CURRENT STATUS
0338 24 FE AND AL, 111111108 ; RESET BIT 0 - LEAVE OTHERS ALONE
033A E6 61 ouT PORT_B, AL
033C B8 0280 MOV AX, 0280H ; SET TIMER 2 TO MODE O BINARY
033F BB 000A MoV 8X, 000AH ; INITIAL COUNT OF 10
0342 E8 FFEO R cALL INIT_TIMER
; CHECK PCS5 OF PORT_C OF 8255 TO SEE IF THE OUTPUT OF TIMER 2
; 1S LOW
0345 E4 62 N AL, PORT_C ; CURRENT STATUS
0347 24 20 AND AL, 001000008 ; MASK OFF OTHER BITS
0349 74 04 9z CK2_ON ; 1T's Low
0348 B3 04 MoV L, 4 ; PC5 OF PORT_C WAS HIGH WHEN IT
0340 EB 13 : JHP SHORT TIMER_ERROR ; SHOULD HAVE BEEN LOW
; TURN GATE BACK ON
034F €4 61 CK2_ON: IN AL, PORT_B ; CURRENT STATUS
0351 0OC 01 OR AL, 000000018 ; SET BIT O - LEAVE OTHERS ALONE
0353 E6 61 out PORT_B, AL
; CHECK PCS OF PORT_C TO SEE IF THE OUTPUT OF TIMER 2 GOES
; HIGH
0355 B9 000A MOV CX, 000AH ; WAIT FOR OUTPUT GO HIGH, SHOULC
0358 E2 FE CK2_LO: LOOP cK2_Lo ; BE LONGER THAN INITIAL COUNT
035A E4 62 IN AL, PORT_C ; CURRENT STATUS
035C 24 20 AND AL, 001000008 ; MASK OFF ALL OTHER BITS
03SE 75 S7 INZ POD 13_END ; 1T'S HIGH - WE’RE DONE'
0360 B3 06 MOV BL,6 ; TIMER 2 OUTPUT DID NOT GO HIGH

8253 TIMER ERROR OCCURRED. SET BH WITH MAJOR ERROR
INDICATOR AND CALL E_MSG TO INFORM THE SYSTEM OF THE ERROR
(BL ALREADY CONTAINS THE MINOR ERROR INDICATOR TO TELL
WHICH PART OF THE TEST FAILED.)

T

0362 1MER_ERROR: L.
0362 B7 08 MoV BH, 8 ; TIMER ERROR INDICATOR
0364 EB 09BC R cALL E_MSG
0367 EB 4E JMP SHORT POD 13_END
i BITS ON/OFF SUBROUTINE - USED FOR DETERMINING IF A
; PARTICULAR TIMER’S BITS GO ON AND OFF AS THEY SHOULD.
; THIS ROUTINE ASSUMES THAT THE TIMER IS USING BOTH THE LSB
: AND THE MSB.
; CALLING PARAMETER:
: (AH) = TIMER NUMBER (0, 1, OR 2)
i RETURNS
; (CF) = 1 IF FAILED
; (CF) = 0 IF PASSED
i REGISTERS AX, BX, CX, DX, DI, AND S! ARE ALTERED
0369 LATCHES LABEL BYTE
0369 00 08 00H ; LATCH MASK FOR TIMER 0
036A 40 0B aoH ; LATCH MASK FOR TIMER 1
0368 80 o8 80H ; LATCH MASK FOR TIMER 2
036C BITS_ON_OFF PROC NEAR
036C 33 DB XOR BX, BX ; INITIALIZE BX REGISTER
036E 33 F6 XOR si,sl ; 1ST PASS - SI = 0
0370 BA 0040 MoV DX, TIMER ; BASE PORT ADDRESS FOR TIMERS
0373 02 D4 ADD DL, AH
0375 BF 0369 R MoV DI,OFFSET LATCHES ; SELECT LATCH MASK
0378 32 €O XOR AL, AL ; CLEAR AL
037A 86 C4 XCHG AL, AH i AH -> AL
037C 03 Fa ADD DI, AX i TIMER LATCH MASK INDEX
1ST PASS - CHECKS FOR ALL BITS TO COME ON
; 2ND PASS - CHECKS FOR ALL BITS TO GO OFF
037€ OUTER_LOOP:
037E 89 0008 MoV cx,8 ; OUTER LOOP COUNTER
0381 INNER_LOOP
0381 51 PUSH cx ; SAVE OUTER LOOP COUNTER
0382 B9 FFFF MoV CX, OFFFFH . INNER LOOP COUNTER
0385 TST_BITS
0385 2E: BA 05 MoV AL,CS: (DI ; TIMER LATCH MASK
0388 €6 43 our TIM_CTL, AL ; LATCH TIMER
03BA 50 PUSH Ax . PAUSE
0388 58 POP ax
03BC EC IN aL, DX . ; READ TIMER LSB
0380 0B F6 oR s1,s1 >
038F 75 00 INE SECOND . ; SECOND PASS
0391 0C 01 OR AL, 01H ; TURN.LS BIT ON
0393 0A D8 OR 8L, AL ; TURN ‘ON‘ BITS ON
0395 EC IN AL, DX . READ TIMER MSB
0396 OA F8 OrR BH, AL ; TURN ‘ON’ 81TS ON
0398 81 FB FFFF cHp 8X, OFFFFH ; ARE ALL TIMER BITS ON?
039C €8 07 JMP SHORT TST_CMP , DON'T CHANGE FLAGS

>
k=]
o
&
=1
=
>
>

ROM BIOS

039€

039 22 08
0340 EC
03A1 22 F8
03A3 08 08B
03AS

03A5 74 07
03A7 E2 DC
03A9 59
03AA E2 03
03AC F9
03AD €3
03AE

03AE 59
03AF 46
0380 83 FE 02
0383 75 C9
0385 F®
0386 C3
0387

0387

= AOAC

= Ca60

= oocs

0387 EB E&DO® R
038A FA
0388 B0 70
038D E6 43
038F B89 8000
03C2 E2 FE
03C4a BO o0
03C6 E6 41
03ces 28 CO
03CA Cp 10
03CC B8 0507
03CF €D 10
03D1 BA O03DA
0304 28 C9
0306 EC
0307 A8 08
0309 75 06
03bB E2 F9
0300 B3 00
O03DF EB 4C
031 32 co
03E3 E6 41
03ES 20 0B
03E7 33 C9
039 EC
03EA A8 08
03EC 74 06
O03EE E2 F9
03F0 B3 01
03F2 EB 39
03F4 2B C9
03F6 EC
03F7 48 Ot
03F9 75 0A
03F8 AB 08
03FD 75 22
O03FF E2 FS
0401 &3 02
0403 EB 28
0405 A8 08
0407 74 04
0409 B3 03
040B EB 20
0400 28 C9
040F EC
0410 A8 01
0412 74 06
0414 E2 F9
0416 83 04
0418 EB 13
041A 43
0418 74 04
0410 A8 08
044F 74 D3

A-14 ROM BIOS

SECOND:

AND BL, AL ; CHECK FOR ALL BITS OFF
IN AL, DX ; READ MSB
AND BH, AL ; TURN OFF BITS
OR BX, BX ; ALL OFF?

TST_CHP:
JE CHK_END ; YES - SEE IF DONE
LOOP TST_BITS ; KEEP TRYING
PoOP (21 ; RESTORE OUTER LOOP COUNTER
LooP INNER_LOOP ; TRY AGAIN
STC ; ALL TRIES EXHAUSTED - FAILED TEST
RET

CHK_END :
POP cx ; POP FORMER OUTER LOOP COUNTER
INC sl
cup s1,2
JNE OUTER_LOOP ; CHECK FOR ALL BITS TO GO OFF
cLe ; TIMER BITS ARE WORKING PROPERLY
RET

BI1TS_ON_OFF ENDP

POD1I_END:

CRT ATTACHMENT TEST
1. INIT CRT TO 40X25 - BW
2. CHECK FOR VERTICAL AND VIDEO ENABLES, AND CHECK

TIMING OF SAME

i
H
:

INTENSIFY DOTS

COMMENETS IN CODE)

3. CHECK VERTICAL INTERRUPT
4. CHECK RED, BLUE, GREEN AND
5. INIT TO 40X25 - COLO
MFG. ERROR CODE O9XX (xx-s:r:
MAVT €Qu 0AOACH
MIVT £Qu 0CA460H
i NOMINAL TIME IS B2B6H FOR 60
EPF EQU 200 ;
cALL MFG_UP i
cL1
MoV AL, 011100008 ;
out TIM_CTL, AL
MOV cx, BOOOH
Q1 LooP Q1 ;
MoV AL, 00H
out TIMER+1, AL ;
s AX, AX ;
INT 10H
MoV AX, 0507H i
INT 10H i
MoV DX, 03DAH ;
cx, cx ;

LOOK FOR VERTICAL

et
~

MAXIMUM TIME FOR VERT/VERT
(NOMINAL + 10%)

MINIMUM TIME FOR VERT/VERT
(NOMINAL - 107)

NUMBER OF ENABLES PER FRAME
MFG CHECKPOINT= FS

SET TIMER 1 TO MODE O

WAIT FOR MODE SET TO "TAKE"

SEND FIRST BYTE TO TIMER
SET MODE 40X25 -~ BW

SET TO VIDEO PAGE 7

SET ADDRESSING TO VIDEO ARRAY

GET STATUS

1:51' AL ooooxoooa ; VERTICAL THERE YET?
JINE ; CONTINVE IF IT IS
LooP nz ; KEEP LOOKING TILL COUNT EXHAUSTED
MoV 8L, 00 ;
JMP SHORT Q115 ; NO VERTICAL = ERROR 0900
; GOT VERTICAL - START TIMER
@3 XOR AL, AL ;
out TIMER+1, AL SEND 2ND BYTE TO TIMER TO START
sus 8x, BX INIT. ENABLE COUNTER
WAIT FOR VERTICAL TO GO AWAY
€x, X
Q4: N AL, DX GET STATUS
TEST AL, 000010008 VERTICAL STILL THERE?
J2z Qs ; CONTINUE IF IT’S GONE
LoOP Q4 ; KEEP LOOKING TILL COUNT EXHAUSTED
MOV BL,O1H ;
SHORT @115 VERTICAL STUCK ON = ERROR 0901
NOW START LOOKING FOR ENABLE TRANSITIONS
es: suB cx, CX
Q6: IN AL, DX ; GET STATUS
TEST AL, 000000018 ; ENABLE ON YET?
INE Q7 ; GO ON IF IT IS
TEST AL, 000010008 ; VERTICAL ON AGAIN?
JNE Q11 ; CONTINUE IF IT IS
LOOP Q6 ; KEEP LOOKING IF NOT
MoV 8L, 02H i
JHP SHORT @118 ; ENABLE STUCK OFF = ERROR 0902
; MAKE SURE VERTICAL WENT OFF WITH ENABLE GOING ON
Q7: TEST AL, 000010008 ; VERTICAL OFF?
9z Qe ; GO ON IF IT IS
MOV BL, 03H ;
JMP SHORT @115 ; VERTICAL STUCK ON = ERROR 0903
; NOW WAIT FOR ENABLE TO GO OFF
: sus cx,cx
@9: IN aL, ; GET STATUS
TEST aL, oooooooxs ; ENABLE OFF YET?
JE Q10 ; PROCEED IF IT IS
LOOP Q9 ; KEEP LOOKING IF NOT YET LOW
MOV 8L, 04H ;
JMP SHORT @115 ; ENABLE STUCK ON = ERROR 0904
; ENABLE HAS TOGGLED, BUMP COUNTER AND TEST FOR NEXT VERTICAL
Q10 INC BX ; BUMP ENABLE COUNTER
9z Q11 ; IF COUNTER WRAPS, ERROR
TEST AL, 000010008 ; DID ENABLE GO LOW BECAUSE OF
; VERTICAL?
Jz es ; IF NOT, LOOK FOR ANOTHER ENABLE

TOGGLE

[

HAVE HAD COMPLETE VERTICAL-VERTICAL CYCLE, NOW TEST RESULTS

0421 BO 40 a1l MoV AL, 40H ; LATCH TIMERL
0423 €6 43 our TIM_CTL, AL i
0425 B1 FB 00C8 cHp 8x, EPF ; NUMBER OF ENABLES BETWEEN
. VERTICALS 0.K.?
0429 74 04 JE Q12 ;
0428 83 05 MoV 8L, 0SH ;
0420 €8 74 Q115: JMP SHORT @22 ; WRONG % ENABLES O ERROR 0905
042F €4 41 012: IN AL, TIMER+1 ; GET TIMER VALUE LOW
0431 8A EO Mov AH, AL ; SAVE IT
0433 90 NOP ' :
0434 E4 a1 N AL, TIMER#1 ; GET TIMER HIGH
0436 86 EO XCHG AH, AL H
0438 FB sT1 ; INTERRUPTS BACK ON
0439 90 NOP
043A 3D AOAC cue ax, MavT ;
0430 70 04 JGE Q13 :
043F 83 06 “OV BL, 06H ;
0441 EB 60 anp SHORT @22 i VERTICALS TOO FAR APART
; = ERROR 0906
0443 30 €460 Q13: cup AX, MIVT :
0446 7€ 04 JLE Q14 ;
0448 B3 07 Mov 8L, O7H :
044A EB 57 INP SHORT @22 i VERTICALS T00 CLOSE TOGETHER
= ERROR 0907
; TIMINGS SEEM 0.K., NOW CHECK VERTICAL INTERRUPT (LEVEL 8)
04ac 28 C9 Q1a: sus ox, cx ; SET TIMEOUT REG
044E E4 21 IN AL, INTAOL
0450 24 OF AND AL, 1IOILLLIB ; UNMASK INT. LEVEL 5
0452 E6 21 out INTAOL, AL
0454 20 06 0484 R AND DATA_AREALINTR_FLAG-DATAJ, AL
0458 F8 sT1 . ENABLE INTS.
0459 F6 06 0484 R 20 Q15: TEST DATA_AREALINTR_FLAG-DATAJ, 001000008 ; SEE IF INTR.
; S HAPPENED YET
045 75 06 INZ a16 ; GO ON IF IT DID
0460 E2 F7 LOOP Q15 ; KEEP LOOKING IF 1T DIDN’T
0462 ©3 08 nov BL, 08H M
0464 €8 30 NP SHORT @22 . NO VERTICAL INTERRUPT
; = ERROR 0908
0466 E4 21 Q16: IN AL, INTAO1L ; DISABLE INTERRUPTS FOR LEVEL §
0468 0C 20 OR AL, 001000008 B
046A E6 21 out INTAOL, AL

SEE IF RED, GREEN, BLUE AND INTENSIFV 00TS WORK
; FIRST, SET A LINE OF REVERSE VIDEO, INTENSIFIED BLANKS INTO VIDEO

BUFFER
046C B89 0908 MOV AX, 090BH ; WRITE CHARS, BLOCKS
046F 8B O77F MoV 8X, 07T7FH ; PAGE 7, REVERSE VIDEO,
; HIGH INTENSITY
0472 88 0020 Moy cx, 40 ; 40 CHARACTERS
0475 €D 10 INT 10H ;
0477 33 co XOR AX, AX ; START WITH BLUE 00TS
0479 28 €9 Q17: sus cx cx i
0478 EE out AL ; SET VIDEO ARRAY ADDRESS FOR DOTS
; szs IF oor cones ON
047¢ EC Q1 AL, OX ; GET STATUS
0470 A8 10 TEST AL, 000100008 ; DOT THERE?
047F 75 08 INZ Q19 ; GO LOOK FOR DOT TO TURN OFF
0481 E2 F9 LooP Q18 ; CONTINUE TESTING FOR DOT ON
0483 83 10 MOV BL, 10H i
0485 OA DC OR 8L, AH ; OR IN DOT BEING TESTED
0487 EB iA JMP SHORT @22 ; DOT NOT COMING ON = ERROR 091X
; X=0, BLUE; X=1, GREEN;
; X=2, RED; X=3, INTENSITY)
SEE IF DOT GOES OFF
0489 28 C9 Q19: sue cx, X
0488 EC @20: IN AL, DX ; GET STATUS
048C A8 10 TEST AL, 000100008 ; 1S DOT STILL ON?
040E 74 08 JE Q21 ; GO ON IF DOT OFF
0490 E2 F9 LooP @20 ; ELSE, KEEP WAITING FOR 0DOT
; TO GO OFF
0492 B3 20 MoV BL, 20H i
0494 0A OC OR BL, AH ; OR IN DOT BEING TESTED
0486 EB 0B JHP SHORT @22 ; DOT STUCK ON = ERROR 092X
i (X=0, BLUE; X=1, GREEN;
; %=2, RED; X=3, INTENSITY)
; ADJUST TO POINT TO NEXT DOT
0498 FE C4 @21: INC ;
0494 80 FC 04 cup AW, 4 ; ALL 4 DOTS DONE?
0490 74 09 JE Q23 ; GO END
049F B8A C4 MoV AL, AH
04a1 EB 06 anp Q17 ; GO LOOK FOR ANOTHER DOT
04A3 87 09 Q22: MoV 8H, 09H ; SET MSB OF ERROR CODE
04A5 E9 098C R JMP E_MSG
DONE WITH TEST RESET TO 40X25 - COLOR
ASSUME DS:DATA
04AB EB 1388 R Q23: caLL 00S
04AB BB 0001 Moy AX, 000 IH ; INIT TO 40X25 - COLOR
04AE CD 10 INT 10H
0480 B8 0507 MoV AX, 0507H ; SET TO VIDEO PAGE 7
0483 CO 10 INT 10H
0485 81 3E 0072 R 1234 cMp RESET_FLAG, 1234H ; WARM START?
0488 74 03 JE Q24 ; BYPASS PUTTING UP POWER-ON SCREEN
0480 EB 0C21 R cALL PUT_LOGO ; PUT LOGO ON SCREEN

ROM BIOS A-15

0480 E® 0C21 R
04CO 80 76

04C2 E6 43

04C4 80 00

04C6 €6 41

04Cc8 90

04C9 90

04CA €6 41

04CC E® EGDO R
04CF 33 co

0401 BE 0B

0403 C7 06 0008 R OF78 R
04D9 C7 06 0120 R FO6B R
04DF OE

04E0 58

04E1 A3 0122 R
04E4 €8 138B R
04E7 BE OO0lE R
04EA 89 36 001A R
04EE 89 36 00I1C R
04F2 89 36 0080 R
04F€ 83 C6 20
04F9 B89 36 0082 R
04FD E4 A0

04FF B8O 80

0501 E6 A0

0503 EB8 EGDB R
0506 B8 0040
0509 E4 62

0508 A8 08

0s0D 75 03

0S0F 83 C3 40
0812 53

0513 83 €8 10
0516 B89 1E 0013 R
0S1A SB

0518 B8A 2000

OS1E 28 FF

0520 B9 AASS
0523 8E C2

0525 26: 89 00
0528 80 OF

052A 26: 8B 05
0820 33 C1

082F 75 oC

0531 81 C2 1000
0335 83 C3 40
0338 80 FE A0
0538 75 E6

0530 89 1E 0015 R
0341 8B 0004
0544 €EB 038C R
0547 BA 0080

0%54A 89 7800

0540 8E C2

0S4F 51

0550 53

0551 50

0552 €EB 0B59 R
0558 74 03

0887 E9 0603 R
055A 58

0338 S8

035C S9

0850 80 FD 78
0560 9C

0561 05 003C

0564 90

0565 74 03

0567 05 0002
056A EB8 05BC R
05eD 3B C3

036F 75 03

0571 E9 0640 R

A-16 ROM BIOS

Q24:

CALL PUT_L0GO ; PUT LOGO ON SCREEN

MoV AL,011101108 RE-INIT TIMER 1

out TIM_CTL, AL ;

MoV AL, OOH

out TIMER+1, AL

NOP

NOP

ouT TIMER+1, AL

ASSUME DS: ABSO

cALL MFG_UP ; MFG CHECKPOINT=F4

XOR AX, AX

MoV DS, AX

MoV NMI_PTR, OFFSET KBONM! ; SET INTERRUPT VECTOR

MoV KEYE2_PTR, OFFSET KEY_SCAN_SAVE SET VECTOR FOR
; POD INT HANDLER

PUSH cs

POP Ax

MOV KEV62_PTR+2, AX

ASSUME 0S:DATA .

CALL o0S ; SET DATA SEGMENT

MoV S1,0FFSET KB_BUFFER ; SET KEYBOARD PARMS

“ov BUFFER_HEAD, S1

MOV BUFFER_TAIL, S1

MoV BUFFER_START, SI

ADD s1,32 ; SET DEFAULT BUFFER OF 32 BYTES

MoV BUFFER_END, S1

N AL, 0AOH CLEAR NMI F/F

MOV AL, 80H ; ENABLE NMI

oyt 0AOH, AL

IF A KEY IS STUCK, THE BUFFER SHOULD FILL WITH THAT KEY'S CODE

THIS WILL BE CHECKED LATER

MEMORY SI1ZE DETERMINE AND TEST
THIS ROUTINE WILL DETERMINE HOW MUCH MEM
1S ATTACHED TO THE SYSTEM (UP TO 640KB)
AND SET "MEMORY_SIZE" AND “REAL_MEMORY"
WORDS IN THE DATA AREA.

AFTER THIS, MEMORY WILL BE EITHER TESTED
OR CLEARED, DEPENDING ON THE CONTENTS OF
“RESET_FLAG",
WFG. ERROR CODES -OAXX PLANAR BD ERROR
=08XX 64K CD ERROR
-0CXX ERRORS IN BOTH

000 AND EVEN BYTES

IN A 128K SYS

~1YXX MEMORY ABOVE 128K
Y=SEGMENT HAVING TROUBLE
XXz ERROR BITS

Q25

Q27
i S

Q28:

Q29:

Q30:

ASSUME DS:DATA
cALL MFG_UP ; MFG CHECKPOINT=F3
MoV X, 64 ; START WITH BASE 64K
N AL, PORT_C ; GET CONFIG BYTE
TEST AL, 000010008 ; SEE IF 64K CARD INSTALLED
INE 025 i (BIT 4 WILL BE O If CARD PLUGGED)
ADD BX, 64 ADD 64K
PUSH BxX SAVE K COUNT
sus 8x, 16 ; SUBTRACT 16K CRT REFRESH SPACE
MoV CMEMORY_S1ZE),BX ; LOAD “CONTIGUOUS MEMORY" WORD
POP BX
MoV DX, 2000H ; SET POINTER TO JUST ABOVE 128K
SUB 01,01 ; SET DI TO POINT TO BEGINNING
MoV CX, 0AASSH ; LOAD DATA PATTERN
MoV €S, 0X ; SET SEGMENT TO ROINT TO MEMORY
; SPACE
MoV €S:(011,CX ; SET DATA PATTERN TO MEMORY
MoV AL, OFH ; SET AL TO ODD VALUE
MOV AX,ES: (D1 ; GET DATA PATTERN BACK FROM MEM
XOR Ax, CX ; SEE IF DATA MADE IT BACK
JINZ @27 ; NO? THEN END OF MEM HAS BEEN
; REACHED
a00 DX, 1000H ; POINT TO BEGINNING OF NEXT 64K
ADD 8X, 64 ; ADJUST TOTAL MEM. COUNTER
cHp DH, 0AOH ; PAST 640K YET?
JINE Q26 ; CHECK FOR ANOTHER BLOCK 1F NOT
; MoV [TRUE_MEM),BX ; LOAD "TOTAL MEMORY" WORD
12E HAS BEEN DETERMINED, NOW TEST OR CLEAR ALL OF MEMORY
MOV X, 4 ; 4 KB KNOWN OK AT THIS POINT
cALL Qas
MOV DX, 00BOH ; SET POINTER TO JUST ABOVE
; LOWER 2K
MoV CX, 7800H ; TEST 30K WORDS (60K@)
MoV ES, DX
PUSH cx ;
PUSH BX
PUSH ax
caLL PODSTG ; TEST OR FILL MEM
9z Q29
JHP Q39 ; JUMP IF ERROR
POP ax
POP 8x
POP cx ; RECOVER
cup CH, 7BH ; WAS THIS A 60 K PASS
PUSHF
ADD AX, 60 ; BUMP GOOD STORAGE BY 60 K8
PORF
JE Q30
ADD AxX, 2 ;ADD 2 FOR A 62K PASS
cALL Q3s
cup Ax, BX ; ARE WE DONE YET?
JNE Q31 .
JMP Q43 ; ALL DONE, IF SO

0574
0577
0879
057C
057F
0581
0582
0583
0584
0587
0589
058A
0588
088C
058F
0592
0595
0597
0594A
059C
089E
0SA1
05A4
05A6
0SA7
0%A8
0SA9
05AC
0SAE
0SAF
0580
ose1
0584
0587
058A

058C
05BC
0S8F
05CS
0sc7
05C8
05co
o5cA
0scB
0sCco
0500
0802
0s04
0505
0506
0509
0sDC
OSDE
0SEQ
0SE3
O0SE4
05E6
0SE9
O0SEA
0SED
OSEF
08F2
OSFS
osFa
OSF9
OSFC
OSFE
OSFF
0600
0601
0602
0603

0603

0604
0608
060A
060C
060E

0610
0612
0614
0616
0618
061A
061C
061E
0620
0622
0624

ooeo

oF80
0400
c2

0859 R
55

0020
05BC R
c6é 08
DE

1388 R
3€E 0072 R 1234
38

FA 2000
E

09
oo
04

Q3l: CHP AX, 128 ; DONE WITH 1ST 12BK?
JE @32 , GO FINISH REST OF MEM
Y 0X, OFBOH ; SET POINTER TO FINISH 1ST 64 KB
MOV CX, 0400H
MOV €S, DX
PUSH ax
PUSH BX
PUSH DX
caLL PODSTG ; GO TEST/FILL
INZ Q39 i
POP [
POP BX
POP AX
ADD ax, 2 , UPDATE GOOD COUNT
MOV 0X, 1000H . SET POINTER TO 2ND 64K BLOCK
MoV CX, 7COOH ; 62K WORTH
JuP @28 ; GO TEST IT
Q32: MoV DX, 2000H ; POINT TO BLOCK ABOVE 12BK
@33: cHp BX, AX ; COMPARE GOOD MEM TO TOTAL MEM
JNE Q34
JHP Qa3 ; EXIT IF ALL DONE
@34: MoV CX, 4000H ; SET FOR 32KB BLOCK
MoV €S, DX
PUSH AX
PUSH BX
PUSH ox
cALL PODSTG ; GO TEST/FILL
JINZ Q39 i
POP ox
POP BX
POP AX
ADD AX, 32 ; BUMP GOOD MEMORY COUNT
cALL Q35 ; DISPLAY CURRENT GOOD MEM
ADD DH, 08H ; SET POINTER TO NEXT 32K
JNP Q33 ; AND MAKE ANOTHER PASS
; SUBROUTINE FOR PRINTING TESTED
; MEMORY OK MSG ON THE CRT
; CALL PARMS: AX = K OF GOOD MEMORY
i CIN HEX)
Q3s PROC NEAR
cALL 00S ; ESTABLISH ADDRESSING
cMP RESET_FLAG, 1234H ; WARM START?
JE Q38€ NO PRINT ON WARM START
PUSH BX
PUSH cx
PUSH oX
PUSH ax ; SAVE WORK REGS
MOV AH, 2 ; SET CURSOR TOWARD THE END OF
MoV DX, 1421H . ROW 20 (ROW 20, COL. 33)
MOV 8H, ; PAGE 7
INT 10H
POP AX ;
PUSH AX
MoV BX, 10 ; SET UP FOR DECIMAL CONVERT
MOV cx,3 ; OF 3 NIBBLES
Q36: XOR 0X,0X ;
o1V BX ; DEVIDE BY 10
oR oL, 30H ; MAKE INTO ASCI1
PUSH bX ; SAVE
LOOP Q36 ;
MOV cx,3 ;
Q37: POP AX . RECOVER A NUMBER
cALL PRT_HEX
LooP Q37
MoV cx,3
MOV S1,0FFSET F38 ; PRINT * k8"
@38: MoV AL, CS: [S1]
INC s1
cALL PRT_HEX
LooP Q38
POP AX
POP ox
POP cx
POP BX
Q3SE: RET
Q3s ENOP

ON ENTRY TO MEMORY ERROR ROUTINE, CX HAS ERROR B1TS

Q39:

Q40:

POP

CMP
JL
MoV
OR
MOV

DX, 2000H
Q40

8L, CL
8L, CH
cL,4

OH, CL

SHORT Q42
BH, OAH
AL,PORT_C
AL, 000010008
Q41

8L, CL

BL,CH

SHORT Q42

AH HAS ODD/EVEN INFD, OTHER USEFUL INFO ON THE STACK
(23

POP SEGMENT POINTER TO DX
(HEADING DOWNHILL, DON'T CARE
ABOUT STACK)

ABOVE 128K (THE SIMPLE CASE)
GO DO ODD/EVEN-LESS THAN 128K
FORM ERROR BITS ("XX")

ROTATE MOST SIGNIFIGANT
NIBBLE OF SEGMET

TO LOW NIBSLE OF DH

FORM "1Y'" VALUE

ERROR 0A. ...

GET CONFIG BITS

TEST FOR ATTRIB CARD PRESENT
WORRY ABOUT ODD/EVEN IF IT IS

COMBINE ERROR BITS IF IT ISN‘T

ROM BIOS A-17

0626 80 FC 02
0629 8A D9
0628 74 08
0620 FE C?
062F OA DD
0631 80 FC 0}
0634 74 02
0636 FE C7
0638 BE 0035 R
0638 EB 098C R
O63E FA

O063F Fa

0640

0640 EB E6DB R
0643 EB 1388 R
0646 BB 001E R
0649 8A 07
0648 0A CO
0640 74 06
064F B7 22
0651 8a D8
0653 EB 0A
0635 80 3E 0012 R 00
065A 74 1C
065C BB 2000
065F BE 0036 R
0662 81 JIE 0072 R 4321
0668 74 0B
066A 81 JE 0072 R 1234
0670 74 03
0672 E8 098C R
0675 E9 O6FF R
0678 BaA 0201
0678 EC

067C 24 FO
O67E 74 7F
0680 €4 62
0682 24 80
0684 74 79
0686 €4 61
0688 24 FC
068A E6 61
068C 80 B6
06BE E6 43
0690 BO 40
0692 E6 A0
0694 BO 20
0696 B8A 0042
0699 EE

069A 2B CO
069C 8B C8
069E EE

069F E4 61
06A1 o0C 01
06A3 E6 61
06AS E4 62
06A7 24 40
06A9 75 06
06AB E2 FB
06AD 83 02
06AF EB 49
0681 06

0682 2B Co
0684 8E CO
0686 26: C?7 06 0008 R FB15 R
068D A2 0084 R
06CO0 EA4 61
06C2 o€ 30
06C4 E6 61
06C6 80 CO
06C8 E6 A0
06CA B9 0100

A-18

ROM BIOS

Q41 cHP AH, 02 ;
MOV BL,CL
JE Q42
INC BH ;
OR BL,CH i
cHP AH, 1 :
JE Q42
INC BH ;
Qa2 MOV SI1,0FFSET MEM_ERR

cALL E_MSG f

cLt :

HLT g
@43 = .

EVEN BYTE ERROR? ERR OAXX

MAKE INTO 0BXX ERR
MOVE AND COMBINE ERROR BITS
0DD BYTE ERROR

MUST HAVE BEEN BOTH
- MAKE INTO OCXX

LET ERROR ROUTINE FIGURE OUT
WHAT TO0 DO

< KEYBOARD TEST
DESCRIPTION

POST ERROR.

MFG ERR CODE

2000 STRAY NMI INTERRUPTS
RECEIVE ERRORS

21XX CARD FAILURE

NMI HAS BEEN ENABLED FOR QUITE A FEW
SECONDS NOW. CHECK THAT NO SCAN CODES
HAVE SHOWN UP IN THE BUFFER. (STUCK
KEY) IF THEY HAVE, DISPLAY THEM ANO

OR KEYBOARD

XX=01, KB DATA STUCK HIGH

XX=02, KB DATA STUCK LoW

XX=03, NO NMI INTERRUPT
22XX STUCK KEY (XX=SCAN CODE)

ASSUME DS:DATA
----- CHECK FOR STUCK KEYS

caLL MFG_UP ; MFG CODE=F2
caLL 00S ; ESTABLISH ADDRESSING
MOV 8X, OFFSET KB_BUFFER
MoV AL, [BX) ; CHECK FOR STUCK KEYS
OR AL, AL ; SCAN CODE = 0?
JE F6_Y ; YES - CONTINUE TESTING
Y BH, 22H ; 22XX ERROR CODE
nov BL, AL H
JMP SHORT F6
Fe_Y CHP KBO_ERR, 00H ; DID NMI‘S HAPPEN WITH NO SCAN
; CODE PASSED?
JE F7 ; (STRAYS) - CONTINUE IF NONE
MoV 8X, 2000H ; SET ERROR CODE 2000
Fe MoV S1,0FFSET KEY_ERR ; GET MSG ADOR
cHP RESET _FLAG, 432u4 ; WARM START TO D1AGS
JE F6_ DO NOT PUT UP MESSAGE
cMP n:su _FLAG, 1234H ; WARM SYSTEM START
JE F6_2 00 NOT PUT UP MESSAGE
cALL E_NSG ; PRINT MSG ON SCREEN
F6_Z: JMP FE_X
; CHECK LINK CARD, IF PRESENT
: MOV DX, 020 1H
IN AL, DX CHECK FOR BURN-IN MODE
aNp AL, OFOH
gz F6_X ; BYPASS CHECK IN BURN-IN MODE
IN AL PORT_C ; GET CONFIG. PORT DATA
AND AL, 100000008 ; KEYBOARD CABLE ATTACHED?
Jz) ; BYPASS TEST IF IT IS
IN AL, PORT_8 i
AND AL, 111115008 ; DROP SPEAKER DATA
ourt PORT_B, AL :
MoV AL, 0BEH ; MODE SET TIMER 2
out TIM_CTL, AL ;
MoV AL, 040H ; DISABLE NMI
out 0AOH, AL ;
MOV AL, 32 ; LSB TO TIMER 2
; (APPROX. 40KhZ VALUE)
MoV DX, TIMER+2
ouTt OX, AL
sus ax, ax
MoV CX, AX
our DX, AL MSB TO TIMER 2 (START TIMER)
N AL, PORT_8 i
OR .
out PORT_B, AL ; ENABLE TIMER 2
F7_0: IN AL, PORT_C ; SEE IF KEYBOARD DATA ACTIVE
AND AL, 010000008 i
INZ F7.1 ; EXIT LOOP IF DATA SHOWED UP
LooP F7_.0
MoV 8L, 02H ; SET NO KEYBOARD DATA ERROR
JMP SHORT F6_1
F7_i: PUSH €S ; SAVE ES
sus AX, AX sn UP SEGMENT REG
MoV ES, AX
MOV ES: CNMI_PTR], OFFSET D11 ; SET UP NEW NMI VECTOR
MOV INTR_FLAG, AL ; RESET INTR FLAG
IN AL, PORT_B ; DISABLE INTERNAL BEEPER TO
OR AL, 001100008 PREVENT ERROR BEEP
out PORT_B, AL
MoV AL, 0COH
out 0AOH, AL ; ENABLE NMI
MoV CX, 0100H ;

06CD E2 FE F6_0: LOOP F6_0 ; WAIT A BIT

06CF E4 61 N AL, PORT_B ; RE~ENABLE BEEPER

06DI 24 CF AND AL, 110011118

0603 E6 61 out PORT_B, AL

0605 A0 00B4 R MoV AL, INTR_FLAG ; GET INTR FLAG

06DB 0A CO OR AL, AL ; WILL BE NON-2ERO IF NMI HAPPENED
060A 83 03 MoV 8L, 03H ; SET POSSIBLE ERROR CODE
060C 26: C? 06 0008 R OF7B R Mov ES: [NMI_PTR], OFFSET KBONMI ; RESET NMI VECTOR
06E3 . 07 POP €S ; RESTORE ES

06E4 74 14 J2 F6_1 ; JUMP IF NO NMI

06EE B8O 00 MoV AL, 0OH ; DISABLE FEEDBACK CKT

06EB E6 AO out 0AOH, AL i

06EA E4 61 IN AL, PORT_B i

06EC 24 FE AND AL, 111111108 ; DROP GATE TO TIMER 2

O6EE E6 61 ouT PORT_B, AL ;

06F0 E4 62 F6_2: 1IN AL, PORT_C i SEE IF KEYBOARD DATA ACTIVE
06F2 24 40 AND AL, 010000008 ;

06F4 74 09 9z F6_X ; EXIT LOOP IF DATA WENT LOW
06F6 E2 FB LOOP F6_2

06FB B3 01 MOV BL,OIH ; SET KEVBOARD DATA STUCK HIGH ERR
06FA B7 21 F6_1: MOV BH, 21H ; POST ERROR "21XX"

O06FC E9 O6SF R Jmp F6 ;

06FF BO 00 FE_X: MOV aL, 00H ; DISABLE FEEDBACK CKT

0701 E6 AO out 0AOH, AL ;

CASSETTE INTERFACE TEST
DESCRIPTION
TURN CASSETTE MOTOR OFF. WRITE A BIT OUT TO THE
CASSETTE DATA BUS. VERIFY THAT CASSETTE DATA
READ IS WITHIN A VALID RANGE
MFG. ERROR CODE=2300H (DATA PATH ERROR)
23FF (RELAY FAILED TO PICK)

;
= 0A9A MAX_PER10D EQU OASAH ; NOM. +10%
= 08AD MIN_PER10D EQU OBADH ; NOM -10%
CASSETTE MOTOR OFF
0703 E8 E60B R MFG_UP ; MFG CODE=F1
0706 E4 61 IN AL, PORT_8
0708 oC 09 OR AL, 0600010018 ; SET TIMER 2 SPK OUT, AND CASSETTE
070A EE 61 out PORT_B, AL ; OUT BITS ON, CASSETTE MOT OFF
;--—-- WRITE A BIT
070C E4 21 IN AL, INTAOL
070E 0C Ol OR AL, 01H ; DISABLE TIMER INTERRUPTS
0710 €6 21 ouT INTAOL, AL
0712 BO B6 MoV AL, 0B6H ; SEL TIM 2, LSB, MSB, MD 3
0714 E6 43° out TIMER+3, AL ; WRITE 8253 CMD/MODE REG
0716 88 0402 MoV AX, 1234 ; SET TIMER 2 CNT FOR 1000 USEC
0719 E6 42 out TIMER+2, AL ; WRITE TIMER 2 COUNTER REG
0718 8A C4 MoV AL, AH ; WRITE MSB
07310 €6 42 out TIMER+2, AL
071F 28 C9 sus cX, CX ; CLEAR COUNTER FOR LONG DELAY
0721 €2 FE LoOP s ; WAIT FOR COUNTER TO INIT
;== READ CASSETTE INPUT
0723 E4q 62 IN AL, PORT_C ; READ VALUE OF CASS IN 81T
0725 24 10 AND AL, 10H ; 1SOLATE FROM OTHER BITS
0727 A2 0068 R MoV LAST_VAL, AL
072A E8 F96F R cALL READ_HALF_BIT ; TO SET UP CONDITIONS FOR CHECK
0720 E® F96F R CALL READ_HALF_B1T
0730 E3 3€ Jexz F8 ; CAS_ERR
0732 53 PUSH 8x ; SAVE HALF BIT TIME VALUE
0733 EB F96F R CALL READ_HALF_BIT
0736 S8 POP AX ; GET TOTAL TIME
0737 €3 37 Jexz F8 ; CAS_ERR
0739 03 C3 ADD AX, BX
0738 3D 0A9A cHP AX, MAX_PER100
073 73 30 JINC Fe ; CAS_ERR
0740 3D 0BAD CHP AX, MIN_PER10D
0743 72 28 Jc Fo
0745 BA 0201 MoV 0X, 201H
0748 EC IN AL, DX
0749 24 FO AND AL, OFOH ; DETERMINE MODE
074B 3C 10 cHP AL, 000100008 ; WFG?
0740 74 04 JE T F
074F 3C 40 cHp AL, 010000008 i SERVICE?
0751 75 26 JNE T13_END GO TO NEXT TEST IF NOT

CHECK THAT CASSETTE RELAY 1s PICKING (CAN‘T DO TEST IN NORMAL
MODE BECAUSE OF POSSIBILITY OF WRITING ON CASSETTE IF "RECORD"
BUTTON IS DEPRESSED.)

0753 E4 61 F9: N AL, PORT_8
0755 8A DO MOV oL, AL ; SAVE PORT B CONTENTS
0757 24 €5 AND AL, 111001016 ; SET CASSETTE MOTOR ON
0759 E6 61 out PORT_B, AL i
0758 33 C9 XOR cx, cX
0750 E2 FE F91: LooP F9l ; WAIT FOR RELAY TO SETTLE
075F EB F96F R caLL READ_HALF_B1T
0762 EB F96F R cALL READ_HALF_BIT
0765 B8A C2 MOV AL, 0L ; DROP RELAY
0767 E6 61 out PORT_B, AL
0769 E3 OE Jexz T13_END ; READ_HALF_BIT SHOULD TIME OUT IN

; THIS SITUATION
0768 BB 23FF MoV BX, 23FFH ; ERROR 23FF
076E EB 03 JMP SHORT FB1
0770 Fe: i CAS_ERR
0770 BB 2300 MoV 8X, 23004 ERR. CODE 2300H >
0773 BE 0037 R FB1: MoV S1,OFFSET CASS_ERR ; CASSETTE WRAP FAILED
0776 EB 09BC R caLL E_MSG GO PRINT ERROR MSG bl
0779 E4 21 T13_END: IN AL, INTAQL -
0778 24 FE AND AL, OFEH ; ENABLE TIMER INTS ®
0770 €6 21 out INTAOL, AL =
077F E4 AO IN AL, NMI_PORT ; CLEAR NMI FLIP/FLOP =
0781 BO 80 oV AL, 80H ; ENABLE NM1 INTERUPTS |l
0783 E6 A0 ouT NMI_PORT, AL =

ROM BIOS A-19

078%
0788
o788
078E
0790
0793

0796
0799
0798
079D
079F
07A2
0745
07A7
0744
07AD

07aD
074aF
0781
0784
0785
0786
0789
078C
078D
078€E
078BF

07¢1
07¢3
07¢9

O7CF
0705
o708
07pC
0700

Q7E0
07E2
07E4
07€7
07EA
07EA
07€C
Q7€EE
07F0
O7F1
07F2
O7F5
07F7
O7FA
07FC
07FC
0800
0800
0804

A-20 ROM BIOS

EGDB R
02F8
E031 R

0038 R

098C R

m
@
w
-
E]

o
@
@
a
ER]

co

0008

FEF3
0020

F8

bs
06 0014 R FF54 R
06 0120 R 10C6 R

06 0110 R FAGE R
06 0060 R FFCB R

0062 R

o1

13
E6DB8 R
cooo

DA
1]
07

AASS
05
EBS1 R
04

€2 0080

FA F0O0O
Eq

SERIAL PRINTER AND MODEM POWER ON DIAGNOSTIC
DESCRIPTION:

VERIFIES THAT THE MODEM UART FUNCTIONS PROPERLY

FOR POSSIBLE ERRORS
MFG. ERR. CODES 23XX FOR SERIAL PRINTER
24XX FOR MODEM

VERIF1ES THAT THE SERIAL PRINTER UART FUNCTIONS PROPERLY.
CHECKS 1F THE MODEM CARD IS ATTACHED. IF IT’S NOT, EXITS

ERROR CODES RETURNED BY ‘UART' RANGE FROM 1 TO 1FH AND ARE
REPORTED VIA REGISTER BL. SEE LISTING OF ‘UART’ (POD27)

ASSUME CS:CODE,0S:DATA

TEST SERIAL PRINTER INS8250 UART

caLL MFG_UP MFG ROUTINE INDICATOR=FOQ

Mov DX, 02F8H ; ADDRESS OF SERIAL PRINTER CARD
CALL UART ; ASYNCH. COMM. ADAPTER POD

INC ™ ; PASSED

MOV S1,0FFSET COM1_ERR ; CODE FOR DISPLAY

CALL E_MSG REPORT ERROR

TEST MODEM INS8250 UART

i
™ cALL MFG_UP ; MFG ROUTINE INDICATOR = EF
IN AL, PORT_C ; TEST FOR MODEM CARD PRESENT
AND AL, 000000108 ; ONLY CONCERNED WITH BIT 1
JNE 1 ; 1T‘S NOT THERE - DONE WITH TEST
MoV DX, 03F8H ; ADDRESS OF MODEM CARD
cALL UART ; ASYNCH. COMM. ADAPTER POD
JINC ™1 ; PASSED
MoV S1,0FFSET COM2_ERR ; MODEM ERROR
caLL E_MSG ; REPORT ERROR
T™L:
i SETUP HARDWARE INT. VECTOR TABLE
ASSUME CS:CODE, 0S: ABSO
sus AX, AX
MoV ES, AX
MoV cx, 08 ; GET VECTOR CNT
PUSH cs ; SETUP DS SEG REG
POP DS
mov SI,OFFSET VECTOR_TABLE
MoV DI,OFFSET INT_PTR
F7A: MOVSW
INC ol ; SKIP OVER SEGMENT
INC D1

LOOP F7Aa
------ SET UP OTHER INTERRUPTS AS NECESSARY
ASSUME DS:ABSO

MoV oS, €X
MOV INT5_PTR, OFFSET PRINT_SCREEN ; PRINT SCREEN
MOV KEY62_PTR, OFFSET KEY62_INT ; 62 KEY CONVERSION
; ROUTINE
MoV CSET_PTR, OFFSET CRT_CHAR_GEN ; DOT TABLE
MOV BASIC_PTR, OFFSET BAS_ENT ; CASSETTE BASIC ENTRY
PUSH [
POP ax
MoV WORD PTR BASIC_PTR+2,AX ; CODE SEGMENT FOR CASSETTE

CHECK FOR QPTIONAL ROM FROM C0000 TQ FO0Q0 IN 2K BLOCKS
(A VALID MODULE HAS 'SSAA’ IN THE FIRST 2 LOCATIONS,
LENGTH INDICATOR (LENGTH/512) IN THE 30 LOCATION AND
TEST/INIT. CODE STARTING IN THE 4TH LOCATION.)

MFG ERR CODE 25XX (XX=MSB QF SEGMENT THAT HAS CRC CHECK)

H

MOV AL, O01H

out 13H, AL

CALL MFG_UP MFG RQUTINE = EE

MoV DX, QCO00H ; SET BEGINNING ADDRESS

ROM_SCAN_1:
Mov

DS, DX
sue Bx, 8x ; SET 8X=00Q00
MoV AX, £8X1 ; GET IST WORD FROM MODULE
PUSH 8x
POP BX BUS SETTLING
cHp AX, 0AASSH = TO ID WORD?
JINZ NEXT_ROM PROCEED TO NEXT ROM IF NOT

H
CALL ROM_CHECK ; GO CHECK OUT MODULE
JMP SHORT ARE_WE_DONE ; CHECK FOR END OF ROM SPACE
NEXT_ROM:
ADD DX, 008QH ; POINT TO NEXT 2K ADDRESS

ARE_WE_DONE :
cHP DX, OFO00H ; AT FO000 YET?
JL ROM_SCAN_1 ; GO CHECK ANOTHER ADD. IF NOT

0806
0809
080C
080E
0811
0814
0817
0819
0818
0810
0820

0828
082A
082C
082€
0830
0832
0834
0836
0838
0834
083C
083E
0B40
0842
0844
0847
0849

0B4B
0840
084F
o8s1
0853
0855
0857
0858
085D
0860
0862
0864
0866
0869
0868
0860
086F
0872
0875
0877
0879
0878
087D
087F
0881
0883
0885
0887
0889
0888
0880
088F
0891
0893
0895
0897
0899
0898

0B9F
08A1
08A3
08a8
08AB
0BAC
0BAD
0880
o881
0882
0885
0886
0887
[o]:-1]
0888

088D
088E
o8cC1

DESCR

MFG

DISKETTE ATTACHMENT TEST

1PTION

CHECK IF IPL DISKETTE DRIVE IS ATTACHED TO SYSTEM. 1F

ATTACHED, VERIFY STATUS OF NEC FOC AFTER A RESET. [SSUE

A RECAL AND SEEK CMD TO FDC AND CHECK STATUS. COMPLETE

SYSTEM INITIALI2ZATION THEN PASS CONTROL TO THE BOOT

LOADER PROGRAM

ERR CODES: 2601 RESET TO DISKETTE CONTROLLER CD. FAILED
2602 RECALIBRATE TO DISKETTE DRIVE FAILED
2603 WATCHDOG TIMER FAILED

;

E6D8
1388
FF
0074
0078
0076
62
04
03
08A3 R

0E 0010 R 01

F10_0:

3€ 0072 R 00

FF

Fll:
Fl12:

E9FB8 R

0010 R Fl4_2

F2
06 0084 R 00
0078 R

1414
0101

21
FE
21

ASSUME CS:CODE,DS:DATA
cALL MFG_UP ; MFG ROUTINE = ED
caLL DOS ; POINT TO DATA AREA
MOV AL, OFFH
MoV TRACKO, AL ; INIT DISKETTE SCRATCHPADS
MoV TRACK1, AL
MoV TRACK2, AL
IN AL, PORT_C DISKETTE PRESENT?
AND AL, 000001008
gz F10_0
Jmp F1% ; NO - BYPASS DISKETTE TEST
orR BYTE PTR EQUIP_FLAG,01H ; SET IPL DISKETTE
; INDICATOR IN EQUIP. FLAG
cup RESET_FLAG, 0 ; RUNNING FROM POWER-ON STATE?
INE F10 ; BYPASS WATCHDOG TEST
MoV AL, 000010108 ; READ INT. REQUEST REGISTER CMD
out INTAOO, AL i
IN AL, INTAOO
AND AL, 010000008 ; HAS WATCHDOG GONE OFF?
INZ F10 ; PROCEED IF IT HAS
MOV 8L, ; SET ERROR COOE
JNP SHORT Fi3
MoV AL, FDC_RESET
out OF2H, AL ; DISABLE WATCHDOG TIMER
uov AH, 0 ; RESET NEC FOC
MOV oL, AH ; SET FOR DRIVE 0
INT 13H . VERIFY STATUS AFTER RESET
TEST AH, OFFH ; STATUS 0K?
MoV BL,OIH ; SET UP POSSIBLE ERROR CODE
INZ F13 ; NO - FDC FAILED

TURN DRIVE 0 MOTOR ON

MOV AL, DRIVE_ENABLE+FOC_RESET ; TURN MOTOR ON,DRIVE O
out OF2H, AL WRITE FDC CONTROL REG
suB cX, CX

LooP Fit ; WAIT FOR 1 SECOND
LooP F12

XOR DX, DX ; SELECT DRIVE 0

MOV CH, SELECT TRACK 1

MOV SEEK_STATUS, DL

cALL SEEK ; RECALIBRATE DISKETTE
MoV eL, 02H ; ERROR CODE

9C F13 . GO TO ERR SUBROUTINE IF ERR
MoV CH, 34 . SELECT TRACK 34

cALL SEEK . SEEK TO TRACK 34

INC F14 . OK, TURN MOTOR OFF
MoV BL, 02H

MOV BH, 26H ; DSK_ERR: (26XX)

MoV SI,0FFSET DISK_ER GET ADDR OF MSG
caLL E_MSG ; GO PRINT ERROR MSG
MOV AL, FOC_RESET+02H

out OF2H, AL

IN AL, OE2H

AND AL, 000001108

cMp AL, 000000108

JNE Fl4_1

MoV AL, FOC_RESET+04H

out OF2H, AL

IN AL, OE2H

AND AL, 000001108

cup AL, 000001008

JNE F14_1

N AL, OE2H

AND AL, 001100008

Jz Fl4_1

cHp AL, 500100008

MOV AH, 010000008

JE Fld4_2

MOV AH, 100000008

oR aYTE PTR EQUIP_FLAG, AH
TURN DRIVE O MOTOR OFF

MoV AL, FOC_RESET ; TURN DRIVE O MOTOR OFF
out OF 2H, AL

MOV INTR_FLAG,00H , SET STRAY INTERRUPT FLAG = 00
MOV 01,0FFSET PRINT_TIM_OUT ;SET DEFAULT PRT TIMEOUT
PUSH 0s

POP €S

MoV AX, 1414H DEFAULT=20

STOSW

STOSW

MoV AX, 0101H ,RS232 DEFAULT=01

STOSW

STOSW

IN AL, INTAO!L

AND AL, OFEM ENABLE TIMER INT (LVL 0)

out INTAOL, AL

ASSUME DS: XXDATA

PUSH 3]

MOV AX, XXDATA

MoV 0S, AX

ROM BIOS A-21

>
©
©
&
s
=
b
>

08C3

08ce
o8co
oBCB
o8cp
0800
0BDO
o8p2
oBD4
0807
0809
oeoB
0BDD

08EOQ
08E3
08ES
08ES
08E9
[o1:]11-]
0BEC
OBED
O8EE
O08EF
08F 1
0BF3
0BF7
06F8
OBF9
0BFA
0BFB
OBFE
0900
0902
0908
0906
0908
0904
Q910
0911
0912
0918
0919

091A
091C
091E
0920
0922

0926
0928
0928
092€
0930
0931
0933
0935
0936
0938
0934
093C
093D
093F
0941
0942
0944
0946

0948
094A
094cC
094E
094F
0951
0953
0954
0956

0958
0958
095E

0960
0963

0969
0960
096F
0972
0974
0974
097¢C
0970
0980
0982
0985
0987
098A

80 3E 0018 R 0O CHP POST_ERR, OOH CHECK FOR "POST_ERR'" NON-ZERO
ASSUME DS:DATA
iF POP 3]
74 10 JE F15A_0 CONTINUE IF NO ERROR
B2 02 Mov oL, 2 2 SHORT BEEPS (ERROR)
E8 1A0C R CAaLL ERR_BEEP
ERR_WAIT:
B4 00 MOV AH, 00
CD 16 INT 16H ; WAIT FOR "ENTER" KEY
BO FC 1IC cmp AH, 1CH
75 F7 JNE ERR_WAIT
EB 05 JMP SHORT F15C
B2 01 F15A_0: MOV oL, 1 1 SHORT BEEP (NO ERRORS)
E8 1AOC R CALL ERR_BEEP
s SETUP PRINTER AND RS232 BASE ADDRESSES IF DEVICE ATTACHED
B0 003D R F15C MOV BP,OFFSET F4 PRT_SRC_TBL
33 Fe6 XOR s1,s1
F16: i PRT_BASE:
2E: 88 56 00 MoV DX, CS: [BP] ; GET PRINTER BASE ADOR
BO AA MOV AL, OAAH ; WRITE DATA TO PORT A
EE ouT DX, AL
i1E PUSH 33 ; BUS SETTLING
EC IN AL, DX ; READ PORT A
1F POP oS
3C AA CcHP AL, OAAH ; DATA PATTERN SAME
75 06 JINE F17 ; NO ~ CHECK NEXT PRT CD
89 94 0008 R MOV PRINTER_BASELSI],DX ; YES - STORE PRT BASE ADDR
46 INC S1 ; INCREMENT TO NEXT WOROD
46 INC s1
45 Fi7 INC B8P ; POINT TO NEXT BASE ADDR
as INC ;14
83 FD 41 CHP BP, OFFSET F4E ; ALL POSSIBLE ADDRS CHECKED?
75 ES JNE Fl6 ; PRT_BASE
33 o XOR BX, BX ; SET ADODRESS BASE
BA O3FA MoV 0X, 0IFAH ; POINT TO INT 10 REGISTER
£€C IN AL, DX ; READ PORT
AB F8 TEST AL, OF8H ; SEEM TO BE AN 8250
75 08 JNZ F18
C7 87 0000 R O3F8 MoV RS232_BASEL(BX),3FBH ; SETUP RS232 CD #1 ADDR
43 INC BX
43 INC BX .
C7 87 0000 R 02F8, F18 MoV RS232_BASE(8X], 2FBH ; SETUP RS5232 #2
43 INC BX ; (ALWAYS PRESENT)
43 INC BX
Fiatuiiatad SET UP EQUIP FLAG TO INDICATE NUMBER OF PRINTERS AND RS232
; CARDS
88 Cé6 MoV AX,S1 ;. S1 HAS 2# NUMBER OF PRINTERS
81 03 MoV cL,3 ; SHIFT COUNT
b2 ca ROR AL, CL ; ROTATE RIGHT 3 POSITIONS
0a C3 OR AL, BL ; OR IN THE RS232 COUNT
08 06 0011 R OoR BYTE PTR EQUIP_FLAG+1,AL ; STORE AS SECOND BYTE
————— SET EQUIP. FLAG TO INDICATE PRESENCE OF SERIAL PRINTER
ATTACHED TO ON BOARD RS232 PORT. ---ASSUMPTION--"RTS" IS TIED TO
“CARRIER DETECT" IN THE CABLE PLUG FOR THIS SPECIFIC PRINTER.
88 Ce MoV CX, AX ; SAVE PRINTER COUNT IN CX
88 O02FE MOV BX, 2FEH ; SET POINTER TO MODEM STATUS REG
Ba 02FC MOV OX, 2FCH ; POINT TO MODEM CONTROL REG
2a CO suB AL, AL
EE ouT OX, AL ; CLEAR 1IT
EB 00 JMP $+2 ; DELAY
87 03 XCHG oX, BX ; POINT TO MODEM STATUS REG
EC IN AL, DX ; CLEAR IT
E8 00 JMP $+2 ; DELAY
80 02 MOV AL, 02H ; BRING UP RTS
87 03 XCHG 0X, 8X ; POINT TQ MODEM CONTROL REG
EE out DX, AL ;
EB 00 JMP $+2 ; DELAY
87 D3 XCHG DX, 8X ; POINT TO MODEM STATUS REG
EC IN AL, DX ; GET CONTENTS
A8 08 TEST AL, 000010008 ; HAS CARRIER DETECT CHANGED?
74 23 Jz F19_aA ; NO, THEN NO PRINTER
A8 O} TEST AL, Q00000018 ; DID CTS CHANGE? (AS WITH WRAP
; CONNECTOR INSTALLED)
75 1F JINZ F19_A ; WRAP CONNECTOR ON IF IT DID
24 Co sus AL, AL ; SET RTS OFF
a7 03 XCHG X, BX ; POINT TO MQDEM CONTROL REG
EE ouT DX, AL ; DROP RTS
EB 00 JMP $+2 ; DELAY
87 D3 XCHG DX, BX ; MODEM STATUS REG
EC IN AL, DX ; GET STATUS
24 08 AND AL, 000010008 ; HAS CARRIER DETECT CHANGED?
74 11 F19_a ; NO, THEN NO PRINTER
CARRIER DETECT IS FOLLOWING RTS-INDICATE SERIAL PRINTER ATTACHED
80 €9 20 CL, 001000008 H
F6 C1 CO TEST CL, 110000008 ; CHECK FOR NO PARALLEL PRINTERS
75 09 JNZ Fi19_A ; DO NOTHING IF PARALLEL PRINTER
; ATTACHED
80 C9 40 OR CL, 010000008 ; INDICATE 1 PRINTER ATTACHED
C7 06 0008 R O2F8 MoV PRINTER_BASE, 2F8H ; STORE ON-BOARD RS232 BASE IN
; PRINTER BASE
08 OE 0011 R F19_A: OR 8YTE PTR EQUIP_FLAG+1,CL ; STORE AS SECOND BYTE
33 b2 XOR DX,DX ; POINT TO FIRST SERIAL PORT
Fe C1 40 TEST CL, 040H SERIAL PRINTER ATTACHED?
74 18 Jz F19_C ; NO, SKIP INIT
81 3E 0000 R 02F8 o] 4 RS232_BASE, 02F8H ; PRINTER IN FIRST SERIAL PORT
74 01 JE F19_8 ; YES, JUMP
42 INC oX ; NO PQINT TO SECOND SERIAL PORT
B8 0087 Fi19_B MOV AX, 87H INIT SERIAL PRINTER
co 14 INT 14H
F6 C4 IE TEST AH, 1EH , ERROR?
75 05 JINZ F19_C ;5 YES, JUMP
B8 0118 MOV AX,0118H ; SEND CANCEL COMMAND TO
Cp 14 INT 14 H . SERIAL PRINTER

A-22 ROMBIOS

098C 8A 0201 F19_C: MOV DX, 0201H

098F EC IN AL, DX ; GET MFG./ SERVICE MODE INFO
0930 24 FO AND AL, OFOH ; 1S HIGH ORDER NIBBLE = 0?
0992 75 03 INZ F19_1 ; (BURN-IN MODE)
0984 E9 0043 R F19_0: JMP START ; ELSE GO TO BEGINNING OF POST
0997 3C 20 F19_1: CMP AL, 001000008 ; SERVICE MODE LOOP?
0999 74 F9 JE F19_0 ; BRANCH TO START
0998 Bl 3E 0072 R 4321 cHP RESET_FLAG, 4321H ; DIAG. CONTROL PROGRAM RESTART?
09a1 74 oC JE F19_3 ; NO, GO BOOT
09A3 3¢ 10 cHP AL, 000100008 ; MFG DCP RUN REQUEST
09AS 74 08 JE F19_3
09A7 C7 06 0072 R 1234 MoV RESET_FLAG, 1234H ; SET WARM START INDICATOR IN CASE
; OF CARTRIDGE RESET
09AD €D 19 INT 19H ; GO TO THE BOOT LOADER
ASSUME DS: ABSO
09AF FA F19_3: CLI
0980 2B €O sus Ax, AX
0982 8E 08 MoV DS, AX ; RESET TIMER INT.
0984 C7 06 0020 R FEAS R MoV INT_PTR, OFFSET TIMER_INT
098A CD 80 INT 80H ; ENTER DCP THROUGH INT. 80H

THIS SUBROUTINE 1S THE GENERAL ERROR HANDLER FOR THE POST

ENTRY REQUIREMENTS:
Sl = OFFSET(ADDRESS) OF MESSAGE BUFFER
BX= ERROR CODE FOR MANUFACTURING OR SERVICE MOOE
REGISTERS ARE NOT PRESERVED
LOCATION "POST_ERR" IS SET NON-2ERO IF AN ERROR OCCURS IN
CUSTOMER MODE

T

SERVICE/MANUFACTURING FLAGS AS FOLLOWS: (HIGH N1BBLE OF
PORT 201)
0000 = MANUFACTURING (BURN-IN) MODE
0001 = MANUFACTURING (SYSTEM TEST) MODE
0010 = SERVICE MODE (LOOP POST)
0100 = SERVICE MODE (SYSTEM TEST)
09BC _MSG PROC NEAR
09BC BA 0201 MoV DX, 20 1H
09BF EC IN aL,0X ; GET MODE BITS
09CO 24 FO AND AL, OFOH ; ISOLATE BITS OF INTEREST
o9cz 75 03 INZ EMO
09C4 E9 0461 R JuP NFG_OUT ; MANUFACTURING MODE (BURN-IN)
09C7 3C 10 EMO: cHP AL, 000100008 ;
09C9 75 03 INE EML
09CB E9 0A61 R JHP MFG_OUT ; MFG. MODE (SYSTEM TEST)
09CE BA FO EMi: MoV OH, AL ; SAVE MODE
0900 80 FF 0A cMP 8H, 0AH ; ERROR CODE ABOVE OAH (CRT STARTED
; DISPLAY POSSIBLE)?
0903 7C 63 JL BEEPS ; DO BEEP OUTPUT IF BELOW 10H
0905 53 PUSH 8x ; SAVE ERROR AND MODE FLAGS
0906 56 PUSH sI
0907 52 PUSH DX
0908 B4 02 MOV AH, 2 ; SET CURSOR
090A BA 1521 MOV DX, 1521H , ROW 21, CoOL.33
0900 87 07 MoV BH,7 ; PAGE 7
090F CD 10 INT 10H
09E1 BE 0030 R MOV S1,0FFSET ERROR_ERR
09E4 B9 0005 MOV X,5 ; PRINT WORD "ERROR"
09E7 2E: 8A 04 EM_O: MOV AL, CS: €S1]
09EA 46 INC SI
09E® ES 18BA R cALL PRT_HEX
09EE E2 F7 LOOP EM_O
; LOOK FOR A BLANK SPACE TO POSSIBLY PUT CUSTOMER LEVEL ERRORS (IN
CASE OF MULTI ERROR)
09F0 B6 16 MoV DH, 16H
09F2 B4 02 EM_1L MoV AH, 2 ; SET CURSOR
09F4 CD 10 INT 10H , ROW 22, COL33 (OR ABOVE, IF
; MULTIPLE ERRS)
09F6 B4 08 MoV aM, 8 , READ CHARACTER THIS POSITION
09FB CD 10 INT 10H
09FA FE C2 INC oL ; POINT TO NEXT POSTION
ogFC 3C 20 cMP AL, v ; BLANK?
O9FE 75 F2 JNE EM_L , GO CHECK NEXT POSITION, IF NOT
0A00 SA POP DX ; RECOVER ERROR POINTERS
0A0L SE POP sI
0A02 5B POP BX
0A03 80 FE 20 cHP DH, 001000008 . SERVICE MODE?
0A06 74 21 JE SERV_OUT ;
0A0B 80 FE 40 cup OH, 010000008 i
0A0B 74 IC JE SERV_OUT
0AOD 2E: 8A 04 MoV AL, CS: (S1] ; GET ERROR CHARACTER
0A10 EB 188A R caLL PRT_HEX ; DISPLAY IT
0A13 80 FF 20 cup BH, 20H ; ERROR BELOW 20? (MEM TROUBLE?)
0A16 70 03 JNL EM_2
0A18 E9 0ABB R N TOTLTPO , HALT SYSTEM IF SO
ASSUME DS: XXDATA ;
0A18 1E EM_2 PUSH oS
0AIC 50 PUSH AX
0AlD BP ---- R MOV AX, XXDATA
0A20 8E 08 MOV DS, AX
0422 88 3E 0018 R MOV - POST_ERR, BH ; SET ERROR FLAG NON-ZERO
0A26 58 POP Ax
0427 IF POP oS
ASSUME DS:NOTHING
0a28 €3 RET , RETURN TO CALLER

>
=]
°
&
=
=
>
>

ROM BIOS A-23

0Aa29 SERV_OUT:

0A29 BA C7 Mov AL, BH ; PRINT Ms8

0A28 53 PUSH BX

0a2C E8 1849 R caLL XPC_BYTE ; DISPLAY IT

0A2F 58 POP 8x

0A30 8A C3 MoV AL, BL ; PRINT LS8

0A32 ES8 1849 R CALL XPC_BYTE

0A35 €9 0ABB R JMP ToTLTPO

0438 FA BEEPS: CLI

0A39 BC CB Mov ax,cs ; SET CODE SEG= STACK SEG

0A38 BE 00 MoV S5, AX ; (STACK IS LOST, BUT THINGS ARE
; OVER, ANYWAY)

0A3D B2 02 MoV , ; 2 BEEPS

0A3F BC 0028 R MoV SP,OFFSET EX_O ; SET DUMMY RETURN

0A42 B3 01 - EB: MoV 8L, ; SHORT BEEP

0A44 E9 FF3L R JHP BEEP i

0A47 E2 FE EBO: LOOP £80 ; WAIT (BEEPER OFF)

0A49 FE Ca DEC oL ; DONE YET?

0A4B 75 FS INZ €8 ; LOOP IF NOT

0Ad4D 80 FF 05 cHP BH, O5H ; 64K CARD ERROR?

0A50 75 69 INE TOTLTPO ; END IF NOT

0AS52 80 FE 20 cHP DH, 001000008 ; SERVICE MODE?

0A55 74 05 JE €81

0AS57 80 FE 40 cmup DH, 010000008 ;

0ASA 75 SF INE TOTLTPO ; END IF NOT

0ASC B3 O1 EBL: MOV BL,1 ; ONE MORE BEEP FOR 64K ERROR IF IN
; SERVICE MODE

QASE E9 FF31 R JNP BEEP

0461 MFG_OUT:

0461 FA cL

0A62 E4 61 IN AL, PORT_B

0A64 24 FC AND AL, OFCH

0466 E6 61 ouT PORT_B, AL

0A6B BA 0011 MoV OX, 1TH ; SEND DATA TO ADDRESSES 11,12

0AGB B8A C7 MOV AL, BH i

0AED EE ourt DX, AL ; SEND HIGH BYTE

0A6E 42 INC DX

0A6F 84 C3 MOV aL, 8L ;

0A71 EE ouT DX, AL ; SEND LOW BYTE

INIT. DN-éDARD RS232 PORT FOR COMMUNICATIONS W/MFG MONITOR
ASSUME DS:XXDATA

0a72 B8 ---- R MOV AX, XXDATA

0A75 8E D8 MOV 0s, AX ; POINT TO DATA SEGMENT CONTAINING
; CHECKPOINT #

0a77 8C C8 MoV ax,cs

0a79 B 00 MoV S5, AX ; SET STACK FOR RTN

0A78 BC 0Q02E R MoV SP, OFFSET EX1

OATE BA 02FB MOV DX, Q2FBH ; LINE CONTROL REG. ADORESS

0aB1 E9 FO85 R NP $8250 ; GO SET UP FOR 9600, 00D, 2 STOP
; 8ITS, 8 BITS

0AB4 8B CA HO1L: MoV cx, DX ; DX CAME BACK WITH XMIT REG
; ADDRESS IN IT

0A86 BA 02FC MoV 0X, 02FCH ; MODEM CONTROL REG

0489 24 CO sue AL, AL ; SET DTR AND RTS LOW SO POSSIBLE
; WRAP PLUG WON'T CONFUSE THINGS

0A8BB EE out OX, AL

0ABC BA O2FE MoV 0X, 02FEH ; MODEM STATUS REG

0a8F EC MO2 N AL, OX

0490 24 10 AND AL, 000100008 ; CTS UP YET?

0A92 74 FB Jz Mo2 ; LOOP TILL IT IS

0A94 da 0EC DX ; SET DX=2FD (LINE STATUS REG)

0A95 87 D1 XCHG DX, CX ; POINT TO XMIT. DATA REG

0497 A0 0005 R MOV AL, MFG_TST ; GET MFG ROUTINE ERROR INDICATOR

0A9A EE out 0X, AL ; (MAY BE WRONG FOR, EARLY ERRORS)

0AS8 EB 00 JMP $+2 ; DELAY

©A90 a7 D1 XCHG DX, CX ; POINT DX=2FD

0ASF EC MO3: IN AL, DX ; TRANSMIT EMPTY?

0aA0 24 20 AND AL, 001000008

0AAZ EB 00 JNP $+2 ; DELAY

0aAd4 74 F9 Jz “o3 ; LOOP TILL IT IS

0AA6 87 D1 XCHG 0X, CX

0AA8 8A C7 MOV AL, BH ; GET MSB OF ERROR WORD

0AAA EE ouT DX, AL

0AAB EB 00 JMP $+2 ; DELAY

0AAD 87 D1 XCHG oX, CX

QAAF EC Mo4 N AL,OX ; WAIT FOR XMIT EMPTY

0aBO 24 20 AND AL, 001000008

04B2 EB 00 JNP $+2 ; DELAY

0AB4 74 F9 Jz Ho4

0ABE B8A C3 MoV AL, BL ; GET LSB OF ERROR WORD

0ABB 87 D1 XCHG 0X, CX

0ABA EE oyt DX, AL

0ABB TOTLTPO:

0ABB FA cL1 ; DISABLE INTS.

0ABC 2a CO suB aL, AL ; .

0ABE E6 F2 QuT OF2H, AL ; STOP DISKETTE MOTOR

0ACO E6 A0 ouT 0AOH, AL ; DISABLE NMI

0aC2 Fa HLT ; HALT

0AC3 €3 RET

0AC4 E_MSG ENDP

A-24 ROM BIOS

SUBROUTINE TO INITIALIZE INS8250 PORTS TO THE MASTER RESET
STATUS. THIS ROUTINE ALSO TESTS THE PORTS’ PERMANENT
ZERO BITS
EXPECTS TO BE PASSED:
(0X) = ADDRESS OF THE 8250 TRANSMIT/RECEIVE BUFFER
URON RETURN
(CF) = 1 IF ONE OF THE PORTS’ PERMANENT ZERO BITS WAS NOT

ZERO (ERR)

(0X) = PORT ADDRESS THAT FAILED TEST
(AL) = MEANINGLESS

{BL) = 2 INTR ENBL REG BITS NOT O

3 - INTR ID REG BITS NOT O
4 MODEM CTRL REG BITS NOT ©
5 LINE STAT REG BITS NOT O
0 IF ALL PORTS’ PERMANENT ZERO BITS WERE ZERO
(DX) B TRANSMIT/RECEIVE BUFFER ADDRESS
(AL) = LAST VALUE READ FROM RECEIVER BUFFER
(BL) = 5 (MEANINGLESS)
PORTS SET UP AS FOLLOWS ON ERROR-FREE RETURN:
XF9 - INTR ENBL REG 4] ALL INTERRUPTS DISABLED
XFA - INTR 10 REG 000000018 NO INTERRUPTS PENDING
XFB - LINE CTRL REG o ALL BITS LOW
XFC - MODEM CTRL REG 4] ALL BITS LOW
XFD - LINE STAT REG 01100000B TRANSMITTER HOLDING
REGISTER AND TRANSMITTER EMPTY ON
XXXX00008 WHERE X ‘S REPRESENT
INPUT SIGNALS
REGISTERS DX, AL, AND BL ARE ALTERED. NO OTHER REGISTERS USED.

XFE ~ MODEM STAT REG

;

oaca 18250 PROC NEAR

0AC4 EC IN AL, 0X ; READ RECVR BUFFER BUT IGNORE
; CONTENTS

0ACS B3 02 MOV aL,2 ; ERROR INDICATOR

0AC7 E® FESF R CALL . RR2 ; READ INTR ENBL REG

0ACA 24 FO AND AL, 111100008 ; BITS 4-7 OFF?

0ACC 75 28 JINE aT20 ; NO - ERROR

OACE EB FE9A R CALL RR1 ; READ INTR 1D REG

0AD1 24 FB AND AL, 111110008 ; BITS 3-7 OFF?

0AD3 75 21 JINE AT20 ; NO

0ADS 42 INC 0X ; LINE CTRL REG

0ADE E® FE9A R CALL RR1 ; READ MODEM CTRL REG

0AD9 24 EO AND AL, 111000008 ; 81TS 5-7 OFF?

0ADB 75 19 JNE aT20 ; NO

0ADD €8 FE9A R CALL RR1 ; READ LINE STAT REG

0AEC 24 80 AND AL, 100000008 ; BIT 7 OFF?

OAE2 75 12 JINE AT20 i NO

OAE4 80 60 MoV AL, 60H

OAE6 EE out DX, AL

OAE7 EB 00 JMP 42 ; 1/0 DELAY

0AE9 42 INC DX ; MODEM STAT REG

OAEA 32 CO XOR AL, AL

0AEC EE out DX, AL ; WIRED BITS WILL BE HIGH

OAED EB FEAO R CALL RR3 ; CLEAR BITS 0-3 IN CASE THEY‘RE ON
; AFTER WRITING TO STATUS REG

OAFO 83 EA 06 sue 0X,6 ; RECEIVER BUFFER

0AF3 EC IN AL, OX ; IN CASE WRITING TO PORTS CAUSED
; DATA READY TO GO HIGH!

0AF4 FB cLe

0AFS C3 RET

0AF6 F9 AT20: STC ; ERROR RETURN

0AF7 €3 RET

OAFSB 19250 ENDP

SUBROUTINE TO TEST A PARTICULAR 8250 INTERRUPT. PASS 1T THE
(BIT & + 1) OF THE STATUS REGISTER THAT 1S TO BE TESTED
THIS ROUTINE SETS THAT BIT AND CHECKS TO SEE IF. THE CORRECT
8250 INTERRUPT IS GENERATED

IT EXPECTS TO BE PASSED:

(AH) = BIT & TO BE TESTED

{BL) = INTERRUPT IDENTIFIER

(0) = RECEIVED DATA AVAILABLE OR TRANSMITTER HOLDING
REGISTER EMPTY INTERRUPT TEST

(1) = RECEIVER LINE STATUS OR MODEM STATUS INTERRUPT
TEST

(BH) = BITS WHICH DETERMINE WHICH INTERRUPT IS TO BE

CHECKED
(0) = MODEM STATUS
1{2) = TRANSMITTER HOLDING REGISTER EMPTY
{4) = RECEIVED DATA AVAILABLE
16) = RECEIVER LINE STATUS
(CX) = VALUE TO SUBTRACT AND ADD IN ORDER TO REFERENCE THE
INTERRUPTY IDENTIFICATION REGISTER
(3) = RECEIVED DATA AVAILABLE, TRANSMITTER HOLDING
REGISTER AND RECEIVER LINE STATUS INTERRUPTS
(4) = MODEM STATUS INTERRUPT

(DX) = ADDRESS OF THE LINE STATUS OR MODEM STATUS REGISTER
1T RETURNS:

(AL) = OFFH IF TEST FAILS - EITHER NO INTERRUPT OCCURRED OR
THE WRONG INTERRUPT OCCURRED

OR
C(AL) = CONTENTS OF THE INTERRUPT ID REGISTER FQR RECEIVED
DATA AVAILABLE AND TRANSMITTER HOLDING REGISTER
EMPTY INTERRURTS
-0R-
CONTENTS OF THE LINE STATUS OR MODEM STATUS REGISTER
DEPENDING ON WHICH ONE WAS TESTED.

(DX) B ADDRESS OF INTERRUPT]D REGISTER FOR RECEIVED DATA
AVAILABLE OR TRANSMITTER HOLDING REGISTER EMPTY
INTERRUPTS

OR

{DX) = ADDRESS OF THE LINE STATUS OR DATA SET STATUS
REGISTER (DEPENDING ON WHICH INTERRUPT WAS TESTED)

NO OTHER REGISTERS ARE ALTERED.

ROM BIOS A-25

0850
0B52

0834
o859

A-26 ROM BIOS

0o
ca

co
10
o]
b8

62
o4
28

06 0078 R EFC7 R
OE 007A R

0004

7C00 ---- R

cT PROC NEAR

N AL, DX , READ STATUS REGISTER
JHMP $+2 . 170 DELAY
OR AL, aH , SET TEST BIT
out OX, AL , WRITE IT TO THE STATUS REGISTER
sus DX, CX . POINT TO INTERRUPT 1D REGISTER
PUSH cx
sus CX, CX , WAIT FOR 8250 INTERRUPT TO OCCUR
AT21 N aL, bX . READ INTR ID REG
TEST AL, 1 . INTERRUPT PENOING?
JE AT22 . YES -RETURN W/ INTERRUPT 10 IN AL
LOOP aT21 " NO - TRY AGAIN
AT22 POP cx , AL = 1 IF NO INTERRUPT OCCURRED
cHP AL, 8H . INTERRUPT WE'RE LOOKING FOR?
INE AT23 . NO
on BL, BL . DONE WITH TEST FOR THIS INTERRUPT
JE avT24 . RETURN W/ CONTENTS OF INTR 1D REG
ADO oX, CX . READ STATUS REGISTER TO CLEAR THE
N AL, OX . INTERRUPT (WHEN BL=1)
JHP SHORT AT24 , RETURN CONTENTS OF STATUS REG
aT23 MoV AL, OFFH SET ERROR INDICATOR
AT24 RET
1cT ENDP
==~ INT 19 == mmm oo e

BOOT STRAP LOADER
TRACK O, SECTOR 1 IS READ INTQ THE
BOOT LOCATION (SEGMENT 0, OFFSET 7€00)
AND CONTROL IS TRANSFERRED THERE

IF THE DISKETTE 1S NOT PRESENT OR HAS A
PROBLEM LOADING (E.G., NOT READY), AN INT.
18H IS EXECUITED. IF A CARTRIDGE HAS VECTORED
INT. 18H TO ITSELF, CONTROL WILL 8E PASSED TOQ
THE CARTRIDGE

ASSUME CS:CODE,DS:ABSO

BOOT_STRAP PROC NEAR
STI ; ENABLE INTERRUPTS
SuUB AX, AX ; SET 40X25 B&W MODE ON CRT
INT LOH ;
sug AX, ax , ESTABLISH ADDRESSING
MOV LA
~- SEE IF DISKETTE PRESENT
IN AL, PORT_C ; GET CONF1G BITS
AND AL, 000001008 ; 1S DISKETTE PRESENT?
JINZ H3 ; NO, THEN ATTEMPT TO GO TO CART.
jmm—- RESET THE D1SK PARAMETER TABLE VECTOR
MoV WORD PTR DISK_POQINTER, OFFSET DISK_BASE
MoV WORD PTR DISK_POINTER+2,CS
jomme- LOAD SYSTEM FROM DISKETTE -- CX HAS RETRY COUNT
MOV cx, 4 ; SET RETRY COUNT
H1 PUSH cx . SAVE RETRY CQUNT
MOV AH, 0 , RESET THE DISKETTE SYSTEM
INT 13H ; DISKETTE_I0
JC H2 ; IF ERROR, TRY AGAIN
MoV AX, 201H ; READ IN THE SINGLE SECTOR
SUB DX, DX ; TO THE BOOT LOCATION
MOV £S, DX
MOV 8X, OFFSET BOOT_LOCN
; DRIVE 0, HEAD 0
MOV cx, 1 ; SECTOR 1, TRACK 0
INT 13H ; DISKETTE_10
H2: POP cx ; RECOVER RETRY COUNT
JINC H3A ; CF SET BY UNSUCCESSFUL READ

LOOP H1 ; DO IT FOR RETRY TIMES
----- UNABLE TO IPL FROM THE DISKETTE

H3 INT 18H ; GO TO BASIC OR CARTRIDGE
jmm——— IPL WAS SUCCESSFUL
H3A: JMP BOOT_LOCN

BOOT_STRAP ENDP

THIS ROUTINE PERFORMS A READ/WRITE TEST ON A BLOCK OF
STORAGE (MAX. SIZE = 32KB). IF "WARM START", FILL
BLOCK WITH 0000 AND RETURN
DATA PATTERNS USED:
©O->FF ON ONE BYTE TO TEST DATA BUS
AAAA, 5555, O0FF ,FFOO FOR ALL WORDS
FILL WITH 0000 BEFORE EXIT
ON ENTRY:
ES = ADDRESS OF STORAGE TO BE TESTED
ADDRESS OF STORAGE TO BE TESTED
CX = WORD COUNT OF STORAGE BLOCK TO 8E TESTED
{MaX. = 8000H (32K WORDS))
ON EXIT:
2ERO FLAG = OFF IF STORAGE ERROR
IF 2ERQ FLAG = OFF, THEN CX B XOR’'ED BIT PATTERN
OF THE EXPECTED DATA PATTERN VS. THE ACTUAL DATA
READ. (1.€E., A BIT "ON" IN AL IS THE BIT IN ERROR)
AH=03 IF BOTH BYTES OF WORD HAVE ERRORS
Al 2 1F LOW (EVEN) BYTE HMAS ERROR
AH=01 IF H! (0DD) BYTE HAS ERROR
AX,BX,CX,DX,01,S! ARE ALL DESTROYED

1€ 0472 R
FB8 1234

F7
co
Lok]
c2

Fe
<o

FE

A
OOFF
c3
c2

Fé
<o

€6 04

PODSTG PROC

ASSUME DS:ABSO
cLo
sus 01,01
su8 AX, AX
MOV oS
MoV
cup BX, 1234H
MOV DX, ES
MoV 0S, DX
JNE Pl
P12: REP STOSW
NOV DS, AX
MoV DATA_WORD [RESET_|
MoV 0s,0%
RET
PlL: cmp 8X, 4321H
JE Pi2
P2: MoV €013, AL
MoV AL, C01]
XOR AL, AH
Jz PY
JNP PB
PY: INC AH
MoV AL, AH
INZ P2
Hov ®P, CX
HoV AX, DAAAAH
MoV BX, AX
MoV 0X, 05555H
REP STOSW
DEC 01
DEC 01
STD
MOV $1,01
MoV cx, 8P
P3:
LoDSW
XOR AX, BX
JNZ P8
MoV AX, DX
STOSW
LOOP P3
MoV cX, BP
cLo
INC s1
INC s1
Hov o1,s!
MoV 8X, DX
MoV DX, 00FFH
PX: LODSW
XOR AX, BX
INZ P8
MoV AX, DX
STOSW
LooP PX
MoV cx, 8P
sTD
DEC s1
DEC s1
HoV o1,s!
MoV BX, 0X
NOT 0X
OR oL, oL
Jz PX
cLo
ADD s1,4
NOT ox
"oV 01,5l
HovV cx, 8P
pa: .
LoDSW
XOR AX, DX
INZ P8
sTOSW
LooP Pa
STD
DEC s1
DEC s1
CHECK IF IN SERVICE/MFG MODES
MOV DX, 20 1H
IN AL, DX
AND AL, OFOH
cHP AL, OFOH
JE P6
MoV cx,cs
MoV BX, S5
cHp cx, 8X
JE P6
MoV AL, 24

NEAR

WAIT ABOUT 6-8 SECONDS W1THOUT
IFf REFRESH 1S NOT WORKING PROPERLY, THIS SHOULD
BE ENOUGH TIME FQR SOME DATA TO GO SOUR

SET DIRECTION TO INCREMENT

SET D1=0000 REL. TO START OF SEG
INITIAL DATA PATTERN FOR 00-FF
TEST

SET DS TO ABSO

+ AX i
BX,DATA_WORDCRESET_FLAG-DATA] ; WARM START?

; RESTORE DS

; SIMPLE FILL WITH O ON WARM-START
FLAG-DATA], BX

RESTORE DS

AND EXIT

DIAG. RESTART?

DO FILL WITH ZEROS

WRITE TEST DATA

GET 1T BACK

COMPARE TO EXPECTED

ERROR EXIT 1F MISCOMPARE
FORM NEW DATA PATTERN

LOOP TILL ALL 256 DATA PATTERNS
DONE

SAVE WORD COUNT
LOAD DATA PATTERN

LOAD OTHER DATA PATTERN
FILL WORDS FROM LOW TO HIGH
WITH AAAA

POINT TO LAST WORD WRITTEN

SET DIRECTION FLAG TO GO DOWN
SET INDEX REGS. EQUAL
RECOVER WORD COUNT
GO FROM HIGH TO LOW
GET WORD FROM MEMORY
EQUAL WHAT S/B THERE?
GO ERROR EXIT IF NOT
GET S5 DATA PATTERN
STORE IT IN LOCATION JUST READ
LOOP TILL ALL BYTES DONE
RECOVER WORD COUNT
BACK TO INCREMENT
ADJUST PTRS

S/8 DATA PATTERN TO BX

DATA FOR CHECKERBOARD PATTERN
GET WORD FROM MEMORY

EQUAL WHAT S7B THERE?

GO ERROR EXIT IF NOT

GET OTHER PATTERN

STORE IT IN LOCATION JUST READ
LOOP TILL ALL BYTES DONE
RECOVER WORD COUNT

DECREMENT

ADJUST PTRS

$/8 DATA PATTERN TO BX
MAKE PATTERN FFQO
FIRST PASS?

INCREMENT

LOW TO HIGH

GET A WORD

SHOULD COMPARE TO DX

GO ERROR [F NOT

WRITE 0000 BACK TO LOCATION
JUST READ

LOOP TILL DONE

BACK TO DECREMENT

ADJUST POINTER DOWN TO LAST WORD
WRITTEN

IF S0, PERFORM REFRESH CHECK

GET OPTION BITS

i
H
H

ALL B!TS HIGH=NORMAL MODE

SEE IF IN PRE-STACK MODE
BYPASS RETENTION TEST IF S0
; SET OUTER LOOP COUNT
ACCESSING MEMORY

;

ROM BIOS A-27

>
=
=]
&
=
=
]
>

0BF8 E2
OBFD FE
IBFF 75
0co1 88
0C03 AD
0co4a o8
0Co6 7S
0cos E2
0CoA €8
ococ 88
OCOE 32
0C10 0A
oci12 74
oCl4a FE
0Ci6 OA
0C18 74
0C1A 80
0C1D O0A
QCaF FC
0C20 C3
oc21
0c21
0c21 1E
0c22 55
0C23 50
0C24 S3
0ca2s S1
0C26 52
©0C27 B8O
0C2A BA
oc20 B3
0C2F CD
0Cc31 83
0C33 82
0C35 86
oc37 B0
0C3A €D
0C3C FE
OC3E 80
oca1 7C
0C43 SaA
0Caqa 59
0Cas S8
0Ca6 58
0C47 5D
0c48 IF
0C49 €3
0C4A
0C4qA 03
0caB 20
= 0CAap
0Ccap 2B
0C4aF 28
ocs1 02
09
ocse 02
(.24
0Cces 02
[:1.
0C6F 04
03
oc78 04
o3
0Cce7 04
03
0C8F 04
03
0C97 04
03
OC9F 04
03
0CA9 04
03
03
oca7 02
02
occy 02
03
OCCF 02
07
oCcp9 28
ocoé 28
ocod 02
OCDE DB
= QCOF
OCOF 02
02

A-28

77
7”7

02
02

ROM BIOS

77
FC

PS:
P6
P7

P8:

P9

Plo:
P11:

PODS

LOOP

CcLD
RET
TG ENDP

AL
PS5
cx, BP , RECOVER WORD COUNT
; GET WOROD
ax, AX ; = T0 0000
] ; ERROR IF NOT
Py LOOP TILL DONE
SHORT P11 THEN EXIT
cx, AX SAVE BITS IN ERROR
AH, AH
CH, CH , HIGH 8YTE ERROR?
P9
AH ; SET MIGH BYTE ERROR
cL,cL ; LOW BYTE ERROR?
P10
aM, 2
AH, AH ; SET 2ERO FLAG=0O (ERROR INDICATION

SET DIR FLAG BACK TO INCREMENT
RETURN TO CALLER

PUT_LOGO PROCEDURE

THIS PROC SETS UP POINTERS AND CALLS THE SCREEN
OUTPUT ROUTINE SO THAT THE IBM LOGO, A MESSAGE,
AND A COLOR BAR ARE PUT UP ON THE SCREEN
AX,BX, AND DX ARE DESTROYED. ALL OTHERS ARE SAVED

A

AGAL

UT_LOGO PROC

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
MOV
MOV
MoV

INT
MOV
MOV
N: MOV
nov
INT
INC
CMP

JL
PoP
PoOP
POP
POP
POP
POP
RET

PUT_LOGO ENDP

LOGO

LOGO_E =

coLo
coLol

0B
oe
[1:]
1]
11}
oB
oe

]

0B
be

R_E =

ASSUME

NEAR

oS

8P

AX

Bx

cx

DX

BP, OFFSET LOGO

DX, BOOOH SPOINT DH DL AT ROW, COLUMN 0,0

BL,000111118 ;ATTRIBUTE OF CHARACTERS TO BE
;WRITTEN

82H ;CALL OUTPUT ROUTINE

8L, 000000008 INITIALIZE ATTRIBUTE

oL,0 ; INITIALIZE COLUMN

DH, 94H ; SET LINE

B8R, OFFSET COLOR ; OUTPUT GIVEN COLOR BAR

82H ; CALL OUTPUT ROUTINE

BL ; INCREMENT ATTRIBUTE

oL, 32 ; 1S THE COLUMN COUNTER POINTING
; PAST 402

AGAIN ; IF NOT, DO IT AGAIN

DX

cx

Bx

ax

8P ; RESTORE BP

oS ; RESTORE 0S

LOGO_E - LOGO
220

s
40, -5
4a0,-%

2,7,1,9,3,4,9,4,1,-5
2,7,1,10,2,%,7,5,1,-5
2,7,1,11,1,6,5,6,1,-5
4,3,5,3,3,3,3,5,3,5,3,-5
4,3,5,3,3,3,3,6,1,6,3,-5
4,3,5,8,4,13,3,-5
4,3,5,7,5,13,3,-5
4,3,5,8,4,13,3,-5
4,3,5,3,3,3,3,13,3,-5

4,3,5,3,3,3,3,3,1,5,1,3,3,-5

2,7,1,11,1,5,2,3,2,5,1,-5
2,7,1,10,2,5,3,1,3,5,1,-5
2,7,1,9,3,5,7,5,1,-5

40,-5

40, -4

COLOR_E - COLOR

219

$

2,121-2,2,121-2,2,121-2,2, 121-2,2,-4

DS:DATA

- INT 10
VIDEO_I0
THESE ROUTINES PROVIDE THE CRT INTERFACE
THE FOLLOWING FUNCTIONS ARE PROVIDED:
(AH)ZQ SET MODE (AL) CONTAINS MODE VALUE
(AL)=0 40X25 BW (POWER ON DEFAULT)
(AL)=3 40X25 COLOR
{AL)=2 B80X25 8w
(AL)=3 80X25 COLOR
GRAPHICS MODES
320X200 4 COLOR
320X200 W 4 SHADES
640X200 BW 2 SHADES
(AL)=7 NOT VALID
waus EXTENDED MODES www
L)=8 160X200 16 COLOR
320X200 16 COLOR
(AL)=A 640X200 4 COLOR
wew NOTE BW MODES OPERATE SAME AS COLOR MODES, BUT
COLOR BURST IS NOT ENABLED
un# NOTE IF HIGH ORDER BIT IN AL 1S SET, THE REGEN
BUFFER 1S NOT CLEARED.
(AH)=§ SET CURSOR TYPE
(CH) = BITS 4-0 = START LINE FOR CURSOR
w4 HARDWARE WILL ALWAYS CAUSE BLINK
%n SETTING BIT 5 OR 6 WILL CAUSE ERRATIC
BLINKING OR NO CURSOR AT ALL
w# IN GRAPHICS MODES, BIT 5 1S FORCED ON TO
DISABLE THE CURSOR
(CL) = @ITS 4-0 = END LINE FOR CURSOR
(AM)=2 SET CURSOR POSITION
(DH,DL) = ROW,COLUMN (0, 0) IS UPPER LEFT
(BH) = PAGE NUMBER (MUST BE O FOR GRAPHICS MODES)
(AH)=3 READ CURSOR POSITION
(BH) = PAGE NUMBER (MUST BE O FOR GRAPHICS MODES)
ON EXIT (DH,DL) = ROW,COLUMN OF CURRENT CURSOR
(CH,CL) = CURSOR MODE CURRENTLY SET
(AH)=4 READ LIGHT PEN POSITION

ON EXIT
(AH) = 0 -- LIGHT PEN SWITCH NOT DOWN/NOT TRIGGERED
(AH) = 1 -- VALID LIGHT PEN VALUE IN REGISTERS

(OH,DL) = ROW, COLUMN OF CHARACTER LP POSN
(CH) = RASTER LINE (0-199)
{BX) = PIXEL COLUMN (0-319,639)
(AH)=5 SELECT ACTIVE DISPLAY PAGE (VALID ONLY FOR
ALPHA MODES)
(AL)=NEW PAGE VALUE (0-7 FOR MODES 0%1, 0-3 FOR
MODES 283)
IF 81T 7 (BOH) OF AL=1
READ/WRITE CRT/CPU PAGE REGISTERS
(AL) = 80H READ CRT/CPU PAGE REGISTERS
{AL) = B1H SET CPU PAGE REGISTER
(BL) = VALUE TO SET
{AL) = 82H SET CRT PAGE REGISTER
{BH) = VALUE TO SET
{AL) = 83H SET BOTH CRT AND CPU PAGE REGISTERS
(BL) = VALUE TO SET IN CPU PAGE REGISTER
{BH) = VALUE TO SET IN CRT PAGE REGISTER
IF BIT 7 (80H) OF AL=1
ALWAYS RETURNS (BH) O CONTENTS OF CRT PAGE REG
(BL) = CONTENTS OF CPU PAGE REG
{AH)=6 SCROLL ACTIVE PAGE UP
(AL) = NUMBER OF LINES, INPUT LINES BLANKED AT
BOTTOM OF WINDOW, AL = O MEANS BLANK
ENTIRE WINDOW
(CH,CL) = ROW,COLUMN OF UPPER LEFT CORNER OF
SCROLL
{DH,DL) = ROW, COLUMN OF LOWER RIGHT CORNER OF
SCROLL
{BH) B ATTRIBUTE TO BE USED ON BLANK LINE
(AH)=7 SCROLL ACTIVE PAGE DOWN
{AL) = NUMBER OF LINES, INPUT LINES BLANKED AT TOP
OF WINDOW, AL=0 MEANS BLANK ENTIRE WINDOW
(CH,CL) = ROW, COLUMN OF UPPER LEFT CORNER OF
SCROLL
(DH,DL) = ROW,COLUMN OF LOWER RIGHT CORNER OF

SCROLL
{8H) = ATTRIBUTE TO BE USED ON BLANK LINE

CHARACTER HANDLING ROUTINES
(AH) = 8 READ ATTRIBUTE/CHARACTER AT CURRENT CURSOR POSITION
(BH) = DISPLAY PAGE (VALID FOR ALPHA MODES ONLY)
ON EXIT:
(AL) = CHAR READ
(aH) = ATTRIBUTE OF CHARACTER READ (ALPHA MODES
ONLY)
(AH) = 9 WRITE ATTRIBUTE/CHARACTER AT CURRENT CURSOR
POSITION
(BH) = DISPLAY PAGE (VALID FOR“ALPHA MODES ONLY)
(CX) = COUNT OF CHARACTERS TO WRITE
(AL) = CHAR TO WRITE
(BL) = ATTRIBUTE OF CHARACTER (ALPHA)/COLOR OF
CHARACTER (GRAPHICS). SEE NOTE ON WRITE
DOT FOR BIT 7 OF 8L = 1
(AH) = 10 (OAH) WRITE CHARACTER ONLY AT CURRENT CURSOR
POSITION

(BH) = DISPLAY PAGE (VALID FOR ALPHA MODES ONLY)
(Cx) COUNT OF CHARACTERS TO WRITE
taL) CHAR TO WRITE

{BL) = COLOR OF CHAR (GRAPHICS)
SEE NOTE ON WRITE DOT FOR 8IT 7 OF BL B |

>
S
S
o
3
&
>
>

ROM BIOS A-29

FOR READ/WRITE CHARACTER INTERFACE WHILE IN GRAPHICS MODE,
THE CHARACTERS ARE FORMED FROM A CHARACTER
GENERATOR IMAGE MAINTAINED IN THE SYSTEM ROM
INTERRUPT 44H (LOCATION 0013i0H) IS USED TO
POINT TO THE 1K BYTE TABLE CONTAINING THE
FIRST 128 CHARS (0-127)

INTERRUPT 1FH (LOCATION 0007CH) 1S USED TO
POINT TO THE 1K 8YTE TABLE CONTAINING THE SECONOD
128 CHARS (128-255)

FOR WRITE CHARACTER INTERFACE IN GRAPHICS MODE, THE
REPLICATION FACTOR CONTAINED IN (CX) ON ENTRY WILL
PRODUCE VALID RESULTS ONLY FOR CHARACTERS
CONTAINED ON THE SAME ROW CONTINUATION TO
SUCCEEDING LINES WILL NOT PRODUCE CORRECTLY

GRAPHICS INTERFACE
{AH) = 11 (OBH) SET COLOR PALETTE
(BH) = PALETTE COLOR 1D BEING SET (0-127)
(BL) = COLOR VALUE TO BE USED WITH THAT COLOR ID
COLOR 1D = 0 SELECTS THE BACKGROUND
COLOR (0-15)
COLOR ID = 1 SELECTS THE PALETTE TO BE
USED
2 COLOR MODE
0 = WHITE FOR COLOR 1
1 = BLACK FOR COLOR 1
4 COLOR MODES
0 = GREEN, RED, BROWN FOR
COLORS 1,2,3
1 = CYAN, MAGENTA, WHITE FOR
COLORS 1,2,3
16 COLOR MODES:
ALWAYS SETS UP PALETTE AS:
BLUE FOR COLOR 1
GREEN FOR COLOR 2
CYAN FOR COLOR 3
RED FOR COLOR 4
MAGENTA FOR COLOR S
BROWN FOR COLOR 6
LIGHT GRAY FOR COLOR 7
DARK GRAY FOR COLOR B
LIGHT BLUE FOR COLOR 9
LIGHT GREEN FOR COLOR 10
LIGHT CYAN FOR COLOR 11
LIGHT RED FOR COLOR 12
LIGHT MAGENTA FOR COLOR 13
YELLOW FOR COLOR 14
WHITE FOR COLOR 15
IN 40X25 OR 80X25 ALPHA MODES, THE VALUE SET
FOR PALETTE COLOR O INDICATES THE BORDER
COLOR TO BE USED. IN GRAPHIC MODES, IT
INDICATES THE BORDER COLOR AND THE
BACKGROUND COLOR
{AH) = 12 (OCH) WRITE DOT
(DX} = ROW NUMBER
cx) COLUMN NUMBER
(AL) = COLOR VALUE
IF 81T 7 OF AL = 1, THEN THE COLOR VALUE 1S
EXCLUSIVE OR’D WITH THE CURRENT CONTENTS OF
THE DOT
{AH) = 13 (ODH) READ DOT
(OX) = ROW NUMBER
(CX) = COLUMN NUMBER
(AL) RETURNS THE DOT READ

ASCI1 TELETYPE ROUTINE FOR OUTPUT
(AH) = 14 (QOEH) WRJTE TELETYPE TQ ACTIVE PAGE
(AL) = CHAR TO WRITE
(BL) = FOREGROUND COLOR IN GRAPHICS MODE

NOTE -- SCREEN WIDTH IS CONTROLLED BY PREVIOUS
MODE SET
(AH) = 15 (OFH) CURRENT VIDEO STATE

RETURNS THE CURRENT VIDEO STATE
(AL) = MODE CURRENTLY SET (SEE AK=0 FOR
EXPLANATION)
(AH) = NUMBER OF CHARACTER COLUMNS ON SCREEN
(8H) = CURRENT ACTIVE DISPLAY PAGE
{AH) = 16 (10H) SET PALETTE REGISTERS
(AL) = O SET PALETTE REGISTER
(8L) = PALETTE REGISTER TO SET (00H - OFH)
(BH) = VALUE TQ SET
(ALY = 1 SET BORDER COLOR REGISTER
(BH) = VALUE TO SET
(AL) = 2 SET ALL PALETTE REGISTERS AND BORDER
REGISTER
ES:DX POINTS TO A 17 BYTE LIST
BYTES 0 THRU 15 ARE VALUES FOR PALETTE
REGISTERS 0 THRU 15
8YTE 16 IS THE VALUE FOR THE BORDER
REGISTER

NOTE

IN MODES USING A 32K REGEN (9 AND A), ACCESS THROUGH THE CPU
REGISTER BY USE OF BS80OH SEGMENT VALUE ONLY REACHES THE
FIRST. 16K BIOS USES THE CONTENTS OF THE CPU PAGE REG

(BITS 3,4, & 'S OF PAGDAT IN BIOS DATA AREA) TO DERIVE THE
PROPER SEGMENT VALUE

CS,5S,0S,ES, 8X, CX,0X PRESERVED DURING CALL
ALL OTHERS DESTROYED

A-30 ROM BIOS

;=== INT 10

VIDEO_i10
THESE ROUTINES PROVIDE THE CRT INTERFACE
THE FOLLOWING FUNCTIONS ARE PROVIDED:
(AH)=Q SET MODE (AL) CONTAINS MODE VALUE
(AL)=0 40X2%5 BW (POWER ON DEFAULT)
40%X25 COLOR
=2 80X25 8w
(AL)=3 BOX25 COLOR
GRAPHICS MODES
(AL)=4 320X200 4 COLOR
{AL)=S 320X200 BW 4 SHADES
(AL)=6 640X200 BW 2 SHADES
(AL)=7 NOT VALID
wane EXTENDED MODES ®un
= 160X200 16 COLOR
320X%200 16 COLOR
640X200 4 COLOR
#n% NOTE BW MODES OPERATE SAME AS COLOR MODES, BUT
COLOR BURST 1S NOT ENABLED
#u® NOTE IF HIGH ORDER BIT IN AL IS SET, THE REGEN
BUFFER 1S NOT CLEARED
C(AH)=1 SET CURSOR TYPE
(CH) = BITS 4-0 = START LINE FOR CURSOR
HARDWARE WILL ALWAYS CAUSE BLINK
#® SETTING BIT S OR 6 WILL CAUSE ERRATIC
BLINKING OR NO CURSOR AT ALL
##% IN GRAPHICS MODES, BIT 5 IS FORCED ON TO
DISABLE THE CURSOR
(CL) = BITS 4-0 = END LINE FOR CURSOR
(AH)=2 SET CURSOR POSITION
(DH,DL) = ROW,COLUMN (0,0) IS UPPER LEFT
(BH) = PAGE NUMBER (MUST BE 0 FOR GRAPHICS MODES)
{AH)=3 READ CURSOR POSITION
(BH) = PAGE NUMBER (MUST BE O FOR GRAPHICS MODES)
ON EXIT (DH,DL) = ROW, COLUMN OF CURRENT CURSOR
(CH,CL) = CURSOR MODE CURRENTLY SET
(AH)=4 READ LIGHT PEN POSITION

= = LIGHT PEN SWITCH NOT DOWN/NOT TRIGGERED
(AH) = 1 == VALID LIGHT PEN VALUE IN REGISTERS
(DH,DL) = ROW, COLUMN OF CHARACTER LP POSN
(CH) = RASTER LINE (0-199)
(BX) = PIXEL COLUMN (0-319,639)
(AH)=8 SELECT ACTIVE DISPLAY PAGE (VALID ONLY FOR
ALPHA MODES)
(AL)=NEW PAGE VALUE (Q-7 FOR MODES 0%1, 0-3 FOR
MODES 283) -
IF BIT 7 (80H) OF AL=1
READ/WRITE CRT/CPU PAGE REGISTERS
{AL) = 8OH READ CRT/CPU PAGE REGISTERS
(AL) = B1H SET CPU PAGE REGISTER
(BL) = VALUE TO SET
{AL) = B2H SET CRT PAGE REGISTER
(BH) = VALUE TO SET
(AL) = 83H SET BOTH CRT AND CPU PAGE REGISTERS
(BL) = VALUE TO SET IN CPU PAGE REGISTER
(BH) = VALUE TO SET IN CRT PAGE REGISTER
IF BIT 7 (80H) OF AL=1
ALWAYS RETURNS (BH) = CONTENTS OF CRT PAGE REG
(BL) = CONTENTS OF CPU PAGE REG
(AH)=6 SCROLL ACTIVE PAGE UP
(AL) = NUMBER OF LINES, INPUT LINES BLANKED AT
BOTTOM OF WINDOW, AL = O MEANS BLANK
ENTIRE WINDOW
{CH,CL) = ROW, COLUMN OF UPPER LEFT CORNER OF
SCROLL
(DH,DL) = ROW,COLUMN OF LOWER RIGHT CORNER OF
SCROLL
(BH) = ATTRIBUTE TO BE USED ON BLANK LINE
(AH)=7 SCROLL ACTIVE PAGE DOWN
(AL) = NUMBER OF LINES, INPUT LINES BLANKED AT TOP
OF WINDOW, AL=0 MEANS BLANK ENTIRE WINDOW
{CH,CL) = ROW,COLUMN OF UPPER LEFT CORNER OF

SCROLL

(DH,DL) = ROW,COLUMN OF LOWER RIGHT CORNER OF
SCROLL

(BH) = ATTRIBUTE TO BE USED ON BLANK LINE

CHARACTER HANDLING ROUTINES
{AH) = B READ ATTRIBUTE/CHARACTER AT CURRENT CURSOR POSITION
(BH) = DISPLAY PAGE (VALID FOR ALPHA MODES ONLY)
ON EXIT:
(AL) CHAR READ
(AH) = ATTRIBUTE OF CHARACTER READ (ALPHA MOODES
ONLY)
(AH) = 9 WRITE ATTRIBUTE/CHARACTER AT CURRENT CURSOR
POSITION
(BH) = DISPLAY PAGE (VALID FOR“-ALPHA MODES ONLY)
tcx) CDUNT OF CHARACTERS TO WRITE
(AL) CHAR TO WRITE
(BL) = ATTRIBUTE OF CHARACTER (ALPHA)/COLOR OF
CHARACTER (GRAPHICS) SEE NOTE ON WRITE
DOT FOR BIT 7 OF BL = 1.
{AH) = 10 (O0AH) WRITE CHARACTER ONLY AT CURRENT CURSOR
POSITION
(8H) = DISPLAY PAGE (VALID FOR ALPHA MODES ONLY)
«cx) COUNT QF CHMARACTERS TO WRITE
CAL) CHAR TO WRITE
(BL) = COLOR OF CHAR (GRAPHICS)
SEE NOTE ON WRITE DOT FOR 8IT 7 OF BL = 1

Vv xipuaddy

ROM BIOS A-29

A-30 ROM BIOS

FOR READ/WRITE CHARACTER INTERFACE WHILE IN GRAPHICS MQDE,
THE CHARACTERS ARE FORMED FROM A CHARACTER
GENERATOR IMAGE MAINTAINED IN THE SYSTEM ROM
INTERRUPT 44H (LOCATION OOL110H) IS USED TO
POINT TO THE 1K BYTE TABLE CONTAINING THE
FIRST 128 CHARS (0-127)

INTERRUPT 1FH (LOCATION OOO7CH) IS USED TO
POINT YO THE 1K BYTE TABLE CONTAINING THE SECOND
128 CHARS (128-25%5)

FOR WRITE CHARACTER INTERFACE IN GRAPHICS MODE, THE
REPLICATION FACTOR CONTAINED IN (CX) ON ENTRY WILL
PRODUCE VALID RESULTS ONLY FOR CHARACTERS
CONTAINED ON THE SAME ROW CONTINUATION TO
SUCCEEDING LINES WILL NOT PRODUCE CORRECTLY

GRAPHICS INTERFACE
(AH) = 11 (0BH) SET COLOR PALETTE
(BH) = PALETTE COLOR 1D BEING SET (0-127)
(BL) = COLOR VALUE TO BE USED WITH THAT COLOR 10D
COLOR 1D = O SELECTS THE BACKGROUND
COLOR (0-18)
COLOR 1D = 1 SELECTS THE PALETTE TO 8E
USED
2 COLOR MODE:
0 B WHITE FOR COLOR 1
1 = BLACK FOR COLOR 1
4 COLOR MODES:
0 = GREEN, RED, BROWN FOR
COLORS 1,2,3
1 = CYAN, MAGENTA, WHITE FOR
COLORS 1,2,3
16 COLOR MODES
ALWAYS SETS UP PALETTE AS:
BLUE FOR COLOR 1
GREEN FOR COLOR 2
CYAN FOR COLOR 3
RED FOR COLOR 4
MAGENTA FOR COLOR S
BROWN FOR COLOR 6
LIGHT GRAY FOR COLOR 7
DARK GRAY FOR COLOR 8
LIGHT BLUE FOR COLOR 9
LIGHT GREEN FOR COLOR 10
LIGHT CYAN FOR COLOR 11
LIGHT RED FOR COLOR 12
LIGHT MAGENTA FOR COLOR 13
YELLOW FOR COLOR 14
WHITE FOR COLOR 15
IN 40X25 OR 80X25 ALPHA MODES, THE VALUE SET
FOR PALETTE COLOR O INDICATES THE BORDER
COLOR TO BE USED. IN GRAPHIC MODES, IT
INDICATES THE B8ORDER COLOR AND THE
B8ACKGROUND COLOR

(AH) = 12 (OCH) WRITE DOT
(DX) = ROW NUMBER
{Cx) COLUMN NUMBER
(AL) = COLOR VALUE

IF BIT 7 OF AL = 1, THEN THE COLOR VALUE IS
EXCLUSIVE OR’0D WITH THE CURRENT CONTENTS OF
THE DOT
C(AH) = 13 (ODH) READ DOT
(DX) = ROW NUMBER
(CX) = COLUMN NUMSBER
(AL) RETURNS THE DOT READ

ASCI! TELETYPE ROUTINE FOR OUTPUT

(AH) = 14 (OEH) WRITE TELETYPE TO ACTIVE PAGE
{AL) = CHAR TO WRITE
(BL) FOREGROUND COLOR IN GRAPHICS MODE
NOTE -- SCREEN WIDTH 1S CONTROLLED BY PREVIOUS
MODE SET
(AH) = 15 (OFH) CURRENT VIDEO STATE
RETURNS THE CURRENT VIDEO STATE
(AL) = MODE CURRENTLY SET (SEE AH=0 FOQR
EXPLANATION)
{AH) = NUMBER OF CHARACTER COLUMNS ON SCREEN
(BH) = CURRENT ACTIVE DI!SPLAY PAGE
(AH) = 16 (10H) SET PALETTE REGISTERS
(AL) = O SET PALETTE REGISTER
{8L) = PALETTE REGISTER TO SET (00HM - OFH)
(BH) = VALUE TO SET

(AL) = 1 SET BORDER COLOR REGISTER
{8H) = VALUE TO SET

(AL) = 2 SET ALL PALETTE REGISTERS AND BOROER
REGISTER

E€S:DX POINTS TO A 17 BYTE LIST
BYTES O THRU 15 ARE VALUES FOR PALETTE
REGISTERS O THRU 15
BYTE 16 IS THE VALUE FOR THE BORDER
REGISTER
NOTE
IN MODES USING A 32K REGEN (9 AND A), ACCESS THROUGH THE CPU
REGISTER BY USE OF 8800H SEGMENT VALUE ONLY REACHES THE
FIRST. 16K BI0S USES THE CONTENTS OF THE CPU PAGE REG
(BITS 3,4, & 5 OF PAGDAY IN BI0S DATA AREA) TO DERIVE THE
PROPER SEGMENT VALUE

CS,5S,05,ES,BX,CX,DX PRESERVED DURING CALL
ALL OTHERS DESTROYED

VIDEO GATE ARRAY REGISTERS

PORT 3DA OUTPUT
0

H
i
i
i

VIDEO GATE ARRAY STATUS
PORT 3DA INPUT

RE. MODE CONTROL 1 REGISTER
O1H +H1 BANDWIOTH/-LOW BANDWLDTH
021 +GRAPHICS/~ALPHA
Q4H +88W
08H +VIDEQ ENABLE
i 10H +16 COLOR GRAPHICS
H
; REG 1 PALETTE MASK REISTER
; 01K PALETTE MASK 0
i 02H PALETTE MASK 1
H 04M PALETTE MASK 2
; 0BH PALETTE MASK 3
H
i REG 2 BORDER COLOR REGISTER
: OH BLUE
; 02H GREEN
; 04H RED
i 0BH INTENSITY
H
; REG 3 MODE CONTROL 2 REGISTER
; OiH RESERVED -- MUST BE 2ERO
i O2H +ENABLE BLINK
; 04H RESERVED -- MUST BE ZERO
; 08H +2 COLOR GRAPHICS (640X200 2 COLOR ONLY)
i REG 4 RESET REGISTER
; 01H +ASYNCHRONOUS RESET
i 02H +8YNCHRONOUS RESET
H
; REGS 10 TO IFf PALETTE REGISTERS
; 01H BLUE
; 02K GREEN
H 04H RED
i osH INTENSITY
.
i 01H +DISPLAY ENABLE
; 02H +LIGHT PEN TRIGGER SET
i Q4H -LIGHT PEN SWITCH MADE
; 08H +VERTICAL RETRACE
i 10H +VIDEO DOTS
ASSUME CS:CODE,0S: DATA, ES: VIDEO_RAM
OCED M0010 LABEL WORD ; TABLE OF ROUTINES WITHIN VIDEO 1/0
OCE9 ODAS R oW OFFSET SET_MODE
OCE® E4SE R oW OFFSET SET_CTYPE
OCED E488 R ow OFFSET SET_CPOS
OCEF E520 R ow OFFSET READ_CURSOR
OCF1. F751 R ow OFFSET READ_LPEN
OCF3 E4B3 R ow OFFSET ACT_DISP_PAGE
OCFS ES03 R ow OFFSET SCROLL_UP
OCF7 E63F R ou OFFSET SCROLL_DOWN
OCF9 FOE4 R oM OFFSET READ_AC_CURRENT
0CFB Fii3 R ow OFFSET WRITE_AC_CURRENT
OCFD F12C R oW OFFSET WRITE_C_CURRENT
OCFF €543 R oW OFFSET SET_COLOR
0001 F187 R ou OFFSET WRITE_DOT
0003 F146 R ow OFFSET READ_DOT
0005 1992 R oW OFFSET WRITE_TTY
0007 ESB1 R oW OFFSET VIDEO_STATE
0009 EGBS R oW OFFSET SET_PALLETTE
= 0022 MOO10L EQU $~M00 10
o008 VIDEO_10 PROC NEAR
o008 FB STI ; INTERRUPTS BACK ON
000C FC cLo’ SET DIRECTION FORWARD
0000 06 PUSH ES
ODOE 1E PUSH 0§ ; SAVE SEGMENT REGISTERS
00OF 52 PUSH DX
0010 51 PUSH €X
o011l 53 PUSH BX
o012 S6 PUSH SI
o013 57 PUSH D1
op14 S0 PUSH AKX ; SAVE AX VALUE
oDi5 8aA C4 MoV AL, AH ; GET INTO LOW BYTE
0017 32 E4 XOR AH, AH ; ZERO TO HIGH BYTE
0019 D1 EO SAL ax, 1 ; %2 FOR TABLE LOOKUP
o018 88 FO MoV ST, AX ; PUT INTO SI FOR BRANCH
0010 3D 0022 cHp AX, MOO 10L . TEST FOR WITHIN RANGE
0020 72 04 J8 c1 ; BRANCH AROUND BRANCH
op22 58 PoP ax ; THROW AWAY THE PARAMETER
0023 E9 OF70 R JHP VIDEO_RETURN ; DO NOTHING IF NOT IN RANGE
0026 €8 1388 R cL caLL 0bs
0029 B8 B8OO MOV AX, 0880OH ; SEGMENT FOR COLOR CARD
0D2C 80 3E 0049 R 09 cup CRT_MODE, 9 ; IN MODE USING 32K REGEN
o031 72 09 Jc c2 i NO, JUMP
0033 8A 26 008A R MoV AH, PAGDAT ; GET COPY OF PAGE REGS
0037 80 E4 3B AND AH, CPUREG ; 1SOLATE CPU REG
0b3A 0O EC SHR aH, 1 i SHIFT TO MAKE INTO SEGMENT VALUE
0D3C 8E CO ca2: MoV €S, AX ; SET UP TO POINT AT VIDEO RAM AREA
003E 56 POP AX ; RECOVER VALUE
0D3F BA 26 0049 R Mov AH, CRT_MODE ; GET CURRENT MODE INTO AH
0043 2E: FF A4 0CE9 R JMP WORD PTR CS:[SI+OFFSET M00101
on48 VIDEO_I10 ENDP

>
©
°
o
=
=
™
>

ROM BIOS A-31

o048
0b4e
0b4A
0D4cC
0D4E
0050
0ps2
0054
0pS6
opss
oDS5A
oDsC

00SE
ODSE

0069

©oD69
= 0004

0060
0071
Qo7s
oD79
007D
opel
ooes
ong9
on8o

op91

0095
0095

0099

0090
0090

oDAl
opal
ODAS
0DAS
(7Y
ODAS
oDAA
ODAC
ODAE
0pBo
o082
opg4
00B6
0088
0DBA
0DBC
O0BE
ooca
opcée
00CB
opcB
opco
o0DO
oopa
oDD6
o009
0oDDA
ooocC
oDpO0
ODEO
ODE2

0800
0800
1000
1000
4000
4000
4000
0000
4000
8000
8000

28
50

28
oo

ocC

oa
oD
09
oA
0E
0E 01
00 Qo0
1A OF
18 OF

oB

00

0004

OF 00

00 02

A-32

50
14

50 28 28
28 50

00 02

02
00 02
00 02
00 o0
00 00
08
[0
00 00
00 00
00

00 00

00 00
04 06

05

0015 R 008C

ROM BIOS

SET_MO|

DE

THIS ROUTINE INITIALIZES THE ATTACHMENT TO

THE SELECTED MODE

THE SCREEN IS BLANKED

; INPUT
; (AL) = MODE SELECTED (RANGE 0-B)
; OUTRUT
MOOS50 LABEL WORD ; TABLE OF REGEN LENGTHS
oW 2048 ; MODE O 40x25 BW
ow 2048 ; MODE 1 40X2% COLOR
oW 4096 ; MODE 2 80X25 BW
oW 4096 ; MODE 3 BOX2S COLOR
[16384 ; MODE 4 320X200 4 COLOR
oW 16384 ; MODE S 320X200 4 COLOR
ow 16384 ; MODE & 640X200 BW
oW o ; MODE 7 INVALID
oW 16384 ; MODE 8 160X200 16 COLOR
oW 32768 ; MODE 9 320X200 16 COLOR
oW 32768 ; MODE A 640X200 4 COLOR
------ COLUMNS
MOOEO LABEL BYTE
08 40, 40, 80, 80, 40, 40, 80, 0, 20, 40, 80
-- TABLE OF GATE ARRAY PARAMATERS FOR MODE SETTING
MO070 LABEL BYTE
- SET UP FOR 40X25 BW MODE ©
08 OCH, OFH, 0,2 GATE ARRAY PARMS
MOO70L EQU $-M0OQ70
P SET UP FOR 40X25 COLOR MODE 1
oe 08H, OFH, 0, 2 ; GATE ARRAY PARMS
jmmmm- SET UP FOR BOX25 BW MODE 2
o8 ODH, OFH, 0, 2 ; GATE ARRAY PARMS
UP FOR BOX25 COLOR MODE 3
oe O9H, OFH, 0, ; GATE ARRAY PARMS
jmmm——- SET UP FOR azoxzoo 4 COLOR MODE 4
b8 - OAH, 03H,0,0 ; GATE ARRAY PARMS
jemmmmm SET UP FOR 320X200 BW MODE 5
0B OEH, 03K, 0,0 ; GATE ARRAY PARMS
jmmm—m SET UP FOR 640X200 BW MODE 6
o8 OEH,01H,0,8 ; GATE ARRAY PARMS
- SET UP FOR INVALID MODE 7
08 0OH, 00H, 0, 0 ; GATE ARRAY PARMS
jomm——- SET UP FOR 160X200 16 COLOR MODE 8
DB 1AH, OFH, 0,0 ; GATE ARRAY PARMS
jomm—- SET UP FOR 320X200 16 COLOR MODE 9
08 18H, OFH, 0, @ ; GATE ARRAY PARHS
jomem- SET UP FOR 640X200 4 COLOR MODE
OBH, 03H, 0, 0 ; GATE ARRAY PARHS

M0072

MOO72L

H0075

TABLES OF PALETTE COLORS FOR

2 COLOR, SET O

LABE!
[]:]

EQU

2 COLOR,
o8

4 COLOR,

LABE
8

D!
4 COLOR,

LABE

08
SET_MODE

c3
cq:

c5

ce

PUSH
AND
CMP
JE
CMP
JC
MoV
CHP
JE
CHP
JE
CHP
Jc
CcMP
JNC
MOV
MoV
MoV
MOV
MOV
MOV
MOV
IN
XOR
QuT
MOV
AND
ouT

L

L

L

2 AND 4 COLOR MODES

BYTE
0,0FH, 0,0

$-M0072 JENTRY LENGTH

SET 1

OFH,0,0,0

SET 0
8YTE
0,2,4,6

SET 1
BYTE
0,3,5, OFH

PROC NEAR

AX i SAVE INPUT MODE ON STACK
AL, TFH ; REMOVE CLEAR REGEN SWITCH
AL ? ;CHECK FOR VALID MODES

c3 ;MODE 7 IS INVALID

AL, OBH

ca /GREATER THAN A IS INVALID
AL, O ;DEFAULT TO MODE 0
AL, 2 ;CHECK FOR MODES NEEDING 128K
cs

aL,3

cs

AL, 09H

c6

TRUE_MEM, 128 ;D0 WE HAVE 128K?

ce i YES, JUMP

AL, O ;NO, DEFAULT TO MODE ©

DX, 03D4H ADDRESS OF COLOR CARD
AH, AL SAVE MODE IN AH

CRT _MODE, AL
ADDR‘5945 oXx

SAVE IN GiLOBAL VARIABLE
SAVE -ADDRESS OF BASE

POINT TO CONTROL REGISTER
SYNC CONTROL REG TO ADDRESS

D1, AX SAVE MODE IN 01
DX, VGA_CTL

AL, DX

AL, AL SET VGA REG 0

OX, AL . SELECT IT

AL, CRT_MODE_SET ; GET LAST MODE SET
aL, OF7H . TURN OFF VIDEO
DX, AL . SET IN GATE ARRAY

0010

c6
E4
co

EO

F7

8A 07

ca
Faq

030F
008A R

36
80
3F
3E

18

0015 R 0080

<7
cB:

ci2:

; WHILE

C13:

- SET DEFAULT PALETTES
Mov

AX, D1
Mov AH, 10H
“ov 8X, OFFSET M0072
cHP AL, 6
JE cr
MoV BX, OFFSET MO07S
cHP AL, S
JE c7
cHp AL, 4
JE c7
cHP AL, OAH
JNE co
MoV cx, 4
MoV AL, AH
ouT DX, AL
Mov AL, CS: (BX)
our OX, AL
INC AH
INC Bx
Loor - ‘cB
SHORT C11
- SET PALETTES FOR DEFAULT
MOV - cX, 16
MoV AL, AH
ouT 0X, AL
out 0X, AL
INC AH

Loop c1o

GET MODE
SET PALETTE REG ©
POINT TO TABLE ENTRY

2 COLOR MODE?

YES, JUMP

POINT TO TABLE ENTRY
CHECK FOR 4 COLOR MODE
YES, JUMP
CHECK FOR
YES JUMP
CHECK FOR
NO, JUMP
NUMBER OF REGS TO SET
GET REG NUMBER

SELECT 17

GET DATA

SET IT

NEXT REG

NEXT TABLE VALUE

4 COLOR MODE

4 COLOR MODE

16 COLOR

i
i
:

NUMBER OF PALETTES, AH 1S REG
COUNTER

GET REG NUMBER

SELECT IT

SET PALETTE VALUE

NEXT REG

GET CURRENT MODE
SET UP FOR ALPHA MODE
IN ALPHA MODE

YES, JUMP

SET UP FOR 16K REGEN
MODE USE 16K

YES, JUMP

SET UP FOR 32K REGEN
SET PORT ADDRESS OF PAGREG
GET LAST DATA OUTPUT
CLEAR MO & M1 BITS
SET NEW BITS

STUFF BACK IN PORT
SAVE COPY IN RAM

FORT SETTING

GET CURRENT MODE
INTO AX REG

SET TABLE ENTRY LENGTH

TIMES MODE FOR OFFSET INTO TABLE

TABLE OFFSET IN BX

ADD TABLE START TO OFFSET

SAVE MODE SET AND PALETTE
TILL WE CAN RUT THEM IN RAM

DISABLE INTERRUPTS
KEEP MEMORY DATA VALID
DISABLE NMI AND HOLD REQUEST

POINT TO RESET REG
SEND TO GATE ARRAY
SET SYNCHRONOUS RESET
00 1T

GATE A“ﬂAV 18 IN RESET STATE, WE CANNOT ACCESS RAM

SET UP MO & M1 IN PAGREG
MoV X,

XOR 8L, 8L

cup AL, 4

Jc c12

MoV BL, 40H

cHp AL, 09H

Je ci12

MoV BL, 0COH
MoV DX, PAGREG
MOV AL, PAGDAT
AND AL, 3FH

OR AL, BL

our 0X, AL

MOV PAGDAT, AL
ENABLE VIDEO AND CORRECT
MoV AX, D1

XOR AH, AH

MoV CX, MOO70L
MUL cx

MOV 8X, AX

ADD BX, OFFSET M0070
MoV AH, CS: (BX)
MoV AL, CS: (BX + 2)
MoV S1,ax

cLl

CALL MODE_ALIVE
MoV AL, 10H

out NMI_PORT, AL
MoV 0X,VGa_CTL
Hov AL, 4

ouT 0X, AL

MOV AL 2

out

THE

MOV AX, S1

AND AH, OF 7H

XOR AL, aL

out OX, AL

XCHG AH, AL

out DX, AL

MoV aL,a

out DX, AL

XOR AL, AL

out 0X, AL

NOW OKAY TO ACCESS RAM AGAIN
AL, BOH

out NMI_PORT, AL
CALL MODE_ALIVE
STt

JMP SHORT €14
MoV AL, AH

out 0X, AL

MOV AL, CS: [BX)
out oX, AL

INC 8x

INC AH

LOOP c13

MOV DX, PAGREG
LY AL, PAGDAT
AND AL, OCOH

MOV BL, 36H

TEST AL, BOH

INZ c1%

MoV 8L, 3FH

cMP TRUE_MEM, 128
JINC c1s

MoV BL, 18H

i
i
i
A

RESTORE NEW MODE SET

TURN OFF VIDEO ENABLE

SET UP TO SELECT VGA REG O
SELECT IT
AH 1S VGA
SET MODE
SET uP TO
SELECT IT

REG COUNTER

SELECT VGA REG 4

REMOVE RESET FROM VGA
ENABLE NMI AGAIN

KEEP MEMORY DATA VALID
ENABLE INTERRUPTS

GET VGA REG NUMBER
SELECT REG

GET TABLE VALUE
PUT IN VGA REG
NEXT IN TABLE

NEXT REG

DO ENTIRE ENTRY

SET UP CRT AND CPU PAGE REGS ACCORDING TO MODE & MEMORY SIZE

SET 10 ADDRESS OF PAGREG
GET LAST DATA OUTPUT

CLEAR REG BITS

SET UP FOR GRAPHICS MODE WITH 32K
REGEN

IN THIS MODE?

YES, JUMP

SET UP FOR 16K REGEN AND 128K
MEMORY

D0 WE HAVE 128K?

YES, JUMP

SET UP FOR 16K REGEN AND 64K
MEMORY

ROM BIOS A-33

OEA1 ©OA C3 c1s: oR AL,BL ; COMBINE MODE BITS AND REG VALUES
OEA3 EE out DX, AL ; SET PORT
OEA4 A2 008A R MOV PAGDAT, AL ; SAVE COPY IN RAM
OEAY 88 C6 MOV ax, s1 ; PUT MODE SET & PALETTE IN RAM
OEA9 88 26 0065 R MoV CRT_MODE_SET, AH
OEAD A2 0066 R MoV CRT_PALLETTE, AL
OEBO E4 61 IN AL, PORT_B ; GET CURRENT VALUE OF 8255 PORT B
OEB2 24 FB AND AL, OFBH ; SET UP GRAPHICS MODE
OEB4 FE& C4 02 TEST AH, 2 ; JUST SET ALPHA MODE IN VGA?
0EB7. 75 02 INZ c16 ; YES, JUMP
0E89 0C 04 AL, 4 ; SET UP ALPHA MODE
OEBB E6 61 PORT_B, AL ;- STUFF BACK IN 8255
6845
OEBD 1E oS ; SAVE DATA SEGMENT VALUE
QEBE 33 CO AX, AX ; SET UP FOR ABSO SEGMENT
OECO 8E D8 0S, AX ; ESTABLISH VECTOR TABLE ADORESSING
0S: ABSO
OEC2 C5 1E 0074 R BX, PARM_PTR ; GET POINTER TO VIDEO PARMS
DS:CQOE
OEC6 8B C7 MoV AX, D1 ; GET CURRENT MODE IN AX
OEC8 B9 0010 90 MoV CX, M0040 ; LENGTH OF EACH ROW OF TABLE
OECC 80 FC 02 cHP AW, 2 ; DETERMINE WHICH TO USE
OECF 72 10 Jc c1? ; MODE IS 0 OR 1
0E01 03 09 ADD BX, CX ; MOVE TO NEXT ROW OF INIT TABLE
OED3 80 FC 04 CHP AH, 4
OED6 72 09 Jc c17 ; MODE 15 2 OR 3
OED8 03 D9 ADD BX, CX ; MOVE TO GRAPHICS ROW OF
; INIT_TABLE
QEDA 80 FC 09 cHP AH, 9
OEDD 72 02 Jc c17 ; MODE IS 4, 5, 6, 8, OR 9
OEDF 03 DS ADD BX, CX ; MOVE TO NEXT GRAPHICS ROW OF
; INIT_TABLE
o~ BX POINTS TO CORRECT ROW OF INITIALIZATION TABLE
QEE1 50 C17: PUSH AX ; SAVE MODE IN aAH
OEE2 8A 47 02 MOV AL,DS: (BX+2) ; GET HORZ. SYNC POSITION
OEES 88 7F O0A MoV DI,WORD PTR DS:(BX+10) ,; GET CURSOR TYPE
OEEB 1E PUSH oS
OEE9 EE 1388 R CALL 00S
ASSUME DS:DATA
OEEC A2 0089 R MOV HORZ_POS, AL ; SAVE HORZ. SYNC POSITION VARIABLE
QEEF 89 3E 0060 R 1Y CURSQR_MODE,DI ; SAVE CURSOR MODE
OEF3 S0 PUSH ax
OEF4 AQ 0Q0BE R MOV AL, VAR_DELAY ; SET DEFAULT OFFSET
OEF7 24 OF AND AL, OFH
OEF9 A2 00BE R MOV VAR_DELAY, AL
QEFC S8 POP AX
ASSUME DS: CODE
OEFD IF POP oS
OEFE 32 E4 XOR aH, aH ; AW WILL SERVE AS REGISTER NUMBER
; DURING LOOP
OF00 BA 0304 0X, 0304H ; POINT TO 6845
;LOOP THROUGH TABLE, OUTPUTTING REG ADDRESS, THEN VALUE FROM TABLE
OF03 8a C4 cis: MoV AL, AH ; GET 6845 REGISTER NUMBER
OF05 EE out DX, AL
OF06 42 INC DX ; POINT TO DATA PORT
OF07 FE €4 INC AH ; NEXT REGISTER VALUE
OF09 Ba 07 MOV AL, LBX) ; GET TABLE VALUE
OFOB EE out DX, AL ; QUT TO CHIP
OFQC 43 INC Bx ; NEXT IN TABLE
OFQD 4a DEC DX ; BACK TO POINTER REGISTER
OFOE E2 F3 LoOP ci8 ; D0 THE WHOLE TABLE
OF10 58 POP Ax ; GET MODE BACK
oF11 IF PoOP bS ; RECOVER SEGMENT VALUE
ASSUME DS:DATA
Fiahabaiubshel FILL REGEN AREA WITH BLANK
OF12 33 FF XOR 01,01 ; SET UP POINTER FOR REGEN
OF14 89 3E 004E R MOV CRT_START, DI ; START ADDRESS SAVED IN GLOBAL
OF18 C6 06 0062 R 00 MOV ACTIVE_PAGE,0 ; SET PAGE VALUE
OF 1D SA POP DX ; GET ORIGINAL INPUT BACK
OFIE 80 E2 80 AND DL, 80K ; NO CLEAR OF REGEN ?
oF21 75 IC INZ c21 ; SKIP CLEARING REGEN
OF23 BA B8OO MoV DX, 0BBOOH ; SET UP SEGMENT FOR 16K REGEN AREA
OF26 B9 2000 MOV CX,8192 ; NUMBER OF WORDS TQ CLEAR
0F28 3C 09 cMP AL, 09H ; REQUIRE 32K BYTE REGEN ?
OF28 72 05 Jc c19 i NO, JUMP
OF20 D1 EL SHL cX, 1 ; SET 16K WORDS TO CLEAR
OF2F BA 1800 MOV DX, 1800H ; SET UP SEGMENT FOR 32K REGEN AREA
OF32 BE C2 c19: MoV €S,0X ; SET REGEN SEGMENT
OF34 3C 04 cMP aL,4 ; TEST FOR GRAPHICS
OF36 88 0F20 MoV AX,’ ‘+15#256 ; FILL CHAR FOR ALFHA
oOF39 72 02 J€ c20 ; NO_GRAPHICS_INIT
OF38 33 CO XOR AX, AX ; FILL FOR GRAPHICS MODE
OF3D F3/ AB c20 REP STOSW ; FILL THE REGEN BUFFER WITH BLANKS
jm———— ENABLE VIDEO
OF3F BA 030A c21 MOV DX, VGA_CTL ; SET PORT ADDRESS OF VGA
oF42 32 CO XOR AL, AL i
OF44 EE ouT OX, AL SELECT VGA REG 0
OF45 A0 0065 R MOV AL,CRT_MODE_SET ; GET MODE SET VALUE
0ra8 EE out DX, AL ; SET MODE
; - DETERMINE NUMBER OF COLUMNS, BOTH FOR ENTIRE DISPLAY
;-—--— AND THE NUMBER TO BE USED FOR TTY INTERFACE
OF49 32 FF XOR BH, BH
OF48 BA 1E 0049 R MOV BL, CRT_MODE
OF4F 2E: 8A 87 ODSE R MOV AL,CS: (BX + OFFSET M00601
OF54 32 E4 XOR AM, AH
OF56 A3 00dA R MOV CRT_COLS, AX ; NUMBER OF COLUMNS IN THIS SCREEN

A-34

ROM BIOS

..... SET CURSOR POSITIONS

OFS9 01 E3 SHL BX, 1 ; WORD OFFSET INTO CLEAR LENGTH
; TABLE

OFS8 2E: BB 8F 0D48 R Wov €X,CS: [BX + OFFSET MO0SO) ; LENGTH TO CLEAR

OF6Q 89 OE 004C R MOV CR' _LEN, CX ; SAVE LENGTH OF CRT

OF64 89 0008 MOV cx, ; CLEAR ALL CURSOR POSITIONS

OF67 BF 0050 R B MOV ot, OFFSET CURSOR _POSN

OFGA 1E PUSH DS ; ESTABLISH SEGMENT

oF68 07 POP €S ; ADDRESSING

OF6C 33 €O XOR AX, AX

OFG6E F3/ AB REP STOSW FILL WITH 2ERQES
e NORMAL RETURN FROM ALL VIDEO RETURNS

oF70 VIDEO_RETURN:

OF70 SF POP]

OF71 SE POP st

oOF72 58 POP 8x

0F73 S9 c22: POP cx

OF74 SA Pop oX

OF7S IF POP os

oF76 07 POP ES ; RECOVER SEGMENTS

OF77 CF IRET ; ALL DONE

oF78 SET_MODE ENOP

KBDNML - KEYBOARD NMI INTERRUPT ROUTINE

THIS ROUTINE OBTAINS CONTROL UPQON AN NM1 INTERRUPT, WHICH
QCCURS UPON A KEYSTROKE FROM THE KEYBOARD.

THIS ROUTINE WILL DE-SERIALIZE THE BIT STREAM IN ORDER TO
GET THE KEYBOARD SCAN CODE ENTERED IT THEN 1SSUES INT 4%
PASSING THE SCAN CODE IN AL TO THE KEY PRQCESSOR. UPON RETURN
IT RE-ENABLES NMI AND RETURNS TO SYSTEM (IRET).

ASSUME CS:CODE,DS:DATA
OF 70 KBDNM1 PROC AR
--------- DISABLE INTERRUPTS

OF78 FA cL1
jmmmmmmm o SAVE REGS & DISABLE NMI

OF79 56 PUSH 1

oF7A 57 PUSH 01

OF78 50 PUSH Ax ; SAVE REGS

OF7C 53 PUSH Bx

OF7D 51 PUSH cx

OF7E 52 PUSH pX

OFIF 1E PUSH oS

oF80 06 PUSH €S
jmmmmmm————— INIT COUNTERS

0F81 BE 0008 HOV s1,8 ; SET UP & OF DATA BITS

oFe4 32 0B XOR 8L, 8L ; INIT. PARITY COUNTER
jmmmm—————— SAMPLE 5 TIMES TO VALIDATE START BIT

OFBE 32 E4 XOR AH, AH

OF8B B9 0005 MoV cx,5 ; SET COUNTER

OF88 €4 62 i N AL, PORT_C ; GET SAMPLE

OF8D AB 40 TEST AL, 40H ; TEST IF 1

OF8F 74 02 Jz 12 i JMP IF O

OF91 FE C4 INC AH ; KEEP COUNT OF 1°S

OF93 €2 F6 12: LOOP 1 . KEEP SAMPLING

OF95 80 FC 03 cup aH, 3 . VALID START BIT ?

oF98 73 03 JNB 125 i JUMP IF OK

OF9A EB 5D 90 NP 19 ; INVALID (SYNC ERROR) NO AUDIO

; OUTPUT

jmmmm——————— VALID START BIT, LOOK FOR TRAILING EDGE

OFSD B9 0032 125: “oV cx, 50 ; SET UP WATCHDOG TIMEOUT

OFA0 E4 62 13: IN AL, PORT_C ; GET SAMPLE

OFA2 A8 40 TEST AL, 40H ; TEST IF 0

OFA4 74 0% 9z 15 ; JMP IF TRAILING EDGE FOUND

OFA6 E2 F8 LooP 13 ; KEEP LOOKING FOR TRAILING EDGE

OFA8 EB 4F 90 JMP 18 ; SYNC ERROR (STUCK ON 1°S)
;= READ CLOCK TO SET START OF BIT TIME

OFAB B8O 40 1s: MoV AL, 40H ; READ CLOCK

OFAD €6 43 out TIM_CTL, AL i

OFAF 80 NOP P

oFg0 90 NOP Do

OF81 E4 41 N AL, TIMER+])

OF3 ©A EO uov AH, AL Pow

OFBS €4 41 IN AL, TIMER+1 i

OF87 86 EO XCHG AH, AL Dow

OFB9 B8 FB MoV oI, . SAVE CLOCK TIME IN DI
jmmmmmmmm e VERIFY vauo TRANSITION

OFE8 B9 0004 MoV cx, 4 ; SET COUNTER

OFBE E4 62 16: N AL, PORT_C ; GET SAMPLE

OFCO A8 40 TEST AL, 40H ; TEST IF 0

OFC2 75 35 INZ 18 ; JMP IF INVALID TRANSITION (SYNC)

OFCc4 €2 FB Loop 16 ; KEEP LOOKING FOR VAL1D TRANSITION
jmmmmmmmmman SET UP DISTANCE TO MIDDLE OF 1ST DATA BIT

OFC6 BA 0220 DX, 544 ; 310 USEC AWAY (.838 US / CT)
jomm———- snar LOOKING FOR TIME TO READ DATA BITS AND ASSEMBLE 8YTE

OFC9 E8 1031 R 17: CALL

OFCC BA 020E MoV nx,szs ; SET NEW DISTANCE TO NEXT HALF BIT

OFCF S0 PUSH A ; SAVE 1ST HALF BIT

OFDO ES 1031 R CALL 130

oFD3 8A C8 MOV CL, AL ; PUT 2ND HALF BIT IN CL

oFDS S8 POP AX ; RESTORE 1ST HALF BITY

OFD6 3A C8 cMP CcL, AL ; ARE THEY OPROSITES ?

0FD8 74 2A JE 19 i NO, PHASE ERROR

ROM BIOS A-35

OFDA DO
OFDC 0A
OFDE 4E
OFOF 75
OFEL E®
OFE4 50
OfES E8
OFEB 8aA
OFEA 58
OFEB 3A
OFED 74
OFEF 80
OFF2 74
OFF4 FB
OFF5 8A
OFF7 CD
OFF9 07
OFFA IF
OFFB SA
OFFC 59
OFFD SB
OFFE EA4
1000 58
1001 SF
1002 SE
1003 CF
1004 EB
1007 B3
1004 74
100C F6
1011 78
1013 BB
1016 89
1019 ES8
101C BO
1021 80
1026 80
1028 FE
102F EB
1031

1031

1031 BO
1033 E6
1035 90
1036 90
1037 EA4
1039 8aA
1038 E4
1030 86
103F 88
1041 28
1043 38
1045 72
1047 28
1049 8B
1048 03
1040 B9
1050 32
1052 E4
1054 AB
1056 74
1058 FE
1084 E2
105C 80
105F 72
1061 BO
1063 FE
1065 €3
1066 32
1068 C3
1069

A-36

EF
FB

EB
1031 R

1031 R
cB

cs
15

E3 01
10

<7
48

1388 R
FE 0B
ED

06 0018 R 01

18

0080

0048

E035 R

26 0017 R FO

26 001B R OF
26 008B R 1IF

06 0012 R
o]

40
43

ROM BIOS

110:

KBDONMI
130
131:

. CX
-START SAMPLING DATA
MOV X, 5

IN SCAN BYTE

IT (5 SAMPLES)
SET COUNTER

SHR BH, 1 ; SHIFT PREVIOUS BITS
oR BH, AL ; OR IN NEW DATA BIT
DEC s1 ; DECREMENT DATA BIT COUNTER
INZ 17 CONTINUE FOR MORE DATA BITS
------------ WAIT FOR TIME TO SAMPLE PARITY B1T
CALL 130
PUSH ax ; SAVE 1ST HALF 8IT
caLL 130
MoV cL, AL ; PUT 2ND HALF BIT IN CL
POP AxX ; RESTORE 1ST HALF 8IT
CHP CL, AL ; ARE THEY OPPOSITES ?
JE 19 NO, PHASE ERROR
—————— VALID PARITY BIT, CHECK PARITY
AND eL, 1 ; CHECK IF ODD PARITY
9z 19 ; JMP IF PARITY ERROR
-VALID CHARACTER, SEND TO CHARACTER PROCESSING
STI ; ENABLE INTERRUPTS
MoV AL, BH ; PLACE SCAN CODE IN AL
INT 4BH CHARACTER PROCESSING
RESTORE REGS AND RE-ENABEL NMI
PoP ES ; RESTORE REGS
POP oS
POP DX
POP cx
POP 8x
IN AL, 0AOH ; ENABLE NMI
POP AX
POP 01
POP s1
IRET ; RETURN TO SYSTEM
------ PARITY, SYNCH OR PHASE ERROR. OUTPUT MISSED KEY BEEP
CcALL 00§ ; SETUP ADDRESSING
cup si,8 ; ARE WE ON THE FIRST DATA BIT?
JE 18 ; NO AUDIO FEEDBACK (MIGHT BE A
i . .GLITCH)
TEST KB_FLAG_1,01H ; CHECK IF TRANSMISSION ERRORS
; ..ARE TO BE REPORTED
INZ 110 ;- 1=00 NOT BEEP, O0=BEEP
MoV 8X, 080H ; DURATION OF ERROR BEEP
MoV CX, 04BH ; FREQUENCY OF ERROR BEEP
CALL KB_NOI1SE ; AUDIO FEEDBACK
AND KB_FLAG, OFOH ; CLEAR ALT,CLRL,LEFT AND RIGHT
; SHIFTS
AND KB_FLAG_I,0FH ; CLEAR POTENTIAL BREAK OF INS,CAPS
; NUM AND SCROLL SHIFT
AND KB_FLAG_2, IFH ; CLEAR FUNCTION STATES
INC KBD_ERR ; KEEP TRACK OF KEYBOARD ERRORS
Jup SHORT 18 ; RETURN FROM INTERRUPT
ENDP
PROC NEAR
MOV AL, 40H ; READ CLOCK
out TIN_CTL, AL)
NOP io.
NOP)
IN AL, TIMER+1 ;.
MoV AH, AL D ow
IN AL, TIMER+1 ;.
XCHG AH, AL Lo
MoV CX,01 ; GET LAST CLOCK TIME
suB cX, AX ; SUB CURRENT TIME
cHP cx, DX ; 1S 1T TIME TO SAMPLE ?
Jc 133 ; NO, KEEP LOOKING AT TIME
sue CX, 0% ; UPDATE & OF COUNTS OFF
MoV D1, AX ; SAVE CURRENT TIME AS LAST TIME
ADD o1 ; ADD DIFFERENCE FOR NEXT TIME
8

SAMPLE LINE

PORT_C IS SAMPLED CX TIMES AND IF THER ARE 3 OR MORE 1"S
THEN 80H 1S5 RETURNED IN AL, ELSE OOH IS RETURNED IN AL.
PARITY COUNTER 1S MAINTAINED IN ES.

XOR AH, AH ; CLEAR COUNTER
132: IN AL, PORT_C ; GET SAMPLE

TEST AL, 40H ; TEST IF 1

Jz 133 ; JMP IF O

INC aH ; KEEP COUNT OF 1’S
133: LOOP 132 ; KEEP SAMPLING

cHp AH, 3 ; VALID 1 ?

Je 134 ; JMP 1F NOT VALID 1

MOV AL, 0BOH ; RETURN BOH IN AL (1)

INC 8L ; INCREMENT PARITY COUNTER

RET ; RETURN TO CALLER
134: XOR aL, AL ; RETURN O IN AL (0)

RET ; RETURN TO CALLER
130 ENDP

KEV62 INT
THE PURPQSE OF THIS ROUTINE IS TO TRANSLATE SCAN CODES AND
SCAN CODE COMBINATIONS FROM THE 62 KEY KEYBOARD TO THEIR
EQUIVILENTS ON THE 83 KEY KEYBOARD. THE SCAN CODE IS
PASSED IN AL. EACH SCAN CODE PASSED EITHER TRIGGERS ONE OR
MORE CALLS TO INTERRUPT 9 OR SETS FLAGS TO RETAIN KEYBOARD
STATUS. WHEN INTERRUPT 9 1S CALLED THE TRANSLATED SCAN
CODES ARE PASSED TO IT IN AL. THE INTENT OF THIS CODE WAS
TO KEEP INTERRUPT 9 INTACT FROM ITS ORIGIN IN THE PC FAMILY
THIS ROUTINE IS IN THE FRONT END OF INTERRUPT 9 AND
TRANSFORMS A 62 KEY KEYBOARD TO LOOK AS IF 1T WERE AN B3
KEY VERSION.
IT IS ASSUMED THAT THIS ROUTINE IS CALLED FROM THE NMI
DESERIALIZATION ROUTINE AND THAT ALL REGISTERS WERE SAVED
IN THE CALLING ROUTINE. AS A CONSEQUENCE ALL REGISTERS ARE

DESTROYED.
; EQUATES
= 0080 BREAK_BIT €Qu 80H
0054 FN_KEY EQU 84H
0055 PHK €QuU FN_KEY+1
= 0056 EXT_SCAN EQU PHK+1 ; BASE CODE FOR SCAN CODES
; EXTENDING BEYOND B3
= OOFF AND_MASK EQU OFFH ; USED TO SELECTIVELY REMOVE BITS
= 001F CLEAR_FLAGS €QU AND_MASK — (FN_FLAG+FN_BREAK+FN_PENDING)
; SCAN CODES
= 0030 B_KEY EQU a8
0010 Q_KEY EQU 16
0019 P_KEY EQU 25
0012 E_KEY €Qu 18
001F S_KEY EQU 31
0031 N_KEY EQU 49
0048 UP_ARROW €QU 72
0050 DOWN_ARROW EQU 80
0048 LEFT_ARROW EQU 75
0040 RIGHT_ARROW EQu 77
000C MINUS €aQu 12
000D EQUALS EQU 13
= 0008 NUM_O EQu 11
;NEW TRANSLATED SCAN CODES
NoTE:
i BREAK, PAUSE, ECHO, AND PRT_SCREEN ARE USED AS OFFSETS
i INTO THE TABLE ‘SCAN’. OFFSET = TABLE POSITION + 1.
i
0001 ECHO EQU o1 -
0002 BREAK €Qu 02
0003 PAUSE €au 03
0004 PRY_SCREEN EQU 04
0046 SCROLL_LOCK EQu 70
0045 NUM_LOCK EQU 69
0047 HOME EQu 71
004F END_KEY £Qu 79
0049 PAGE_UP EQU 73
= 0051 PAGE_DOWN EQU 81
= 004A KEYPAD_MINUS EQU 74
= 004E KEVPAD_PLUS £QU

ASSUME CS:CODE, DS DATA
----- TABLE OF VALID SCAN CODES

1069 KBO LABEL BYTE
1069 30 10 12 19 iF 31 0B B_KEY, Q_KEY, E_KEY, P_KEY, S_KEY, N_KEY
106F 48 50 48 4D 0OC DB UP ARROH DOWN_ARROW, LEFT_ARROW, RIGHT_ARROW, MINUS
1074 00 DB EQUALS
= 000C KBOLEN EQU $ - KBO
;=—=-TABLE OF NEW SCAN CODES
1075 KB1 LABEL BYTE
1075 02 03 01 04 46 45 0B BREAK, PAUSE, ECHO, PRT_SCREEN, SCROLL_LOCK, NUM_LOCK
1078 47 4F 49 51 4A 4E 0B HOME, END _KEY, PAGE, UP PAGE_DOWN, KEYPAD_MINUS, KEYPAD_PLUS

;NDTE: THERE 1S A ONE TO ONE CORRESPONDENCE BETWEEN
THE SIZE OF KBO AND KB1.

;YAELE OF NUMERIC KEYPAD SCAN CODES
THESE SCAN CODES WERE NUMERIC KEYPAD CODES ON
THE 83 KEY KEYBOARD.

1081 NUH |_CODES LABEL BYTE
1081 4F S0 51 48 4C 40 0B 79,80,81,75,76, 77 71,72,73,82
47 48 49 52

; TABLE OF SIMULATED KEYSTROKES
THIS TABLE REPRESENTS A 4%2 ARRAY. EACH ROW
CONSISTS OF A SEQUENCE OF SCAN CODES WHICH
WOULD HAVE BEEN GENERATED ON AN 83 KEY KEYBOARD
TO CAUSE THE FOLLOWING FUNCTIONS:
ROW 1=ECHO CRT OUTPUT TO.THE PRINTER
ROW 2=8REAK
THE TABLE HAS BOTH MAKE AND EREAK SCAN CODES.

1088 CAN LABEL BYTE
1088 1D 37 B7 90 b8 29,55, 183, 187 ; CTRL + PRTSC
108F 1D 46 Cé 90 DB 29,70, 198, 157 ; CTRL 4 SCROLL-LOCK

ROM BIOS A-37

1093

1093 35 28 34 1A 18

= 0005

1098
1098

1090
1090
109€

1082

10C6
10C6
10C7
10C8
10ce
10C0

1000
1002

1003
1005
1007
1009
1008

1000
100E
10EQ

10E2

10E6
10€9

10EA
10EC
10EE
10FO

A-3

2B

14

29 37 28 29

0048 0049 004D 0051
0050 004F 004B 0047
0039 001C
0011 0012 QOIF 0020
002C 0028 001E 0010
000F 0001

F8
E8

B8A
[}

8

1388 R
131E R

01

Fé
DE

3E 0124 R

8A QD

ROM BIOS

TABLE OF VALID ALT SHIFT SCAN CODES

THIS TABLE CONTAINS SCAN CODES FOR KEYS ON THE

62 KEY KEYBOARD THESE CODES ARE USED IN
COMBINATION WITH THE ALT KEY TQO PRODUCE SCAN CQDES
FOR KEYS NOT FOQUND ON THE 62 KEY KEYBOARD

'ﬁLT _TABLE LABEL BYTE

ALT_LEN

08 53, 40,52, 26,27
EQU & - ALT_TABLE

; TABLE OF TRANSLATED SCAN CODES WITH ALT SHIFT

THIS TABLE CONTAINS THE SCAN CODES FOR THE
KEYS WHICH ARE NOT ON THE 62 KEY KEYBOARD AND
WILL BE TRANSLATED WITH ALT SHIFT. THERE IS A
ONE TO ONE CORRESPONDENCE BETWEEN THE S1ZES
OF ALT_TABLE AND NEW_ALT
THE FOLLOWING TRANSLATIONS ARE MADE:
ALT+ 7 B\
ALT+ ¢
ALT+
ALT+ 1
ALT+

LABEL BYTE
DB 43,41,55,43,41

TABLE OF SCAN COOES FOR MAPPING EXTENDED SET

OF SCAN CODES (SCAN CODES > 85). THIS TABLE

ALLOWS OTHER DEVICES TQ USE THE KEYBOARD INTERFACE

IF THE DEVICE GENERATES A SCAN CODE > B85 THIS TABLE

CAN B8E USED 7O MAP THE DEVICE TQ THE KEYBOARD. THE
DEVICE ALSO HAS THE OPTION OF HAVING A UNIQUE SCAN

CODE PUT IN THE KEYBOARD BUFFER (INSTEAD OF MAPPING

TO THE KEYBQARD). THE EXTENDED SCAN CODE PUT IN THE
BUFFER WILL BE CONTINUQUS BEGINNING AT 150. A ZERO
WILL BE USED IN.PLACE OF AN ASCII CODE. (E.G. A

DEVICE GENERATING SCAN CODE 86 AND NOT MAPPING 86

TO THE KEYBOARD WILL HAVE A [150,0] PUT IN THE

KEYBOARD BUFFER)

TABLE FORMAT:

THE FIRST BYTE IS A LENGTH INDICATING THE NUMBER

OF SCAN CODES MAPPED TO THE KEYBOARD. THE REMAINING
ENTRMES ARE WORDS. THE FIRST BYYE (LOW BYTE) IS A

SCAN CODE AND THE SECOND BYTE (HIGH BYTE) IS ZERO

A DEVICE GENERATING N SCAN CODES IS ASSUMED TO GENERATE THE
FOLLOWING STREAM B6,B7,B8, ... ,86+(N-1). THE SCAN CODE 8YTES
IN THE TABLE CORRESPOND TO THMIS SET WITH THE FIRST DATA
BYTE MATCHING 86, THE SECOND MATCHING 87 ETC

NOTES:

{1) IF A DEVICE GENERATES A BREAK CODE, NOTHING IS

PUT IN THE BUFFER
{2) A LENGTH OF O INDICATES THAT ZERO SCAN CODES HAVE BEEN
MAPPED TO THE KEYBOARD AND ALL EXTENDED SCAN CODES WILL
BE USED.
A DEVICE CAN MAP SOME OF ITS SCAN CODES TO THE KEYBOARD

3
AND HAVE SOME |TS SCAN CODES IN THE EXTENDED SET

LASEL BYTE
-] 20 ; LENGTH OF TABLE

oW 72,73,77,81,80,79,75,71,57,28

oW 17, 18,31, 45, 44, 43, 30, 16, 15, 1

KEY62_INT PROC FAR

KBXO0:

T

cLD : FORWARD DIRECTION

CALL 1] SET UP ADDRESSING

MoV AH, AL SAVE SCAN CODE

caLL TPM ADJUST OUTPUT FOR USER
MODIFICATION

JNC KBX0 JUMP IF OK TO CONTINUE

IRET RETURN FROM INTERRUPT

; ----EXTENDED SCAN CODE CHECK

cHP AL, OFFH ; 1S THIS AN OVERRUN CHAR?

JE KBO_1 PASS IT TO INTERRUPT 9

AND AL, AND_MASK-BREAK_BIT ; TURN QFF BREAK BIT

cHP aL, EXT _scan ; 1S THIS A SCAN CODE > 83

JL KBX. ; REPLACE BREAK BIT
----- SCAN CODE IS IN EXTENDED SET

PUSH 0S

XOR s1,81

MoV 0s, SI

ASSUME DS: ABSO

LES DI,0WORD PTR EXST ; GET THE POINTER TO THE EXTENDED

; SET
MoV CL,BYTE PTR ES: 011 ; GET LENGTH 8YTE
POP oS

ASSUME 0S:DATA

;=---DOES SCAN CODE GET MAPPED TOQ KEYBOARD OR TO NEW EXTENDED SCAN

CODES?
suB AL, EXT_SCAN ; CONVERT TO BASE OF NEW SET
DEC cL ; LENGTH - 1
CMP AL, CL ; 15 CODE IN TABLE?
J6 KBX1 ; JUMP 1F SCAN CODE IS NOT IN TABLE

112A

112F
1134
1138
1137
1138
113C
113F
1141

1143
1145
1147
114C
114€
1153
1158
1188

1188
1150
1iSF

1164
1166
1168
1160

1170
1172
1174
1179

1178
117¢

1170
1180
1183
118%
1187
118A
118C

1191
1193
1194
1190
119F

11a1
11A4
11A6
11AB
11A0
11AF
1183

1184
1186
1188
1188
1180

11€2
1ic7

11c8
11cD
11CF
1104
1108
11DA

BF
89

[1:}
FF

€3
F8
8A 05
56
3a

€4 80
01

€4 40
co

1€ 001C
F3

144F R
1€ 001A
19

0080
0048
EO035 R
26 0017
26 0018
26 0088

04
1E 001C

€4 80

ca
EO

06 0017
06 0017

1268 R
125C R

37
06 0017

F2
06 0017
EB

1301 R
EO

06 0017
39

1093 R
0005

F2/ AE

75
89

20
1094 R

28 F9

2E:

8A
80
F6
74
oc

8A 85 1098 R

1E 0017
36 00417
C4a BO

0E 0017

1E 0017

€4 BO

26 0088

©OE 0088

06 0088
26 0088

OE 0088

R

Fo

OF

04

08

03

04

1]

o

02

A0

20
1F

40

----- GET SCAN CODE FROM TABLE
INC

“ov BX, AX

XOR BH, BN

SHL BX, 1

ADD Dl,BX

MOV AL,BYTE PTR ES: [0
CMHP AL, EXT_SCAN

JL KBX4 :
SCAN CODE GETS MAPPED TO EXTI

KX 1:

TEST AH, BREAK_BIT ;
Jz KBX2 ;
IRET :
KBX2: ADD AH, 64 ;
XOR AL, AL i
MoV 8X, BUFFER_TAIL
MOV S1,8X ;
cALL Ka ;
cnn 8X, BUFFER_HEAD
KBx3 ;
;——--BUFFER IS FULL, BEEP AND CLE
MoV 8X, 80H ;
MoV CX, 48H i
cALL KB_NO1SE ;
AND KB_FLAG, OFOH ;
AND KB_FLAG_1,OFH ;
AND KB_FLAG_2, IFH
1REY i
KBX3: MOV [s11, Ax ;
MoV BUFFER_TAIL,BX
1REY :
KBX4: AND AH, BREAK_B1T ;
oR AL, AH ;
MoV AH, AL
; 3 KEY KEYBOARD FUNCTIONS SH
KBO_1: CMP AL, NUM_KEY
JNE xB0_3 ;
TEST K8_FLAG, CTL_SHIFT
Jz KB0_2
TEST KB_FLAG, ALT_! SHIFT ;
JINZ KB0_2 ;
JMP KB16_1 ;

POINT DI PAST LENGTH BYTE

PREPARE FOR ADDING TO 16 BIT
REGISTER

OFFSET TO CORRECT TABLE ENTRY
1 ; TRANSLATED SCAN CODE IN AL

1S CODE IN KEYB8OARD SET?

IN KEYBOARD SET, CHECK FOR BREAK
ENDED SCAN CODES

1S THIS A BREAK CODE?

MAKE CODE, PUT IN BUFFER

BREAK CODE, RETURN FROM INTERRUPT
EXTENDED SET CODES BEGIN AT 150
ZERO OUT ASCII VALUE (NUL)

GET TAIL POINTER

SAVE POINTER TO TAIL

INCREMENT TAIL VALUE

1S BUFFER FULL?

PUT CONTENTS OF AX IN BUFFER
AR FLAGS

FREQUENCY OF BEEP

DURATION OF BEEP

BUFFER FULL BEEP

CLEAR ALT, CTRL, LEFT AND RIGHT
SHIFTS

CLEAR MAKE OF INS, CAPS_LOCK, NUM
AND SCROLL

CLEAR FUNCTION STATES

DONE WITH INTERRUPT
PUT CONTENTS OF AX
ADVANCE BUFFER TAIL
RETURN FROM INTERRUPT

MASK BREAK BIT ON ORIGINAL SCAN
UPDATE NEW SCAN COOE

SAVE AL IN AH AGAIN
IFT+PRTSC AND CTRL+NUMLOCK

1S THIS A NUMLOCK?

CHECK FOR PRTSC

; 18 CTRL KEY BEING HELD DOWN?
NUMLOCK WITHOUT CTRL, CONTINUE
IS ALT KEY HELD CONCURRENTLY?
PASS IT ON
PUT KEYBOARD IN HOLD STATE
CONTINUE WITH INTERRUPT 48H

IN BUFFER

1S THIS A PRTSC KEY?
NOT A PRTSC KEY

TEST KB FLAG LEFT_SHIFT+RIGHT_SHIFT ; EITHER SHIFT
; ACTIVE?
Jz KBO_2 ; PROCESS SCAN IN INTS
TEST KB_FLAG, CTL_SHIFT ; IS THE CTRL KEY PRESSED?
INZ XB0O_2 ; NOT A VALID PRTSC (PC COMPATISLE)
JHP PRTSC ; HANDLE THE PRINT SCREEN FUNCTION
; -~=-ALTERNATE SHIFT TRANSLATIONS
KB1_L: MOV AH, AL ; SAVE CHARACTER
AL, AND_MASK - BREAK_BIT ; MASK BREAK 81T
KB_FLAG, ALT_SHIFT ; TS THIS A POTENTIAL TRANSLATION
KB2
uP
cs
€S ; INITIALIZE SEGMENT FOR TABLE LOOK
; UP
MoV DI,OFFSET ALT_TABLE
MoV CX, ALT_LEN GET READY FOR TABLE LOOK UP
REPNE SCASB ; SERACH TABLE "
JNE K82 ; JUMP IF MATCH IS NOT FOUND
MOV CX,OFFSET ALT YABLE + 1
suB D1, Cx UPDATE DI TO INDEX SCAN CODE
MOV AL, CS: NEW ALT[DIJ ; TRANSLATE SCAN CODE
; ===—-CHECK FOR BREAK CODE
MOV 8L, KB_FLAG SAVE KB_FLAG STATUS
XOR KB_FLAG, ALT smrr ; MASK OFF ALT SHIFT
TEST AH, BREAK_BIT ; 15 THIS A BREAK CHARACTER?

Jz KB81_2 ;

OR AL, BREAK_BIT
;----MAKE CODE, CHECK FOR SHIFT §
KB1_2: CMP 01,3 ;

JL Ke1_3 ;

oR KB_FLAG, LEFT_SHIF
KB1_3: OUT KBPORT, AL

INT 9H ;

MOV KB_FLAG, BL ;

IRE

T
..... FUNCTION KEY HANDLER

KB2: cHP AL, FN_KEY ;
INZ K84 ;
TEST AH, BREAK_BIT ;
INZ K83 ;
AND KB_FLAG_2, CLEAR_F|
orR KB_FLAG_2, FN_FLA
IRET

; ----FUNCTION BREAK

KB3: TEST K8, FLAG _2, FN_PEND
INZ K83_
AND KB, FLAG _2, CLEAR_F|
IRET

KB3_1: OR KB_FLAG_2, FN_BREA

KB3_2: IRET

JUMP IF SCAN 1S A MAKE

SET BREAK BIT
EQUENCE

IS THIS A SHIFT SEQUENCE
JUMP IF NOT SHIFT SEQUENCE
T ; TURN ON SHIFT FLAG

ISSUE INT TO PROCESS SCAN CODE
RESTORE ORIGINAL FLAG STATES

CHECK FOR FUNCTION KEY
JUMP IF NOT FUNCTION KEY
1S THIS A FUNCTION BREAK
JUMP IF FUNCTION BREAK
LAGS ; CLEAR ALL PREVIOUS
FUNCTIONS
G + FN_PENDING

RETURN FROM INTERRUPT

ING
JUMP IF FUNCTION IS PENDING
LAGS ; CLEAR ALL FLAGS

K , SET BREAK FLAG
RETURN FROM INTERRUPT

ROM BIOS A-39

>
o
=)
2
Ded
o
bl
>

1108
1100
11DF

11E4

11E6
11€EB
11ED
11EF
11F1
11F3

L11FS
11F7
11FA
11FC

LIFF
1201
1203
1205

1207
1209
1208
1200

120F
1232
1214

1219
1218

1220

1222
1227
1229
122€
1233

1234
1236

1238
1239
1234
1230
1240
1242

1244
1249

1248
124E

1250
1258

1254
125C
125C
125€
1260
1260

1261
1263
1265
126A
126C
126F

1271

1276
1279

1278
1270
127F
1201
1283
1205
1287
1289
1288
1290
1292

1296
1298
1290
1290
12A2

75

Fé
74
a0
80
CF

04
EB

OE
07

55
FB
06

21

06
36
26

3a
3E

008B R 30

0017 R 20

BO

ooes

0088

0017

0088
ooss

BF 1069 R
B9 000C
F2/ AE

74

Fé
74

Fé
75

80
ce

8A

E6
co

CF

A-40

10

06
oF

ca
oA

26
06

ca

€0
09

8A 85 1075 R

Ccq
35

a5
04
46
o8
80
60
09
IF

R

a0

40

03

10
IF

0088 R 40

80

0086 R IF
0087 R 00

0017 R 08

80

06 0088 R 40

11
06 0087 R

[3:]

26 0088 R IF

06 0087 R 00

ROM BIOS

----- CHECK 1F FUNCTION FLAG ALREAD

KB4: CHp AL, PHK ;
Jz KB3_2 ;
KB4_O: TEST KB_FLAG_2,FN FLAG&

INZ K85 ’
----- CHECK IF NUM_STATE 1S ACTIVE

YEST KB_FLAG, NUM_STATE
Jz KBd_1 ;
cuP AL, NUM_0 i
JA KBd_1 i
DEC AL ;
;----arNSLATE SCAN cooz TO NUMERI
OEC aL ;
MoV BX, OFFSET NUM_CODE!
XLAT €S: NUM_CQDES
AND AH, BREAK_BIT ;
oR AL, aH ;
JMP SHORT CONT_INT
KB4_1: MOV aL, AH ;
JMP SHORT CONT_INT

;--—=CHECK FOR VALID FUNCTION KEY

KBS: CcMP AL, NUM_O i
JA K87 ;
DEC AL H
JINZ KB6 ;
;-~—-ESCAPE KEY, LOCK KEYBOARD IN
TEST AH, BREAK_B1T
JNZ KB8
TEST KB_FLAG_2,FN FLAG
Jz H
TEST KB_FLAG_Z,FN_BREAK
JNZ K88
TEST KB_FLAG, LEFT_SHIFT
Jz KB
XOR KB_FLAG_2,FN, LOCK
AND KB_| _FLAG_2, CLEAR_FL
IRET
;--=-SCAN CODE IN RANGE 1 -> 0
KB6: ADD AL, 58
JMP SHORT KB12
;-=-—CHECK TABLE FOR OTHER VALID S
KB7: PUSH cs
POP ES R
MoV DI, OFFSET KBO
MOV CX, KBOLEN i
REPNE SCASS ;
JE KB10O B
; ~---1LLEGAL CHARACTER
xB8 TEST KB_FLAG_2, FN_BREAK
Jz KB9 ;
TEST AH, BREAK_BIT
INZ K89 i
KB8S AND K8_FLAG_2, CLEAR FL
MoV CUR_FUNC, 0 i
;----FUNCTION BREAK IS NOT SET
Ke9: MOV AL, AH i
CONT_INT:
out KBPORT, AL
INT 9H S
RET_INT
IRET
;-=--BEFQRE TRANSLATION CHECK FOR
KB10 cHpP AL, N_KEY :
JNE KBIO 1
TEST KB_FLAG, ALT SHIFT
Jz K88
KB10_1: MOV CX, OFFSET KBO + 1
sua ot, cx ;
MOV AL, CS:KBL[(DI)
;=~-=TRANSLATED CODE IN AL OR AN 0
KB 12 TEST AH, BREAK_B1T
Jz K813
; -—-=-CHECK FOR TOGGLE KEY
AL, NUM_LOCK ;
Jz KB12_1 ;
cMp AL, SCROLL_LOCK
INZ KB12_2 ;
KB12_1: OR aL, 80H :
ouT KBPORT, AL
INT 9H
AND AL, AND_MASKSBREAK
KB12_2: TEST KB_FLAG_2, FN_BREAK
Jz KB12_3 - B
CHP AL, CUR_FUNC ;
JNE RET_INT
AND KB FLAG _2,CLEAR FL
KB12_20
MoV CUR_FUNC, 0
IRET

Y SET

1S THIS A PHANTOM KEY?

JUMP [F PHANTOM SEQUENCE
FN_LOCK ; ARE WE IN FUNCTION
STATE?

JUMP IF NQT IN NUM_STATE

ARE WE IN NUMERIC KEYPAD REGION?
JUMP IF NQT IN KEYPAD

CHECK LOWER BOUND OF RANGE
JUMP IF NOT IN RANGE (ESC KEY)
C KEYPAD

AL 1S OFFSETY INTO TABLE

S

NEW SCAN CODE IS IN AL

1SOLATE BREAK BIT ON ORIGINAL
SCAN CODE

UPDATE KEYPAD SCAN CODE
CONTINUE WITH INTERRUPT

GET BACK BREAK BIT IF SET

CHECK FOR RANGE OF INTEGERS
JUMP IF NOT IN RANGE
CHECK FOR ESC KEY (=1)
NOT ESCAPE KEY, RANGE OF INTEGERS
FUNCTION LOCK
1S THIS A BREAK CODE?
NO PROCESSING FOR ESCAPE BREAK
; TOGGLES ONLY WHEN FN HELD
CONCURRENTLY
NOT HELD CONCURRENTLY

; HAS THE FUNCTION KEY BEEN
RELEASED?
CONTINUE IF RELEASED. PROCESS AS
+RIGHT_SHIFT ; EITHER SHIFT?
NOT HELD DOWN

TOGGLE STATE
AGS ; TURN OFF OTHER STATES
RETURN FROM INTERUPT

GENERATE CORRECT SCAN CODE
CLEAN-UP BEFORE RETURN TO KB_INT
CAN CODES

ESTABLISH ADDRESS OF TABLE
BASE OF TABLE

LENGTH QF TABLE

SEARCH TABLE FOR A MATCH
JUMP |F MATCH

; HAS BREAK OCCURED?
FUNCTION KEY HAS NOT BEEN
RELEASED
IS THIS A BREAK OF AN ILLEGAL
DON’T RESET FLAGS ON ILLEGAL
BREAK
AGS ; NORMAL STATE
RETRIEVE ORIGINAL SCAN CODE

RETRIEVE ORIGINAL SCAN COQDE

1SSUE KEYBOARD INTERRUPT

ALT+FN+N_KEY AS NUM LOCK

IS THIS A POTENTIAL NUMLOCK?
NOT A NUMKEY, TRANSLATE IT

; ALT HELD DOWN ALSO?

TREAT AS ILLEGAL COMBINATION
GET OFFSET TO TABLE

UPDATE INDEX TO NEW SCAN CODE
TABLE

MOV NEW SCAN CODE INTO REGISTER
FFSET TO THE TABLE "SCAN"

A BREAK CHAR?

MAKE CODE

1S THIS
JUMP |F

A NUM LOCK?
TOGGLE KEY

A SCROLL LOCK?
NOT A TOGGLE KEY
BREAK BIT

15 THIS
JUMP 1F
1S THIS
JUMP IF
TURN ON

TOGGLE STATE

_BIT ; TURN OFF BREAK BIT

HAS FUNCTION BREAK OCCURED?
JUMP-|F BREAK HAS NOT OCCURED
IS THIS A BREAK OF OLD VALID
FUNCTION

ALLOW FURTHER CURRENT FUNCTIONS
AGS

CLEAR CURRENT FUNCTION
RETURN FROM [NTERRUPT

12A3 3A 06 0087 R KB12_3: CHP AL, CUR_FUNC ; 18 THIS B8REAK OF FIRST FUNCTION?

12a7 75 B7 JNE RET_INT ; 1GNORE
12A9 80 26 0088 R DF AND KB_FLAG_2, AND_MASK-FN_PENDING ; TURN OFF PENDING
; FUNCTION
12AE EB ED) JMP KB12_20 ; CLEAR CURRENT FUNCTION AND RETURN
;----VALID MAKE KEY HAS BEEN PRESSED
1280 F6 06 0088 R 40 KB13 TEST KB_FLAG_2,FN_BREAK ; CHECK IF FUNCTION KEY HAS BEEN
; PRESSED
1285 74 0D Jz KB14_1 JUMP IF NOT SET
;----FUNCTION BREAK HAS ALREADY OCCURED
1287 80 3E 0087 R Q0 cmP CUR_FUNC, 0 ; 1S THIS A NEW FUNCTION?
128C 74 06 Jz KB14_1 ; INITIALIZE NEW FUNCTION
12BE 38 06 0087 R cMpP CUR_FUNC, aL ; 1S THIS NON-CURRENT FUNCTION
12¢2 75 acC UNZ K8es L JUMP IF NO FUNCTION IS PENDING

TO RETRIEVE ORIGINAL SCAN CODE
----- CHECK FOR SCAN CODE GENERATION SEQUENCE

12c4 A2 0087 R KB14_1: MOV CUR_FUNC, AL , INITIALIZE CURRENT FN
12¢7 3C 04 KB16 cup AL, PRT_SCREEN ; IS THIS A SIMULATED SEQUENCE?
12C9 7F 91 6 CONT_INT ; JUMP IF THIS IS A SIMPLE
; TRANSLATION
12CB 74 34 9z PRTSC ; DO THE PRINT SCREEN FUNCTION
12¢0 3C 03 cnp AL, PAUSE ; 1S THIS THE HOLD FUNCTION?
12CF 74 1A KB16_1 . DO THE PAUSE FUNCTION
-'——BREAK OR ECHO
1201 FE C® DEC AL ; POINT AT BASE
1203 00 €0 SHL AL, 1
1205 DO EO SHL AL, 1 ; MULTIPLY BY 4
1207 98 cBw
1208 2E: 80 36 1088 R LEA S1,5CAN ; ADDRESS SEQUENCE OF SIMULATED
. KEYSTROKES
1200 03 FO ADD S1, ax ; UPDATE TO POINT AT CORRECT SET
120F B9 0004 MoV cx,a . LOOP COUNTER
12€2 GENERATE :
1262 2E: AC LObS Scan ; GET SCAN CODE FROM TABLE
12E4 E6 60 out KBPORT, AL
12E6 CD 09 INT 9H ; PROCESS IT
128 E2 F8 LOOP GENERATE . GET NEXT
1264 CF IRET :
;----PUT KEYBOARD IN HOLD STATE
1268 F6 06 0018 R 08 KB16_1: TEST KB_FLAG_1, HOLD_STATE ; CANNOT GO IN HOLD STATE IF
; 1TS ACTIVE
12F0 75 OE INZ KB16_2 ; DONE WITH INTERRUPT
12F2 80 OE 0018 R 08 oR KB_FLAG_1, HOLD_STATE ; TURN ON HOLD FLAG
12F7 E4 A0 IN AL, NMI_PORT ; RESET KEYBOARD LATCH
12F9 F6 06 0018 R 08 HOLD TEST KB FLAG_1, HOLD_STATE ; STILL IN HOLD STATE?
12FE 75 F9 INZ HOLD ; CONTINUE LOOPING UNTIL KEY 1S
PRESSED
1300 CF KB16_2: IRET . RETURN FROM INTERRUPT 48H
;==--PRINT SCREEN FUNCTION
1301 F6 06 0018 R 08 PRTSC: TEST KB_FLAG_1,HOLD_STATE ;, IS HOLD STATE IN PROGRESS?
1306 74 06 Jz KB16_3 OK TO CONTINUE WITH PRTSC
1308 80 26 0018 R F7 AND KB_FLAG_1, OFFH-HOLD_STATE ; TURN OFF FLAG
1300 CF IRET
130E 83 C4 06 KB16_3: ADD sP, 32 ; GET RID OF CALL TO INTERRUPT 48M
1311 07 POP €S . POP REGISTERS THAT AREN'T
; MODIFIED IN INTS
1312 IF POP oS
1313 SA POP oX
1314 59 PoP cx
1315 58 POP BX
1316 E4 A0 IN AL, NM1_PORT ; RESET KEVBOARD LATCH
1318 €D 05 INT SH ; 1SSUE INTERRUPT
1314 58 POP ax
1318 SF POP o1
131C SE POP s1 , POP THE REST
1310 CF IRET
131€ KEY62_INT ENDP
TYPAMATIC

THIS ROUTINE WILL CHECK KEYBOARD STATUS BITS IN KB_FLAG_2
AND DETERMINE WHAT STATE THE KEYBOARD 1S5 IN. APPROPRIATE
ACTION WILL BE TAKEN.
INPUT
AL= SCAN CQDE OF KEY WHICH TRIGGERED NON-MASKABLE INTERRUPT
QUTPUT
CARRY BIT = 1 IF NO ACTION IS TO BE TAKEN
CARRY BIT B O MEANS SCAN CODE IN AL SHOULD BE PROCESSED
FURTHER.
MODIFICATIONS TO THE VARIABLES CUR_CHAR AND VAR_DELAY ARE
MADE ALSO THE PUTCHAR BIT IN KB_FLAG_2 1S TOGGLED WHEN
THE KEYBOARD 1S IN HALF RATE MODE.

131€ PM PROC NEAR
131E 83 PUSH 8X
134F 38 06 0085 R cnr- CUR_CHAR, AL ; 1S THIS A NEW CHARACTER?
1323 74 31 P2 ; JUMP IF SAME CHARACTER
; ———-NEW CHARACTER CHECK FOR BREAK SEQUENCES
1325 A8 80 TEST AL, BREAK_BIT ; 1S THE NEW KEY A BREAK KEY?
1327 74 12 9z TPO ; JUMP IF NOT A BREAK
1329 24 7F AND AL, Q7FH . CLEAR 8REAK BIT
1328 38 06 0085 R cHP CUR_CHAR, aL ; 15 NEW CHARACTER THE BREAK OF
; LAST MAKE?
132F 8A C4 MoV AL aH ; RETRIEVE ORIGINAL CHARACTER
1331 75 05 JINZ ; JUMP IF NOT THE SAME CHARACTER
1333 C6 06 0085 R 00 MoV CUR _CHAR, 00 ; CLEAR CURRENT CHARACTER >
1338 Fe ™ cLc ; CLEAR CARRY 81T -
1339 S8 POP Bx 1
1338 C3 RET RETURN &
=
(o8

>

A4

ROM BIOS A-41

1338 A2 00BS R P
133 60 26 0086 R FO
1343 80 26 0088 R FE
1348 F6 06 0088 R 02

1340 74 €9
134F BO OE 0086 R OF
1354 EG E2

1356 F6 06 0088 R 08 TP
1386 75 28

1380 B8A 1E 0086
1361 80 E3 OF
1364 0A DO

1366 74 oD

13¢8 fFE CB

136A 80 26 0086 R FO
136F 08 1E 0086 R
1373 €8 13

=-INITIALIZE
0: Mov

AND

AND
TEST

OR
JMP

2: TEST
JNZ

A NEW CHARACTER
CUR_CHAR, AL ; SAVE NEW CHARACTER
VARCDELAY, OFOH . CLEAR VARIABLE DELAY
K8_FLAG_2,0FEH , INITIAL PUTCHAR BIT AS ZERO
KB_FLAG_2, INIT_DELAY ; ARE WE INCREASING ‘THE
; INITIAL DELAY?
™ ; DEFAULT DELAY
VAR_DELAY,DELAY_RATE ; INCREASE DELAY BY 2X
SHORT TP

~CHECK IF WE ARE IN TYPAMATIC MODE AND IF DELAY IS OVER

KB_FLAG_2, TYPE_OFF ; IS5 TYPAMATIC TURNED OFF?
TP4 ; JUMP IF TYPAMATIC RATE 1S OFF
6L, VAR_DELAY GET VAR_DEALY

i
i

BL, OFH i MASK OFF HIGH ORDER(SCREEN RANGE)

8L, 8L ; 1S INITIAL DELAY OVER?

w3 ; JUMP 1f DELAY 1S OVER

eL ; DECREASE DELAY WAIT BY ANOTHER

CHARACTER
VAR_DELAY, OFOH

VAR_DELAY, 8L

SHORT TP4

CHECK 1F TIME TO QUTPUT CHAR

i
1378 F6 06 0088 R 04 T TEST KB_FLAG_2, HALF_RATE ; ARE WE IN HALF RATE MODE
1374 74 BC Jz TP ; JUMP IF WE ARE 1N NORMAL MODE
137C 80 36 00BB R 01 XOR KB_FLAG_2, PUTCHAR ; TOGGLE BIT
1381 F6 06 0088 R 04 TEST KB_FLAG_2,PUTCHAR ; IS IT TIME TO PUT OUT A CHAR
1386 75 B8O INZ T ; NOT TIME TO OUTPUT CHARACTER
1388 TPa: ; SKIP THIS CHARACTER
1368 F9 sTC SET CARRY FLAG
1389 58 POP ex
138A C3 RET
1388 ™M ENDP
i
i THMIS SUBROUTINE SETS DS TO POINT TO THE B810S DATA AREA
; INPUT: NONE
; OUTPUT: DS IS SET
i
1388 00S PROC NEAR
1388 S0 PUSH AX
138C 88 0040 MoV AX, 40H
136F BE 08 MoV S, AX
1391 58 POP
1392 €3 RET
1393 o0s ENDP
;=== INT 1A
; TIME_OF_DAY/SOUND SOURCE SELECT
; THIS ROUTINE ALLOWS THE CLOCK TO BE SET/READ.
i AN INTERFACE FOR SETTING THE MULTIPLEXER FOR
; AUDIO SOURCE 1S ALSO PROVIDED
; INPUT
i (AH) =0 READ THE CURRENT CLOCK SETTING
; RETURNS CX = MIGH RORTION OF COUNT
i DX B LOW PORTION OF COUNT
: AL = 0 IF TIMER HAS NOT PASSED 24 HOURS
i SINCE LAST READ. <> O IF ON ANOTHER DAY
P (AH) = 1 SET THE CURRENT CLOCK
i CX = WIGH PORTION OF CQUNT
i OX = LOW PORTION OF COUNT
i (AH) = BOH SET UP SOUND MULTIPLEXER
i AL -(souncs OF SOUND) --> "AUDIO QUT" OR RF MODULATOR
; = 9253 CHANNEL 2
i 01 = CASSETTE INPUT
i 02 = “AUDIO IN" LINE ON 1/0 CHANNEL
i 03 = COMPLEX SOUND GENERATOR CH1P
; NOTE: COUNTS OCCUR AT THE RATE OF 1193180/65536 COUNTS/SEC
i (OR ABOUT 18.2 PER SECOND -- SEE EQUATES BELOW)
ASSUME CS:CODE,DS:DATA
1393 TIME_OF_DAY PROC FAR
1393 F8 ST1 ; INTERRUPTS BACK ON
1394 1E PUSH DS ; SAVE SEGMENT
1395 €8 1388 R CALL 00S
1398 BO FC 80 CHP AH, 80H ; AHZ80
1398 74 2E JE Taa ; MUX_SET-UP
1390 ©0A €4 OR AH, AH ; AH=0
139F 74 07 9z T2 ; READ_TIME
13A3 FE CC 0EC AH ; AH=1
13A3 74 16 9z 13 ; SET_TIME
13A5 FB T STI ; INTERRUPTS BACK ON
1306 IF POP os ; RECOVER SEGMENT
13A7 CF IRET ; RETURN TO CALLER
13A8 FA T2: cLt ; NO TIMER INTERRUPTS WHILE READING
13A9 A0 0070 R MoV AL, TIMER_OFL
13AC C6 06 0070 R 00 MoV TIMER_OFL, 0 ; GET OVERFLOW, AND RESET THE FLAG
1381 8B OE OO6E R MoV CX, TIMER_HIGH
1385 BB 16 006C R HOV DX, TIMER_LOW
1389 EB EA Jnp T1 ; TOD_RETURN
1380 FA T3 cLt ; NO TNTERRUPTS WHILE WRITING
138C B9 16 006C R MOV TIMER_LOW, DX
13C0 89 OE O0O6E R MoV TIMER_HIGH,CX ; SET THE TIME
13C4 C6 06 0070 R 00 MOV TIMER_OFL, 0 ; RESET OVERFLOW
13C9 EB DA JMP T1 ; TOD_RETURN

A-42 ROM BIOS

1300

1300
13DE
130F
13E0
13€E3
13€5
13€7
139
13E8
13ED
13€EF

13F 1
13F1
13F2
13F3
13F4
13F8
13FC
i13FE
1400
1403
1407

1409
140A
140E
1412
1414
1415
1416
1417

141A
1410

iE 001A
1E 00iC

07
144F R
1E 001A
a3

1€ 001A
1E 001C
07

0002

0017 R

T4A: PUSH cx

MoV cL,s H
saL AL, CL ; SHIFT PARM BITS LEFT S POSITIONS
XCHG AL, AH ; SAVE PARM
IN AL, PORT_B ; GET CURRENT PORT SETTINGS
AND AL, 100111118 ; ISOLATE MUX BITS
orR AL, AH ; COMBINE PORT BITS/PARM BITS
ouTt PORT_8B, AL ; SET PORT TO NEW VALUE
POP cx
JMP Tl ; TOD_RETURN

TIME_OF_DAY ENDP

i INT 16 =

KEYBOARD [/0
THESE ROUTINES PROVIDE KEYBOARD SUPPORT

MOV ax, (BX] GET SCAN CODE AND ASC!I CODE

MOV BUFFER_HEAD, BX STORE VALUE IN VARIABLE

; JNPUT
: (AMYZ0 READ THE NEXT ASCI! CHARACTER STRUCK FROM THE
; . KEYBOARD, RETURN THE RESULT IN (AL), SCAN CODE IN
; S (AW
; (AH)=1 SET THE Z FLAG TO INDICATE IF AN ASCII CHARACTER 1S
i AVAILABLE TO BE READ
; (2F)= NO CODE AVAILABLE
; (2F)= COBE 15 AVAILABLE
3 IF 2F = 0, THE NEXT CHARACTER IN THE BUFFER TO BE
: READ 1S IN AX, AND THE ENTRY REMAINS IN THE BUFFER
; (AH)=2 RETURN THE CURRENT SHIFT STATUS IN AL REGISTER
: THE BIT SETTINGS FOR THIS CODE ARE INDICATED IN THE
B THE EQUATES FOR KB_FLAG
; (AH)=S3 SET TYPAMATIC RATES. THE TYPAMATIC RATE CAN BE
. CHANGED USING THE FOLLOWING FUNCTIONS:
i (AL)=0 RETURN TO DEFAULT. RESTORES ORIGINAL
; STATE. 1.E. TYPAMATIC ON, NORMAL INITIAL
: DELAY, AND NORMAL TYPAMATIC RATE
: caLi=z1 INCREASE INITIAL DELAY. THIS [S THE
i DELAY BETWEEN THE FIRST CHARACTER AND
: THE BURST OF TYPAMATIC CHARS.
; (AL)I=2 HALF_RATE. SLOWS TYPAMATIC CHARACTERS
; 8Y ONE HALF
i taL)=3 COMBINES AL=1 AND AL=2. INCREASES
; INITIAL DELAY AND SLOWS TYPAMATIC
; CHARACTERS 8Y ONE HALF
; (ALI=4 TURN OFF TYPAMATIC CHARACTERS. ONLY THE
i FIRST CHARACTER IS HONORED. ALL OTHERS
: ARE 1GNORED
; AL IS RANGE CHECKED. 'IF AL<Q OR AL>4 THE STATE
H REMAINS THE SAME.
: #%#NOTEw®#® EACH TIME THE TYPAMATIC RATES ARE
; CHANGED ALL PREVIOUS STATES ARE REMOVED. 1.E. IF
: THE KEYBOARD 1S IN THE HALF RATE MODE AND YOU WANT
: TO AOD AN INCREASE IN TYPAMATIC DELAY, YOU MUST
i CALL THIS ROUTINE WITH AH=3 AND AL=3.
; (AH)=4 ADJUST KEYBOARD BY THE VALUE IN AL AS FOLLOWS:
; (ALI=O TURN OFF KEYBOARD CLICK.
; tAL)=1 TURN ON KEYBOARD CLICK.
i AL IS RANGE CHECKED. THE STATE 1S UNALTERED IF
; AL < 1,0,
; OUTPUT
; AS NOTED ABOVE, ONLY AX AND FLAGS CHANGED
; ALL REGISTERS RETAINED
KEYBOARD_10 PROC FAR
ASSUME CS5:CODE,DS:DATA
STI , INTERRUPTS BACK ON
PUSH 0s ; SAVE CURRENT 0S
PUSH BX ; SAVE BX TEMPORARILY
CALL ops . POINT DS AT BIOS DATA SEGMENT
oR AH, AH ; AM=O
Jz K1 ; ASCII_READ
DEC aH ; AH=1
Jz K2 ; ASCII_STATUS
DEC AH . AHz2
9z K3 . SHIFT_STATUS
JHP SHORY K3_l
READ THE KEY TO FIGURE OUT WHAT TO DO
, ASCIl1 READ
sTI ; INTERRUPTS BACK ON DURING LOOP
NOP ; ALLOW AN INTERRUPT TO OCCUR
cLt ; INTERRUPTS BACK OFF
MOV 8X, BUFFER_HEAD ; GET POINTER TO HEAD OF BUFFER
cMP BX,BUFFER_TAIL ; TEST END OF BUFFER
9z K1 ; LOOP UNTIL SOMETHING IN BUFFER
CALL K4 , MOVE POINTER TO NEXT POSITION
6

JMP SHORT ~ RET_INT1L
....... asCl1 STATUS

K2: cLt ; INTERRUPTS OFF
MOV B8X,BUFFER_HEAD , GET HEAD POINTER
CMP 8X,BUFFER_TAIL ; IF EQUAL (2=1) THMEN NOTHING THERE
MOV AX, £BX]
STI ; INTERRUPTS BACK ON
POP BX ; RECOVER REGISTER
POP 13 ; RECOVER SEGMENT
RET 2 ; THROW AWAY FLAGS
jmm—— SHIFT STATUS
K3: MOV AL, KB_FLAG , GET THE SHIFT STATUS FLAGS
JmMP SHORT RET_INT16

>
o
B
&
=
=3
=
pg

A-ROM BIOS A-43

1E

1€

a5

141F FE
1421 74
1423 FE
1428 75
1427 0A
1429 75
1428 80
1430 €8
1432 3C
1434 78
1436 80
1438 €8
1430 3C
143F 7F
1441 80
1446 00
1448 08
144C
144C 5B
1440 IF
144E CF
144F .
144F
144F 43
1450 43
1451 38
1455 75
1457 88
1458 c3
145¢C
145C
145C 52
1450 3A
1462 24
= 0008
1464
1464 80
1465 40
1464 02
146C 1B
1€
1474 FF
FF
147C 17
' 09
1484 10
13
1488 04
oc
1494 FF
16
149C OE
FF
14A4 20
14A6
146 SE
64
14AE 66
B4
1486 73
76
14BE FF
148F
148F 1B
36
30
14CE 71
75
o0
67
27
14E7 60
76
2F
14F8 FF
14F9
14F9 18
5€
28
1508 51
55
00
a7
22
1521 7E
56
3F

A-44

0018 R

o018 R

o088 R

0088 R

0082
0080

46

FF
12
10
Q7

ic

€0

74

ROM BIOS

FF

1F

OA
08

FF

[-3%

FF

33
39

72

73
1]

7A
60
FF

FB

04

F1

62

75

34
30

74

64
6C

78

20

63

FF

ADJUST KEV CLICK

OEC
Jz K3_3 ; AH=3, ADJUST TYPAMATIC
DEC AH ; RANGE CHECK FOR AN=4
INZ RET_INT16 ; ILLEGAL FUNCTION CALL
OR T AL, AL ; TURN OFF KEYBOARD CL1CK?
JNZ K3_2 JUMP FQR RANGE CHECXK
AND KB, FL!G 1, AND, HASK CLICK_ON ; TURN OFF CLICK
JMP SHORT RET INT16
K3_2: CHP AL, 1 ; RANGE CHECK
JNE RET_INT16 ; NOT IN RANGE, RETURN
OR K8, FLAG 1,CLICK ON ; TURN ON KEYBOARD CLICK
Jne SHORT RET _INT16
jmm——— SET TYPAMATIC
K3_3: CHP AL, 4 ; CHECK FOR CORRECT RANGE
J6 RET_INT16 ; IF ILLEGAL VALUE IN AL IGNORE
AND KB_FLAG_2,0F1H ; MASK OFF ANY OLD TYPAMATIC STATES
SHL AL, 1 ; SHIFT TO PROPER POSITION
OR KB_FLAG_2, AL
RET_INTI6:
POP ex ; RECOVER REGISTER
POP DS ; RECOVER REGISTER
RETURN TO CALLER
KEVBOARD lO NDP
------- lNCREHENT A BUFFER POINTER
K4 PROC NEAR
INC BX ; MOVE TO NEXT WORD IN LIST
INC 8x
CHP B8X, BUFFER_END ; AT END OF BUFFER?
JINE KS ; NO, CONTINUE
L1 B8X,BUFFER_START ; YES, RESET TO BUFFER BEGINNING
KS: RET
K4 ENDP
Fintntatuiniel TABLE OF SHIFT KEYS AND MASK VALUES
K6 LABEL 8YTE
[1:] INS_KEY ; INSERT KEY
[1:3 CAPS, _KEY, NUM_} KEV SCROLL_KEY, ALT_KEY, CTL_KEY
[1:] LEFT_KEY RIGHT KEV
K6L EQU $-Ké
i == SHIFT_MASK_TABLE
K7 LABEL BYTE
o8 INS_SHIFT ; INSERT MODE SHIFT
[1:} CAPS, SHIFT NUM SHIFT SCROLL_SHIFT, ALT_SHIFT, CTL_SHIFT
[.1:} LEFT_SHIFT, RIGNT SHIFT
jom———— SCAN CODE TABLES
K8 27 ,-1,0,-1,-1,-1,30,-1
oB -1,-1,-1,31,-1, 127,-1, 17
oe 23,5, 18,20,25%,24,9,15
[1:] 16,27,29,10,-1,1,19
0B 4,6,7,8,10,11,12,-1,~1
[1:] -1,-1,28,26,24,3,22,2
1} 14,13,-1,-1,-1,-1,-1,-1
[]:] s, =1
s m——— CTL TABLE SCAN
K9 LABEL BYTE
oe 94,95, 96, 97, 98, 99, 100, 101
08 102, 103, -1,-1, 119, -1, 132, -
[]:3 115,-1,116,-1,117,-1,118,-1
oe -1
jom———— LC TABLE
Ki0 LABEL BYTE
08 ©O1BH, ‘' 1234567890-="', 0BH, 09H
[1:} ‘qwertyuiop{l’,0DH, -1, ‘asdfghjkl; ’, 027H
oe 60H, -1,5CH, ‘zxcvbnm, . 7/, -1, *®*, -1, * *
oB -1
jmmm——— UC TABLE
K11 LABEL BYTE
o8 27, 11088°,37, 0SEH, ‘&#()_+/,08H,0
o8 ‘QWERTYUIOP{}‘,6ODH, -1, ‘ASDFGHJUKL: "’
[1:] 07€H, -1, * {ZXCVBNM<>?7,-1,0,-1, ' *, =1

1533
1533

153a

1530
1530
1542

1547
1547

1854
1554

1558

1561
1561
1562
1563
1564
1565
1566
1567
1568
1569
156a
1568
156E

1570
1572
1574
1877
i57a
1870

1582

1587
158C

158F
158F
1591
1592
1593
1596
1599

1598
1590
159F

1542
1546
15AB
1540

15AF
1582

1584
1588

158B
1588
15C0
15C2
16C4
15C6
15c8
15CD
1502
1504
1509
1508
1508
15DE
1SE1
15E1
15€6
15€8
15E8
15eC
15€E

15F2
15F6
15F8
1S5FA
15F0

55 56 57 58 59

5C SD

69
6E

6A
6F

6B
70

6C
71

34
33

35
30

38
28

39
31

20
32

48 49 FF 48

1388 R
EO

FF

18

0080

0048

€035 R

26 0017 R FO

26 0018 R OF

26 0088 R 1F
164A R

7F

145C R
0008

F2/ AE

a8A
74
E9

81

2E:

75

80

ca
03
163A R
EF 1450 R
BA A5 1464 R
8o
51

FC 10

73 07

08
E9

26 0017 R
164A R

06 0017 R 04
78
52
22
06 08
[
06
00
o6
oD

0017 R

0017 R 20

0017 R 03

K20:
5230
17€C R
06 0017 R 03
F3

26 0018
5C
26 0018

26 0017 R

UC TABLE SCAN

LABEL BYTE
o8 84,85, 86, 87, 88, 89, 90
L] 91,92,93
ALT TABLE SCAN
LABEL BYTE
08 104, 105, 106, 107, 108
08 109,110, 111,112, 113
NUM STATE TABLE
LABEL BYTE
0B ©789-456+1230.

BASE CASE TABLE
LABEL BYTE
[]:]

71,72,73,-1,75,-1,77

,79,80,81,82,83

KEVEOARD INTERRUPT ROUTINE

PROC

STI ;
PUSH ax

PUSH BX

PUSH cx

PUSH 0X

PUSH s1

PUSH 01

PUSH 0s

PUSH ES

cLo ;
caLL 00S

MOV AH, AL -

TEST FOR OVERRUN

cHp AL, OFFH ;
INZ K16 ;
MoV ax, 80H ;
MoV Cx, 48H i
caLL KB_NO1SE i
AND KB_FLAG, OFOH ;
AND KB_FLAG_1,0FH
AND KB_FLAG_2, IFH
JMP ;
TEST FOR SHIFT KEYS

AND AL, O7FH ;
PUSH cs

POP S ;
MoV DI,QFFSET K6 ;
MOV CX, K6L i
REPNE S§CASB ;
MoV AL, AH i
JE K17 ;
JHP K25 ;

SHIFT KEY FOUND

suB DI,OFFSET K&+1
MoV AH, CS:K7C011 ;
TEST AL, 80H ;
INZ K23

SHIFT MAKE FOUND,
cMp AH, SCROLL_SHIFT
JAE K18 ;

PLAIN SHIFT KEY,

ALLOW FURTHER INTERRUPTS

FORWARD DIRECTION

SAVE SCAN CODE IN AH

SCAN CODE FROM KEYBOARO

1S THIS AN OVERRUN CHAR?

NO, TEST FOR SHIFT KEY
DURATIQON OF ERROR BEEP
FREQUENCY OF TONE

BUFFER FULL BEEP

CLEAR ALT,CLRL,LEFT AND RIGHT
SHIFTS

CLEAR POTENTIAL BREAK OF INS, CAPS
,NUM AND SCROLL SHIFT

CLEAR FUNCTION STATES

END OF INTERRUPT

TEST_SHIFT
TURN OFF THE 8REAK BIT

ESTABLISH ADDRESS OF SHIFT TABLE
SHIFT KEY TABLE

LENGTH

LQOK THROUGH THE TABLE FOR A
MATCH

RECOVER SCAN CODE

JUMP 1F MATCH FOUND

IF NO MATCH, THEN SHIFT NOT FOUND

ADJUST PTR TO SCAN CODE MATCH
GET MASK INTO AH

TEST FOR BREAK KEY
BREAK_SHIFT_FOUND

DETERMINE SET OR TOGGLE

IF SCROLL SHIFT OR ABOVE, TOGGLE

KEY

SET SHIFT ON

orR KB_FLAG, AH ; TURN ON SHIFT BIT
JHP K26 . INTERRUPT_RETURN
TOGGLED SHIFT KEY, TEST FOR 1ST MAKE OR NOT
; SHIFT-TOGGLE
TEST KB_FLAG, CTL_SHIFT ; CHECK CTL SHIFT STATE
INZ K28 ; JUMP IF CTL STATE
cHp AL, INS_KEY ; CHECK FOR INSERT KEY
INZ K22 . JUMP IF NOT INSERT KEY
TEST KB_FLAG, ALT_SHIFT ; CHECK FOR ALTERNATE SHIFT
INZ K25 ; JUMP IF ALTERNATE SHIFT
TEST KB_FLAG, NUM_STATE ; CHECK FOR BASE STATE
INZ K21 JUMP IF NUM LOCK IS ON
TEST KB_FLAG, LEFT_SHIFT+ RIGHT_SHIFT ;
Jz K22 ; JUMP IF BASE STATE
. NUMERIC 2ERO, NOT INSERT KEY
MoV AX, 5230H ; PUT OUT AN ASCI1 ZERO
JMP KS7 ; BUFFER_FILL
; MIGHT BE NUMERIC
TEST KB_FLAG, LEFT_SHIFT+ RIGHT_SHIFT
Jz K20 ; JUMP NUMERIC, NOT INSERT
. SHIFT TQGGLE KEY HIT; PROCESS IT
TEST AM, KB_FLAG_1 . 1S KEY ALREADY DEPRESSED
INZ K26 ; JUMP IF KEY ALREADY DEPRESSED
orR KB_FLAG_1, AH . INDICATE THAT THE KEY IS
; DEPRESSED
X0R KB_FLAG, AH . TOGGLE THE SHIFT STATE
cup AL, INS_KEY ; TEST FOR 1ST MAKE OF INSERT KEY
JNE K26 i JUMP IF NOT INSERT KEY
MoV AX, INS_KEY#256 ; SET SCAN CODE INTO AH, O INTO AL .
JMP K57 ; PUT INTO OUTPUT BUFFER

ROM BIOS A-45

>
T
°©
o
=
=
>
>

1600
1600
1603
1605
1607
1608
160D

160F
1612
1614
i618
161A
161C
161F
161F
1621
1623
1828
162A

162F

1632
1634
1638

163A
163A
163C

163E
1643
1643

164A
164A
1648
164C
1640
164€
164F
1650
1651
1652

1683
1653
1658
1654

1650
1650
1662
1664
1666

1668
166E
1671
1673

1675
1678
167€
1680

1682
1687

1689

16BE
1693
1698
1697
1699

169C
169€

16A4
16A6
16A9
16AB
16AD
16AF

1682
1684
1686
16BA

168C

A-46 ROM BIOS

Fé

Fé6

74 6

75

c?

75

c7

7

06 0018
26 0018
19 90
04

26 001B
10

80
oc

06 001B

26 0018

06 00417
03
1749 R

06 0017
9

53
09

06 0072
0043 R
52

09

06 0072
0043 R
3a

13

06 0018
(-3}

94
06 0089
co

1B7A R

02

FD

08

F?

1]

04

1234

4321

02

04

02

K29_3:

K29 _4:

* AND KB_FLAG, AH

BREAK SHIFT FOUND
; BREAK-SHIFT-FQUND
Cup AH, SCROLL_SHIFT ; 1S THIS A TOGGLE KEY
JAE ; YES, HANDLE BREAK TOGGLE
NOT AH ; INVERT MaASK
; TURN OFF SHIFT BIT
; 1S THIS ALTERNATE SHIFT RELEASE
INTERRUPT_RETURN
ALYERNATE SHlFT KEY RELEASED GET THE VALUE INTO BUFFER

CHpP AL ALT_KEY+80H

MoV AL, ALT_INPUT

XOR AH, AH ; SCAN CODE OF 0

MoV ALT_INPUT, A ; ZERO OUT THE FIELD

oR AL, AL ; WAS THE INPUT=0?

JE K26 ; INTERRUPT_RETURN

JHP K58 ; 1T WASN’T, SO PUT IN BUFFER
; BREAK-TOGGLE

cHp AL, CAFS _KEY+BREAK_BIT ; SPECIAL CASE OF TOGGLE KEY

JNE K24 ; JUMP AROUND POTENTIAL UPDATE

TEST K8_| FLAG 1, CLICK_SEQUENCE

gz K24 ; JUMP IF NOT SPECIAL CASE

AND KB_FLAG_I,AND_HASK CLICK_SEQUENCE ; MASK OFF MAKE
; OF CLICK

NP K26 ; INTERRUPT IS OVER

BREAK OF NORMAL TOGGLE

NOT AH ; INVERT MASK

AND KB_FLAG_1, AH ; INDICATE NO LONGER DEPRESSED

JHP SHORT K26 INTERRUPT_RETURN

TEST FOR HOLD STATE
NO-SHIFT~FOUND

CHP AL, 80H ; TEST FOR BREAK KEY
JAE K26 ; NOTHING FOR BREAK CHARS FROM HERE
;i ON
i
TEST KB_FLAG_1,HOLD_STATE ; ARE WE IN HOLD STATE?
JyzZ x28 ; BRANCH ARQUND TEST IF NOT
AND KB_FLAG_1,NOT HoLD, _STATE ; TURN OFF THE HOLD STATE
817
i
INTERRUPT-RETURN
POP €S
POP oS
POP [*2
POP s1
POP oX
PoP cX
PoOP ex
POP Ax ; RESTORE STAYTE
IRET ; RETURN, INTERRURTS BACK ON WITH

; FLAG CHANGE
NOT [N HOLD STATE, TEST FOR SPECIAL CHARS
; NO-HOLD-STATE
TEST KB_FLAG,ALT_SHIFT ; ARE WE IN ALTERNATE SHIFT
JNZ K29 ; JUMP IF ALTERNATE SHIFT
K38 ; JUMP IF NOT ALTERNATE
TEST FOR ALT+CTRL KEY SEOUENCES

; TEST-RESET

TEST KB_FLAG,CTL_SHIFT ; ARE WE IN CONTROL SHIFT ALSO
Jz K31 ; NO_RESET
CHP AL,DEL_KEY i SHIFT STATE 1S THERE, TEST KEY

K29_1 i _RESET
C'I’L ALT-DEL HAS BEEN FOUND 00 170 CLEANUP
MoV RESET_FLAG, 1234H ; SET FLAG FOR RESET FUNCTION
JMP NEAR PTR RESET ; JUMP TQ POWER ON DIAGNOSTICS

CMP AL, INS_KEY ; CHECK FOR RESET WITH DIAGNOSTICS
JNE K29_2 ; CHECK FOR OTHER

; ALT-CTRL-SEQUENCES
ALT-CTRL-INS ‘HAS BEEN FOUND

nov RESET_FLAG,4321H ; SET FLAG FOR DIAGNOSTICS

JMP NEAR PTR RESET ; LEVEL 1 DIAGNOSTICS

CuP AL, CAPS _KEY ; CHECK FOR KEYBORAD CLICK TOGGLE
JNE K29 ; CHECK FOR SCREEN ADJUSTMENT

ALT'CTRL#CAPSLOCK HAS BEEN FOUND
TEST KB_FLAG_1, CLICK_SEQUENCE

N2 K26 ; JUMP IF SEQUENCE WAS ALREADY
; OCCURED

XOR KB_FLAG_1,CLICK_ON ; TOGGLE 81T FOR AUDIO KEYSTROKE

EDBACK

oR KB_FLAG_1, CLICK s:ou:NcE ; SET CLICK_SEQUENCE STATE

JHP SHORT K26 ; INTERRUPT IS OVER

cHP AL,RIGHT_ARROW ; ADJUST SCREEN TO THE RIGHT?

JNE K29_a ; LOOK FOR RIGHT ADJUSTMENT

cALL GET_POS ; GET THE % OF POSITIONS SCREEN IS
; SHIFTED

cHP AL, O-RANGE ; 15 SCREEN SHIFTED AS FAR AS
; POSSIBLE?

gL K26 ; OUT OF RANGE

DEC HORZ_POS ; SHIFT VALUE TO THE RIGHT

DEC AL ; DECREASE RANGE VALUE

caLL PUT_POS ; RESTORE STORAGE LOCATION

JMNP SHORT K29_5 i ADJUST

cHP AL,LEFT_ARROW ; ADJUST SREEN TO THE LEFT?

JNE K31 ; NOT AN ALT_CTRL SEQUENCE

cALL GET_POS ; GET NUMBER OF POSITIONS SCREEN 1S
; SHIFTED

cHe AL, RANGE ; 15 SCREEN SHIFTED AS FAR AS
; POSSIBLE?

JG K26

INC HORZ_POS SHIFT SCREEN TO THE LEFT

INC aL INCREASE NUMBER OF POSITIONS

SCREEN IS SHIFTED
PUT POSTION BACK IN STORAGE

CALL PUT_POS

168F BO 02 K29_5: movV AL, 2 ; ADJUST

16C1 BA 0304 MOV DX, 3D4H ; ADDRESS TO CRT CONTROLLER
16C4 EE our OX, AL
16C3 A0 0089 R MoV AL, HORZ_POS ; COLUMN POSITION
16C8 42 INC ox ; POINT AT DATA REGISTER
16C9 EE ouTt 0X, AL ; MOV POSITION
16CA E9 164A R JMP K26
jomm—— IN ALTERNATE SHIFT, RESET NOT FOUND
16CD K31: ; NO-RESET
16C0 3C 39 cHP AL, 57 ; TEST FOR SPACE KEY
16CF 75 29 JNE K32 ; NOT THERE
1601 BO 20 MoV aL, ¢ . SET SPACE CHAR
1603 E9 17EC R JHP K57 ; BUFFER_FILL
o--m- ALT-INPUT-TABLE
1606 K30 LABEL BYTE
16D6 52 4F 50 51 4B 4C o8 82,79,80,81,75,76,77
40
1600 47 4B 49 0B 71,72,73 ; 10 NUMBERS ON KEYPAD
e SUPER-SHIFT-TABLE
16€0 ig 11 12 13 14 15 0B 16,17, 18, 19, 20,21, 22,23 ; A-Z TYPEWRITER CHARS
17
16E8 18 19 1E IF 20 21 o8 24,25,30,31,32,33,34,35
22 23
16F0 24 25 26 2C 20 2€ o8 36,37, 38, 44, 45, 46, 47, 48
2F 30
16F8 31 32 oe 49,50
jmmmmem LOOK FOR KEY PAD ENTRY
16FA K32: ; ALT-KEY-PAD
16FA BF 1606 R MoV DI,OFFSET K30 ; ALT-INPUT-TABLE
16FD B9 0004 MoV cx, 10 ; LOOK FOR ENTRY USING KEYPAD
1700 F2/ AE REPNE SCASB ; LOOK FOR MATCH
1702 75 13 JNE K33 ; NO_ALT_KEYPAD
1704 81 EF 1607 R suB 01, 0FFSET K30+1 ; DI NOW HAS ENTRY VALUE
1708 A0 0019 R MoV AL, ALT_INPUT ; GET THE CURRENT BYTE
1708 B4 0A MoV AH, 10 ; MULTIPLY BY 10
1700 F6 E4 MUL AH
170F 03 C7 ADD AX, 01 ADD IN THE LATEST ENTRY
1711 A2 0019 R MoV ALT_INPUT, AL STORE IT AWAY

1714 E9 164A R THROW AWAY THAT KEYSTROKE

JMP K26 ;
------- LOOK FOR SUPERSHIFT ENTRV

1717 K33: ; NO-ALT-KEYPAD
1717 C6€ 06 0013 R 00 MoV ALT_INPUT, 0 ; ZERO ANY PREVIOUS ENTRY INTO
; INPUT
171C B9 001A MoV cx, 26 ; OI,ES ALREADY POINTING
171F F2/ AE REPNE SCASB ; LOOK FOR MATCH IN ALPHASET
1721 75 0% JNE K34 ; NOT FOUND, FUNCTION KEY OR OTHER
1723 32 cO XOR AL, AL ; ASCI1 CODE OF ZERO
172% E9 17EC R JHP K57 ; PUT IT IN THE BUFFER
Fintaiitiad LOOK FOR TOP ROW OF ALTERNATE SHIFT
1728 K3a: ; ALT-TOP-ROW
1728 3C 02 cHp a2 ; KEY WITH ‘1’ ON IV
172A 72 OC J8 K35 ; NOT ONE OF INTERESTING KEYS
172€ 3C OE cMP AL, 14 ; IS IT IN THE REGION?
172€ 73 08 JAE K35 ; ALT-FUNCTION
1730 BO C4 76 ADD AH, 118 ; CONVERT PSUEDO SCAN CODE TO
; RANGE
1733 32 Co XOR AL, AL ; INDICATE AS SUCH
1735 E9 17EC R JuP 7 ; BUFFER_FILL
et TRANSLATE ALTERNATE SHIFT PSEUDO SCAN CODES
1738 K35: ; ALT-FUNCTION
1738 3C 38 cHP AL, 59 ; TEST FOR IN TABLE
173A 73 03 JAE K37 ; ALT-CONTINUE
173C K36: ; CLOSE-RETURN
173C E9 164A R JuP K26 ; 1GNORE THE KEY
173F K37: ; ALT-CONTINUE
173F 3C 47 CHP aL, 71 ; IN KEVPAD REGION
1741 73 F9 JAE K36 ; 1F SO, IGNORE
1743 BB 1530 R MOV BX,OFFSET K13 ; ALT SHIFT PSEUDO SCAN TABLE
1746 E9 1BE3 R JMP . TRANSLATE THAT
jmmm——— NOT IN ALTERNATE SHIFT
1749 K38: ; NOT-ALT-SHIFT
1749 F6 06 0017 R 04 TEST KB_FLAG, CTL_SHIFT ; ARE WE IN CONTROL SHIFT?
174E 74 34 Jz K44 ; NOT-CTL-SHIFT
CONTROL SHIFT, TEST SPECIAL CHARACTERS
; TEST FOR BREAK AND PAUSE KEYS
1750 3C 46 cup AL, SCROLL_KEY ; TEST FOR BREAK
1752 75 19 JNE K41 . ; NO-BREAK
1754 88 1E 001A R MoV 8X, BUFFER_HEAD ; GET CURRENT BUFFER HEAD
1758 C6 06 0071 R 80 MoV BIOS_BREAK,80H ; TURN ON BIOS_8REAK BIT
1750 CD 1B INT 18H ; BREAK INTERRUPT VECTOR
175F 2B CO sus ax, aX ; PUT OUT DUMMY CHARACTER
1761 89 07 MoV [BX1, AX ; PUT DUMMY CHAR AT BUFFER HEAD
1763 E8 144F R cALL K4 ; UPDATE BUFFER POINTER
1766 B9 1E 001C R MOV BUFFER_TAIL,BX ; UPDATE TAIL
1764 E9 164A R JMP K26 ; DONE WITH INTERUPT
1760 K41 ; NO-PAUSE
jmmm——- TEST SPECIAL CASE KEY S5
1760 3c 37 cMP AL, S5
176F 75 06 JNE K42 ; NOT-KEY-55
1771 B8 7200 MoV AX, 114%256 ; START/STOP PRINTING SWITCH
1774 EB 76 90 NP K57 ; BUFFER_FILL

>
k=]
o
o
=
=
>
>

1777
1777
1774
177¢C

177€
1781

1784
1784
1786
1788
1780

178F
1791
1793
1796
1798
1798
1794
179C
179F
17A2
1742
1745

1747
17A7
17AC
17AE

1783

1785
1785
1787
1789
1788
1780
178F
17c2
17¢8
17¢c8
17CA
17¢c0

17CF
17CF
1704
1706
1706
1708
1708

1700
1700
170F
17€1
17E3
17E5
17ES

17E8
178
17€A

17€C
17eC
17EE
17F0
17F3

17F5
17FS
17FA

17FC

1801

1803
1805
1807
1809
1808
1800
180F
180F

1812
1012
1814
1816
1818
1B1A

8B
72

8B
E9

F6

Fé
75

2C

€8

F6
74

F6

74

A-48

146C R

6A

144
186

38

6 R
3 R

1533 R

186
14F
41

06
21
06

21

06
DOF

46

3 R

9 R

0017 R 20

0017 R 03

0017 R 03

1547 R

oB

ce
D7

FF
1F
FC
14

06
20
06

oF

41

5A
11
20
00

164

0017 R 40

0017 R 03

A R

ROM BIOS

SET UP TO TRANSLATE CONTR

novV BX, OFFSET K8 :
[AL, 59 ;
B K56 i
MoV 8X, OFFSET K9 ;
JMP K63

NOT IN CONTROL SHIFT

AL, 71 ;

CMP
JAE K48
TEST KB_FLAG, LEFT, SH]F

Jz K .
UPPER CASE, HANDLE SPECIA

cMp AL, 15 ;
INE K46 ;
MOV AX, 158256 i
JNP SHORT KS§7 i

i
cHP aL, 59 ;
JB K47 ;
MOV BX, OFFSET K12
JMP K63 :
MoV 8X, OFFSET Kil
IMP SHORT KS6

KEYPAD KEYS, HUST TEST NU

TeEsT
JNZ K52 ;
TEST KB_FLAG, LEFT SHIF
INZ K53 -

BASE CASE FOR KEYPAD

cHp AL, 74 ;
JE KS0 ;
CHP aL, 78

JE - KS1

SuB AL, 71 ;
MoV 8X, OFFSET K15

JMP K64 i
MoV AX, 748256+~ *

JHP SHORT K57 :
MOV AX, 7BX256+ /4 '
JMP SHORT KS7 ;
MIGHT BE NUM LOCK, TEST S|

KB_FLAG, LEFT SHlF

TEST

INZ K43 ;
suB AL, 70 :
“ovV BX, OFFSET K14
Jnp SHORT K56 :

PLAIN OLD LOWER CASE

cHp aL, 59 :
J8 KSS ;
XOR AL, AL ;
NP SHORT K57 :
MOV BX, OFFSET K10 :

TRANSLATE THE CHARACTER

oEC aL :
XLAT CS:K1 A
PUT CHARACTER INTO BUFFER

cHP AL, - i
JE KS9 ;
cHP AH, -1 ;

K59
HANDLE THE CAPS LOCK PROB

;
TEST KB_FLAG, CAPS_STAT|
Jz K61 ;
IN CAPS LOCK STATE
TEST KB_FLAG, LEFT_SHIF
i
Jz K&0 H
CONVERT ANY UPPER CASE TO
cHp AL, A’ ;
J8 K61 :
cMP aL, ‘2’
JA K61 ;
ADD AL, ‘a‘~"a’ ;
Jmup SHORT K61 i
JMP K26 ;
CONVERT ANY LOWER CASE TO
cHP AL, ‘a ;
JB Kée1 B
cMP AL, ‘2
JA K61 B
suB AL, ‘a’-’'A’ ;

K8 FLAG NUM STATE H

OL SHIFT

NOT-KEY-5%

SET UP TO TRANSLATE CTL
IS IT IN TABLE?

YES, GO TRANSLATE CHAR
CTL-TABLE-TRANSLATE

CTL TABLE SCAN
TRANSLATE_SCAN

NOT-CTL-SHIFTY

TEST FOR KEYPAD REGION
HANDLE KEYPAD REGION
T+RIGHT_SHIFT

TEST FOR SHIFT STATE

L CASES

BACK TAB KEY

NOT-BACK-TAB

SET PSEUDO SCAN CODE
BUFFER_FILL

NOT-PRINT-SCREEN

FUNCTION KEYS
NOT-UPPER-FUNCTION

UPPER CASE PSEUDO SCAN CODES
TRANSLATE_SCAN
NOT-UPPER-FUNCTION

POINT TO UPPER CASE TABLE
OK, TRANSLATE THE CHAR

M LDCK FOR DETERMINATION
KEYPAD-REGION
ARE WE IN NUM_LOCK?

TEST FOR SURE
T+RIGHT_SHIFT ;
STATE

IF SHIFTED,

ARE WE IN SHIFT
REALLY NUM STATE

BASE-CASE
SPECIAL CASE FOR A COUPLE QF KEYS
MINUS

CONVERT ORIGIN
BASE CASE TABLE
CONVERT TO PSEUDO SCAN
MINUS

BUFFER_FILL

PLUS

BUFFER_FILL
MIFT STATUS
ALMOST-NUM-STATE
T+RIGHT_SHIFT

SHIFTED TEMP OUT OF NUM STATE
REALLY_NUM_STATE
CONVERT ORIGIN

NUM STATE TABLE
TRANSLATE_CHAR

NOT-SHIFT

TEST FOR FUNCTION KEYS
NOT-LOWER-FUNCTION
SCAN CODE IN AH ALREADY
BUFFER_FILL
NOT-LOWER-FUNCT1ON

LC TABLE

TRANSLATE-CHAR
CONVERT ORIGIN
CONVERT THE SCAN CODE TO ASCII

BUFFER-FILL

IS THIS AN IGNORE CHAR?

YES, DO NOTHING WITH IT

LOOK FOR -1 PSEUDO SCAN
NEAR_INTERRUPT_RETURN

LEM

BUFFER-FILL-NOTEST
E ; ARE WE IN CAPS LOCKk STATE?
SKIP IF NOT

T+RIGHT_SHIFT ; TEST FOR SHIFT

STATE

IF NOT SHIFT, CONVERT LOWER TO
UPPER

LOWER CASE

FIND OUT IF ALPHABETIC
NOT_CAPS_STATE

NOT CAPS _STATE

CONVERT TO LOWER CASE
NOT_CAPS_STATE

NEAR INTERRUPT-| -~RETURN
INTERRUPT_RETURN

UPPER CASE
LOWER-TO-UPPER

FIND OUT IF ALPHABETIC
NOT_CAPS_STATE

NOT_CAPS_STATE

CONVERT TO UPPER CASE

181iC
1B1C
1820
1B22
1823
1829
1828
182C
182F
1832
1835

183A

183F
1844
1845
1848
1840
184F
1850
1853
1856

1859
185A
185C
1860

1863
1863
1865
1865
1867
1869
1868
186E

186E
1B6E
186F
1872
1874
1876
1878
1879
187A

187A
1874
1878
1870
187F
1883
1886
1888
1888
188C
1880

1880
1880
188BE

1690
1892

1894
1896

1899
1898

1890

189F
1841
18A3
18A5
1847
1848
1849

50
2B

E6
Eq

8a
80

F6
24

0A

1E 001C R
F3

144F R

1E Q01A R
10

0080
0048
€035 R
26 0017 R

26 0018 R

26 0088 R’

164A R
C6 00318 R
[]]

0001
0010
EO035 R

04
1E o001C
164A R

38

07

‘€0

<o
17EC R

04

0E 0086 R
El OF

0086 R

co

13
61

EQ
E4 90

Fo

OF

04

K61: ; NOT-CAPS-STATE
MOV BX,BUFFER_TAIL GET THE END POINTER TO THE BUFFER

MoV s1,ex , SAVE THE VALUE
CALL K4 ; ADVANCE THE TAIL
cmp BX, BUFFER_HEAD ; HAS THE BUFFER WRAPPED ARQUND?
JNE K61_1 ; BUFFER_FULL_BEEP
PUSH BX ; SAVE BUFFER_TAIL
MoV BX, 080H ; DURATION OF ERROR BEEP
Mov Cx, 48H ; FREQUENCY OF ERROR BEEP HALF TONE
CALL KB_NOISE ; OUTPUT NOISE
AND KB_FLAG, OFOH . CLEAR ALT,CLRL,LEFT ANO RIGHT
; SHIFTS
- AND KB_FLAG_I,OFH , CLEAR POTENTIAL BREAK OF INS,CAPS
; NUM AND SCROLL SHIFT
AND KB_FLAG_2, IFH ; CLEAR FUNCTION STATES
PoOP BX ; RETRIEVE BUFFER TAIL
JMP K26 ; RETURN FROM INTERRUPT
K61_1: TEST KB_FLAG_1,CLICK_ON ; 1S AUDIO FEEDBACK ENABLED?
9z K61_2 ; NO, JUST PUT IN BUFFER
PUSH - ; SAVE BUFFER_TAIL VALUE
Mov BX, 1H ; DURATION OF CLICK
MOV CX, 10H ; FREQUENCY OF CLICK
cALL KB_NO1SE ; OUTPUT AUD!O FEEDBACK OF KEY
; STROKE
POP 8x ; RETRIEVE BUFFER_TAIL VALVE
KE1_2: MOV €S13, AX i STORE THE VALVE
MOV BUFFER_TAIL,BX ; MOVE THE POINTER UP
JHP K26 ; INTERRUPT_RETURN
jmm———m TRANSLATE SCAN FOR PSEUDO SCAN COOES
K63 ; TRANSLATE-SCAN
sus AL, 59 CONVERT ORIGIN TO FUNCTION KEYS
K64: TRANSLATE-SCAN-ORGD

XLAT CS: K9 CTL TABLE SCAN

MOV AH, AL PUT VALUE INTO AH
XOR AL, AL ZERO ASCII! CODE
JHP KS? PUT IT INTO THE BUFFER

KB_INT ENDP

;GET_POS

i THIS ROUTINE WILL SHIFT THE VALUE STORED IN THE HIGH NIBBLE
; OF THE VARIABLE VAR_DELAY TO THE LOW N1BBLE.
; INPUT

i NONE. IT IS ASSUMED THAT DS POINTS AT THE BIOS DATA AREA
; OUTPUT

; AL CONTAINS THE SHIFTED VALUE.

i

GET_POS PROC NEAR

PUSH cx ; SAVE SHIFT REGISTER
MoV AL,BYTE PTR VAR_DELAY ; GET STORAGE LOCATION
AND AL, OFOH ; MASK OFF LOW NIBBLE

MOV cL,4 ; SHIFT OF FOUR BIT POSITIONS
SAR AL, CL ; SHIFT THE VALUE SIGN EXTENDED
POP cx ; RESTORE THE VALUE

RET

GET_POS ENDP

{PUT_PoS
; THIS ROUTINE WILL TAKE THE VALUE IN LOW ORDER NIBBLE IN
AL AND STORE IT IN THE HIGH ORDER OF VAR_DELAY

INPUT
; AL CONTAINS THE VALUE FOR STORAGE
; OUTPUT
; NONE
;
PUT_POS PROC NEAR
PUSH cx ; SAVE REGISTER
MoV cL, 4 . SHIFT COUNT
SHL AL, CL ; PUT IN HIGH ORDER NIBBLE
MoV CL,BYTE PTR VAR_DELAY ; GET DATA BYTE
AND cL, OFH ; CLEAR OLD VALUE IN HIGH NIBBLE
OR AL, CL ; COMBINE HIGH ANO LOW NIBBLES
MOV BYTE PTR VAR_DELAY,AL ; PUT IN POSITION
POP cx ; RESTORE REGISTER
RET

PUT_POS ENDP

MANUFACTURING ACTIVITY SIGNAL ROUTINE - INVOKED THROUGH THE TIMER
TICK ROUTINE DURING MANUFACTRUING ACTIVITIES . (ACCESSED THROUGH
INT 1CH)

'NFG_TICK PROC FAR

PUSH ax

suBe AX, AX ; SEND A 00 TO PORT 13 AS A
; ACTIVITY SIGNAL

out 13H, AL

IN AL, PORT_B ; FLIP SPEAKER DATA TO OPPOSITE
; SENSE

MoV aM, AL ; SAVE ORIG SETTING

AND AH, 100111018 ; MAKE SURE MUX IS -> RIGHT AND
; 1SOLATE SPEAKER BIT

NOT AL ; FLIP ALL BITS

AND AL, 000000108 ; ISOLATE SPEAKER DATA BIT (NOW IN
; OPPOSITE SENSE)

OR AL, AH ; COMBINE WITH ORIG. DATA FROM
; PORT B

oR AL, 000100008 ; AND DISABLE INTERNAL SPEAKER

ouT PORT_B, AL

MOV AL, 20H ; EO1 TQ INTR. CHIP

out 20H, AL

POP Ax

IRET

MFG_TICK ENDP

ROM BIOS A-49

1BA9
18A9
18AA
18AC
18AE
1881
1882

1884
1884
1886

1887

1889
188A
188A
1888
1880
188F
18C1
18Cc2
18C3
18C3
18C3

18C3
18C3
18CS
18ce
18CA

18CB
18CD
18CF
1801
1803
1808

1807
1808
18DA
180C

180F
18€E0
18€2
1BE4
18€E6
18€9
18€E8

1BED

18F0
18F2
1BFS
18F7
1878
18FC

18FE
1900
1902

1905
1906
1908

190A
190C
190E

50
B4
co
E®

e8
A0
04
8s

BO

24a

E8

oA

74

€B

CONVERT AND PRINT ASCII CODE

AL MUST CONTAIN NUMBER TO BE CONVERTED
AX AND BX DESTROYED

XPC_BYTE
PUSH ax SAVE FOR LOW NIBBLE DISPLAY
04 MoV cL, 4 SHIFT COUNT
E8 SHR AL, CL NIBBLE SwAP
1884 R CALL XLAT_PR DO THE HIGH NIBBLE OISPLAY
POP AX RECOVER THE NIBBLE
OF AND AL, OFH 1SQLATE TO LOW NIBBLE
FALL INTO LOW NIBBLE CONVERSION
XLAT_PR: PROC NEAR CONVERT 00-OF TOQ ASCII CHARACTER
90 app AL, 090H ADD FIRST CONVERSION FACTOR
LYY - ADJUST FOR NUMERIC AND ALPHA
X RANGE
40 apc AL, 040H ; ADD CONVERSION AND ADJUST LOW
; NIBBLE
DAA ; ADJUST HIGH NIBBLE TO ASCI!I RANGE
PRT_HEX PROC NEAR
PUSH BX
OE MoV AH, 14 , DISPLAY CHARACTER IN AL
00 MOV BH,0
10 INT 10H ; CALL VIDEO_IO
POP 8x
RET
PRT_HEX ENOP
XLAT_PR ENDP
XPC_BYTE ENDP
;CONTROL 15 PASSED HERE WHEN THERE ARE NO PARALLEL PRINTERS
;ATTACHED. CX HAS EQUIPMENT FLAG,DS POINTS AT DATA (40H)
SDETERMINE WHICH RS232 CARD (0, 1) TO USE
REPRINT PROC NEAR
02 B1_A: suB 0X,0X% ;ASSUME TO USE CARD 0
Ccs 04 TEST CH, 000001008 ;UNLESS THERE ARE TWO CARDS
01 JE B810_1 JIN WHICH CASE,
INC oX ;USE CARD 1
,DETERMINE WHICH FUNCTION 1S BEING CALLED
Eq B10_1: OR AH, AH ;TEST FOR AH = O
41 gz 812 ;GO PRINT CHAR
cc DEC aH LTEST FOR AN = 1
10 Jz B11 ;GO DO INIT
cc DEC AH ; TEST FOR aH B 2
16 INZ SHORT B10_3 ;1F NOT VALID, RETURN
,ELSE
;GET STATUS FROM RS232 PORT
PUSH AX ; SAVE AL
03 MoV AH, O3H ;USE THE GET COMMO PORT
14 INT 014H ;STATUS FUNCTION OF INT14
1925 R CALL FAKE ;FAKE WILL MAP ERROR BITS FROM
;RS232 TO CORRESPONDING ONES
;FOR THE PRINTER
POP AX ;RESTORE AL
Fé OR DH, OH ;CHECK IF ANY FLAGS WERE SET
07 9z 810_2
E6 mov aH, DH ,MOVE FAKED ERRQR CONDITION TO AW
€4 FE AND AH, OFEH
02 JMP SHORT B10_3 ; THEN RETURN
90 810_2: MoV AH, Q90H ;MOVE IN STATUS FOR ‘CORRECT’
RETURN
Fo0D R B10_3: JMP Bl
;INIT COMMO PORT --- DX HAS WHICH CARD TO INIT.
;MOVE TIME OUT VALUE FROM PRINTER TO RS232 TIME OUT VALUE
F2 B11: MOV S1,DX ;S1 GETS QFFSET INTO THE TABLE
0078 R MOV AL, PRINT_TIM_QUT
0a ADD AL, 0AH ; INCREASE DELAY
84 007C R MOV RS232_TIM_QUTLS!], AL
PUSH ax ; SAVE AL
a7 MOV AL, 087H ;SET INIT FOR: 1200 BAUD
B 8 BIT WRD LNG
; NO PARITY
; 2 STOP BITS
E4 sue AH, AH ;AH=0 IS COMMO INIT FUNCTION
14 INT 014H ;00 INIT
1925 R caLL FAKE ;FAKE WILL MAP ERROR 8ITS FROM
;RS232 TO CORRESPONDING ONES
;FOR THE PRINTER
POP ax ;RESTORE AL
E6 MOV AH, DH ;1F DH IS RETURNED ZERO, MEANING
E4 OR AH, AH ;NO ERRORS RETURN IT FOR THAT'S THE
; “CORRECT” RETURN FROM AN ERROR
FREE INIT
El JE 810_3
A8 MoV AH, 0ABH
o0 JMP SHORT 810_3 ; THEN RETURN

A-50 ROM BIOS

1910
1911
1913
1915

1918
1919
1918
1910
194F
1921
1923
1923

1928
1925
1927

192A

192C
192€
192F
1932
1934
1936
1937

1937
1937
1939
1938
1930
193F

1942
1944
1943
1943
194A
1948
1946
1950

1952
1957
1958
1959
1954
1958
195C
195F
1962
1966
1967
1968
196A

1968
1971

-1}
CF

fé6

74 2

EB
CF

€8

FF

Fé
€4 1E

03
08
Ca 80
09

OE 0017 R 04

06 0017 R 04
9

06 0017 R 00

1983 R
001E R
Q0OF 90

FC

06 00lA R 00LE R
06 001C R 003C R

EO1B R

€018 R
2000
El

4F 41 44 20 22
41 53 31 3A 22
52

;PRINT CHAR TO SERIAL PORT
;0X = RS232 CARD TO BE USED: AL HAS CHAR TO BE PRINTED

B12: PUSH ax i SAVE AL
MOV AH, 01 ,1 1S SEND A CHAR DOWN COMMO LINE
INT 014H ; SEND THE CHAR
caLL FAKE ;FAKE WILL MAP ERROR BITS FROMN

,RS232 TO CORRESPONDING ONES
OR THE PRINTER

POP AX ;RESTORE AL
OR DH,DH ,SEE IF NO ERRORS WERE RETURNED
Jz 812_1
MoV AH, DH ; 1IF THERE WERE ERRORS, RETURN THEM
JMP SHORT B10_3 ; AND RETURN

812_1 Hov AH, 010H ;PUT ’CORRECT’ RETURN STATUS IN AH
Jup SHORT B810_3 ; AND RETURN

REPRINT ENOP

; THIS PROC MAPS THE ERRORS RETURNED FROM A BIOS INT14 CALL
;TO THOSE ‘LIKE THAT‘ OF AN INT17 CALL

; BREAK, FRAMING, PARITY, OVERRUN ERRORS ARE LQGGED AS 1,0
;ERRORS AND A TIME QUT IS MOVED TO THE APPROPIATE &IT
FAKE PROC NEAR

XOR DH, DH ;CLEAR FAKED STATUS FLAGS
TEST AH,0111108 ;CHECK FOR BREAK, FRAMING, PARITY
; OVERRUN
Jz 813_1 ;ERRORS. 1F NOT THEN CHECK FOR
; TIME OUT.
MoV DH, 010008 ,SET 81T 3 TO INDICATE ‘1/0 ERROR’
RET i AND RETURN
813_1: TEST AH, 0BOH ;TEST FOR T{ME OUT ERROR RETURNED
Jz B13_2 ; IF NOT TIME OUT, RETURN
MOV DH, 09H ;1F TIME oOUT

THIS ROUTINE 1S THE INTERRUPT 9 HANDLER WHEN THE MACHINE 1S
FIRST POMERED ON AND CASSETTE BASIC IS GIVEN CONTROL. 1T
HANDLES THE FIRST KEYSTROKES ENTERED FROM THE KEYBOARD AND
PERFORMS “SPECIAL" ACTIONS AS FOLLOWS:
IF ESC {S THE FIRST KEY ENETERED MINI-WELCOME 1§
EXECUTED
IF CTRL-ESC IS THE FIRST SEQUENCE "LOAD CASLl:, R" 1S
EXECUTED GIVING THE USER THE ABILITY TO 800T
FROM CASSETTE '
AFTER THESE KEYSTROKES OR AFTER ANY OTHER KEYSTROKES THE
INTERRUPT 9 VECTOR IS CHANGED TO POINT AT THE REAL
INTERRUPT 9 ROUTINE.

EW_INT_9 PROC FAR
CHP

AL, 1 IS THIS AN ESCAPE KEY?

JE ESC_KEY ; JUMP [F AL=ESCAPE KEY
CMP AL, 29 ; ELSE, 1S THIS A CONTROL KEY?
JE CTRL_KEY ; JUMP IF AL=CONTROL KEY
CALL REAL_VECTOR_SETUP ; OTHERWISE, INITIALIZE REAL

INT 9 VECTOR

INT 9H ; PASS THE SCAN CODE IN AL
IRET ; RETURN TO INTERRUPT 48H
CTRL_KEY:
oR KB_FLAG, 04H ; TURN ON CTRL SHIFY IN KB_FLAG
IRET ; RETURN TO INTERRUPT
ESC_KEY:
TEST KB_FLAG, 04H . HAS CONTROL SHIFT OCCURED?
JE ESC_ONLY NO. ESCAPE ONLY

; CONTROL ESCAPE HAS OCCURED, PUT MESSAGE IN BUFFER FOR CASSETTE
LOAD

MoV KB_FLAG, 0 ; ZERO OUT CONTROL STATE

PUSH oS

POP ES ; INITIALIZE ES FOR BIOS DATA

PUSH oS ; SAVE OLD 0S

PUSH cs ; POINT DS AT CODE SEGMENT

POP oS

MoV S1,0FFSET CAS_LOAD ; GET MESSAGE

MoV D1,0FFSET KB_BUFFER ; POINT AT KEYBOARD BUFFER

MoV CX,CAS_LENGTH ; LENGTH OF CASSETTE MESSAGE
T_LOOP: LODSB ; GET ASCI! CHARACTER FROM MESSAGE

STOSW ; PUT IN KEYS80ARD BUFFER

LOOP T_LOOP

POP oS ; RETRIEVE BIOS DATA SEGMENT
jmmm——~ INITIALIZE QUEUE SO MESSAGE WILL BE REMOVED FROM BUFFER

MOV BUFFER_HEAD, OFFSET KB_BUFFER

MoV BUFFER_TAIL, OFFSET KB_BUFFER+(CAS_LENGTHN2)
HRRNOTENN®

H IT IS ASSUMED THAT THE LENGTH OF THE CASSETTE MESSAGE 1S
LESS THAN OR EQUAL TO THE LENGTH OF THE BUFFER. 1IF THIS IS
NOT THE CASE THE BUFFER WILL EVENTUALLY CONSUME MEMORY.

CALL REAL_VECTOR_SETUP

IRET
ESC_ONLY:
CALL REAL_VECTOR_SETUP
MoV €X, MINI :
JMP cx ENTER THE WORLD OF KEYBOARD CAPER

------- MESSAGE FOR OUTPUT WHEN CONTROL-ESCAPE 1S ENTERED AS FIRST
; KEY SEQUENCE

CAS_LOAD LABEL BYTE

DB ‘LOAD "CAS1:“,R*

o8 13
CAS_LENGTH EQU $ - CAS_LOAD
NEW_INT_9 ENDP

ROM BIOS A-51

>
©
=
o
=
[o%
>
>

1992
1992
1993
1994
1998
1999
1998
1990
199F

1943 -

1944

19A5
1947
1949
19A8
19A0
19AF
1981
1983

1985
1987
198A

198C
19BE
19C2
19Ca

19Cé
19C6
19C9

19ce
19Co0

19CF
1902
1904
1906
1908
190A
190C
19DE
19€0
19€3
19€S
19E7
19e8
19ED
19EF
19F0
19F3
19FS
19F7

19F9
19F8
19F0
19FF

1A01
1A03

1A05
1A07
1A04
1A0C

3€ 0062 R

oF
FF
€3
97 0050 R

16 004A R

02
FF31 R
E3

WRITE_TTY

THIS INTERFACE PROVIDES A TELETYPE LIKE INTERFACE TO THE
VIDEQ CARD. THE INPUT CHARACTER IS WRITTEN TO THE CURRENT
CURSOR POSITION, AND THE CURSOR [S MOVED TO THE NEXT PQSITION.
IF THE CURSOR LEAVES THE LAST COLUMN OF THE F1ELD, THE COLUMN
IS SET TQ ZERO, AND THE ROW VALUE 1S INCREMENTED. [F THE ROW
ROW VALUE LEAVES THE FIELD, THE CURSOR 1S PLACED ON THE LAST
ROW, FIRST COLUMN, AND THE ENTIRE SCREEN IS SCROLLED UP ONE
LINE. WHEN THE SCREEN 1S SCROLLED UP, THE ATTRIBUTE FOR FILLING
THE NEWLY BLANKED LINE 1S READ FROM THE CURSOR POSITION ON THE
PREVIOUS LINE BEFORE THE SCROLL, IN CHARACTER MOOE. IN
GRAPHICS MODE, THE O COLOR IS USED.

ENTRY -~
CAH) = CURRENT CRT MODE
C(AL) = CHARACTER TO 8E WRITTEN

NOTE THAT BACK SPACE, CAR RET, BELL AND LINE FEED ARE
HANDLED AS COMMANDS RATHER THAN AS DISPLAYABLE GRAPHICS
(BL) = FOREGROUND COLOR FOR CHAR WRITE IF CURRENTLY IN A
GRAPHICS MODE
EXIT --
ALL REGISTERS SAVED

ASSUME CS:CODE,0S:0ATA

WRITE_TTY PROC NEAR
PUSH ax ; SAVE REGISTERS
PUSH ax . SAVE CHAR TQ WRITE
1Y BH, ACTIVE_PAGE ; GET CURRENT PAGE SETTING
PUSH 8X ; SAVE IT
MOV BL,BH ; INBL
XOR BH, BH
SAL BX, 1 CONVERT TO WORD OFFSET
MoV DX, [BX+OFFSET CURSOR_POSN] ; GET CURSOR POSITION
POP ex ; RECOVER CURRENT PAGE
PoOP ax RECOVER CHAR
;= DX NOW HAS THE CURRENT CURSOR POSITION
cHp aL, 8 ; 1S IT A BACKSPACE?
JE us ©; BACK_SPACE
CMP AL, ODH ; IS IT A CARRIAGE RETURN?
JE ') . CAR_RET
cHp AL, 0AH 1 1§ IT a LINE FEED
JE vio ; LINE_FEED
cHP AL, O7H i 1S 1T & BELL
JE uit BE|
jmm—— WRITE THE CHAR TO THE SCREEN
MoV AH, 10 ; WRITE CHAR ONLY
MoV cx, 1 ; ONLY ONE CHAR
INT 10H ; WRITE THE CHAR
jomm— POSITION THE CURSOR FOR NEXT CHAR
INC oL
cHP OL,BYTE PTR CRT_COLS ; TEST FOR COLUMN OVERFLOW
INZ vy ; SET_CURSOR
XOR oL, DL ; COLUMN FOR CURSOR
;=--- LINE FEED
u10:
cup OH, 24
JNZ U6 ; SET_CURSOR_INC
PR SCROLL REQUIRED
MoV AH, 2
INT 10H SET THE CURSOR
DETERMINE VALUE TO FILL WITH DURING SCROLL
MoV AL, CRT_MODE ; GET THE CURRENT MOOE
cHP aL,4
Je u2 ; READ-CURSOR
XOR BH, BH ; FILL WITH BACKGROUND
JHP SHORT U3 ; SCROLL-UP
va: MoV AW, 8
INT 10H ; READ CHAR/ATTR AT CURRENT CURSOR
MoV BH, AH ; STORE IN BH
u3: MoV AX, 601H ; SCROLL ONE LINE
suB Cx, CX ; UPPER LEFT CORNER
MOV DH, 24 ; LOWER RIGHT ROW
MoV DL,BYTE PTR CRT_COLS ; LOWER RIGHT COLUMN
0EC oL
v4: INT 10H ; SCROLL UP THE SCREEN
us: POP ax ; RESTORE THE CHARACTER
NP VIDEO_RETURN ; RETURN TO CALLER
Ue: INC DH ; NEXT ROW
u7: MoV AN 2
JNP ; ESTABLISH THE NEW CURSOR
j = BACK SPACE FOUND
us: OR oL,0L ; ALREADY AT END OF LINE
JE u7 ; SET_CURSOR
OEC oL ; NO == JUST MOVE IT BACK
JNP u7 ; SET_CURSOR
e CARRIAGE RETURN FOUND
LB XOR oL, DL ; MOVE TO FIRST COLUMN
SET_CURSOR

SET UP COUNT FOR BEEP
SOUND THE POD BELL
TTY_RETURN

A-52 ROM BIOS

THIS PROCEDURE WILL ISSUE SHORT TONES TO INDICATE FAILURES
THAT 1: OCCUR BEFORE THE CRT [S STARTED, 2: TO CALL THE
OPERATORS ATTENTION TO AN ERROR AT THE END OF POST, OR
3: TO SIGNAL THE SUCCESSFUL COMPLETION OF POST

ENTRY PARAMETERS:
DL = NUMBER OF APPROX. 1/2 SEC TONES TO SOUND

i
’
El

1A0C RR_BEEP PROC NEAR
1A0C 9C PUSHF ; SAVE FLAGS
1A0D 53 PUSH Bx
1A0E FA cL1 ; DISABLE SYSTEM INTERRUPTS
1A0F 63: ; SHORT_BEEP:
1A0F B3 01 Mov BL, 1 ; COUNTER FOR A SHORT BEEP
1A11 €8 FF31 R CALL BEEP ; DO THE SOUND
lA14 E2Q FE G4: LOOP G4 ; DELAY BETWEEN BEEPS
1A16 FE CA DEC oL ; DONE WITH SHORTS
1818 75 FS NZ 63 ; DO SOME MORE
IAIA E2 FE G5: LOOP cs i LONG DELAY BEFORE RETURN
1A1C E2 FE G6: Loor G6
1A1E 58 POP Bx ; RESTORE ORIG CONTENTS OF BX
1A1F S0 POPF ; RESTORE FLAGS TO ORIG SETTINGS
1A20 C3 RET ; RETURN TO CALLER
1a21 ERR_BEEP ENDP
LIST
ASSUME CS:CODE,DS: DATA
£000 ORG OEOOOH
E000 31 35 30 34 30 33 o8 1504037 COPR. 1BM 1981,1983' ; COPYRIGHT NOTICE
37 20 43 4F S0 82
2€ 20 49 42 4D 20
31 39 38 31 2C 31
39 38 33
i
; REAL_VECTOR_SETUP
; THIS ROUTINE WILL INITIALIZE THE INTERRUPT 9@ VECTOR TO
i POINT AT THE REAL INTERRUPT ROUTINE.
€018 REAL_VECTOR_SETUP PROC NEAR
EO0LB 50 PUSH, Ax ; SAVE THE SCAN CODE
E0IC 53 PUSH BX
EOLD 06 PUSH ES .
EOL1E 33 CO XOR AX, AX ; INITIALIZE TO POINT AT VECTOR
SECTOR(0}
€020 8E CO MoV ES, AX
E022 88 0024 MOV BX, 9HN4H ; POINT AT INTERRUPT 9
€025 26: C7 07 1561 R Hov WORD PTR ES:([BX1,OFFSET KB_INT ; MOVE IN OFFSET OF
; ROUTINE
€024 43 INC ax ; ADD 2 To BX
€028 43 INC BX
EO02C 0OF < PUSH cs ; GET CODE SEGMENT OF BI0S (SEGMENT
RELOCATEABLE)
€020 58 POP ax
€02E 26:. 89 07 MOV ~ WORD PTR ES:[BX1,AX ; MOVE IN SEGMENT OF ROUTINE
E031 07 POP €S
€032 5B POP 8x
E033 S8 POP ax
€034 C3 RET
E03S REAL_VECTOR_SETUP ENDP
p
KB_NO1SE
; THIS ROUTINE 15 CALLED WHEN GENERAL BEEPS ARE REQUIRED FROM
; THE SYSTEM.
; INPUT
; BX=LENGH OF THE TONE
; CX=CONTAINS THE FREQUENCY
; ouTPUT
; ALL REGISTERS ARE MAINTAINED.
; HINTS
; AS CX GETS LARGER THE TONE PRODUCED GETS LOWER IN PITCH.
N
€035 KB_NO1SE PROC NEAR
€035 FB sT1
EQ36 50 PUSH AX
€037 53 PUSH BX
€038 51 PUSH Cx
E039 E4 61 IN AL, O061H ; GET CONTROL INFO
EO3B SO PUSH AX ; SAVE
€03C LOOPOL:
E03C 24 FC AND AL, OFCH ; TURN OFF TIMER GATE AND SPEAKER
; DATA
EO03E E6 61 ouT 061H, AL ; OUTPUT TO CONTROL
€040 51 PUSH cx ; HALF CYCLE TIME FOR TONE
€041 E2 FE LOOPO2: LOOP LOOPO2 ; SPEAKER OFF
€043 0C 02 OR AL, 2 ; TURN ON SPEAKER BIT
€045 E6 61 out 06 1M, AL ; OUTPUT TO CONTROL
€047 59 PoP ex
EO48 51 PUSH (%3 ; RETRIEVE FREQUENCY
E049 E2 FE LOOPO3: LOOP LOOPO3 ; ANOTHER HALF CYCLE
€048 4B DEC BX i TOTAL TIME COUNT
E04C 59 POP cx ; RETRIEVE FREQ.
£04D 75 €D JUNZ LOOPO1 ; DO ANOTHER CYCLE
EO4F 5B POP AX . RECOVER CONTROL
EO0S0 €6 61 out 061H, AL ; OUTPUT THE CONTROL >
E052 59 POP cx
E053 58 POP BX o
€054 58 pOP AX °
EOS5 €3 RET o
€056 KB_NOISE ENDP =
E058 ORG OEOSBH o
EQSB E9 0043 R JHP NEAR PTR RESET —
Pd

ROM BIOS A-53

CHARACTER GENERATOR GRAPHICS FOR 320X200 AND 640X200
GRAPHICS FOR CHARACTERS B80H THROUGH FFH

EOSE CRT_CHARH LABEL BYTE

EOSE 78 CC CO CC 78 18 0B 078H, OCCH, OCOH, OCCH, 07BH, 018H, 0OCH, 078H ; D_80
E0E6 gg Zg 00 ¢C cC cC [1:] 000H, OCCH, 000H, OCCH, OCCH, OCCK, 07EH, 000K ; D_81
EO06E E gg 78 CC FC CO 0B 01CH, 000H, 078H, OCCH, OFCH, 0COH, 078H, 000K ; D_82
€076 ;g gg 3C 06 3E 66 08 O7EH, 0C3H, 03CH, 006H, 0IEM, 066H, 0IFH, 000H ; D_83
EOYE 35 gg 78 0C 7€ CC 1] OCCH, 000H, 078H, OOCH, O7CH, OCCH, O7TEH, 000H ; D_B84
£086 Zg gg 78 oC 7C CC oB OEOH, 00QH, 078H, 0OCH, 07CH, OCCH, 07EH, Q00K ; D_85
E08E 35 gg 78 oC 7C cC (1] 030M, 030H, 078H, 00CH, 07CH, OCCH, O7EH, 000H ; D_86
E096 Zg gg 78 €O cO 78] 000H, DOOM, 078H, QCOH, OCOH, 078H, 00CH, 038H ; D_87
EO09E gg gg 3C 66 7€ €0 (1] O7EH, OC3H, 03CH, 066H, Q7EH, 060H, 03CH, 000H ; D_B8
EOA6 :c“c: gg 78 cC FC CO 1] OCCH, 000M, 078H, OCCH, OFCH, OCOH, 078M, 000H ; D_89
EOAE ;g gg 78 €C FC CO oe OEQM, 000H, 078H, OCCH, OFCH, OCOH, 078H, 000H ; 0_8A
E0BE z: gg 70 30 30 30 1] QCCH, 000H, 070H, 030H, 030H, 030H, 078H, 000H ; D_88
EOBE ‘7/2 gg 38 18 18 18 o8 07CH, OCEH, 038H, 0168H, 018H, 018K, 03CH, 000K ; D_8C
EOCE gg goo 70 30 30 30 08 OEQH, 000H, 670H, 030H, 030M, 030H, 078H, 000H ; D_8D
EOCE g: gg 6C C6 FE C6 o8 0CEH, 03BH, Q6CH, OCEH, OFEH, OCEH, OCEH, 000K ; D_B8E
EQD6 gg gg 00 78 CC FC [Y] 030H, 030H, 000H, 078H, OCCH, OFCH, OCCH, 000H ; D_BF

cc oo
EODE IC 00 FC 60 73 60 o8 01CH, 00OH, OFCH, 060H, 078H, 06OH, OFCH, 000H ; D_90
EOEE :g gg 7F oC 7F CC)] 00OM, 000H, 07FH, DOCH, O7FH, OCCH, O7FH, 000H ; D_91
EOEE ;E 28 cC FE €C CC o8 O3EM, 06CH, OCCH, OFEH, OCCH, OCCH, OCEH, 000N ; 0_92
EOFE g: gg 00 78 CC CC oe 078H, OCCH, 00OM, 078H, OCCH, OCCH, 078H, 000K ; D_93
EOFE gg gco 00 78 ¢C CC DB 000H, OCCH, 00OH, 078H, OCCH, OCCH, 078H, 000H ; D_94
E106 Z)g gg 00 78 cC cC o8 OO0OH, OEOH, 00OH, 078H, OCCH, OCCH, 078H, 000H ; D_95
E10€E ;: gg 00 cC CC C¢C 08 078H, OCCH, 000H, OCCH, 0CCH, OCCH, 07EH, 000K ; D_96
€116 ;5 gg 00 cc c¢ cc 0B 000H, OEOH, 000H, OCCH, OCCH, OCCH, 07EM, 000H ; D_97
ELL1E gg gg 00 ¢C cC 7C o8 00OH, 0CCH, 000H, OCCH, OCCH, 07CH, OOCH, OFBH ; D_98
E126 gtcl ig 3C 66 66 3C 08 0C3H, 018M, 03CH, 066H, 066H, 03CH, O18H, 000H ; D_99
EL2E ég gg cc cc cc cC o8 OCCH, 000H, OCCH, OCCH, OCCH, OCCH, 0768H,000H ; D_9A
E136 I: (:g 7E Co CO 7E 08 018H, 018H, 07EH, OCOH, OCOH, 07EH, O18H,018H ; D_98B
E13E ::g éte: €4 FO 60 E6 08 038M, 06CH, 064H, OFOH, 060H, OEGH, OFCH, 000H ; D_9C
EL146 :g gg 78 FC 30 FC 08 QCCH, OCCH, 078H, OFCH, 030M, OFCH, 030K, 030H ; D_90
E14E gg gg CC FA C6 CF o8 OFBH, OCCH, OCCH, OFAH, 0CEH, OCFH, OC6H, OC7H ; D_9E
E156 32 cu; 18 3C 18 18 0B OOEM, O 1BH, 0 18H, 03CH, 018H, 018H, ODBH, 070H ; D_9F
08 70

EISE 1C 00 78 0C 7C CC o8 01CH, 0OOH, 078H, 0OCH, OTCH, OCCH, OTEH, 000H ; D_AO
E166 ;g gg 70 30 30 30 [X] 038H, 000H, 070H, 030H, 030H, 030H, 078H, 000H ; D_AL
E16E ;: ?2 00 78 cC CC 0B 0O0OM, 0 1CH, D0OH, 078H, OCCH, OCCH, 078H, 000H ; D_A2
EL76 gg ?2 00 CcC cC CC 1] 0OOH, 0 1CH, 000H, OCCH, OCCH, OCCH, O7EH, 000K ; D_A3
E17E (7>§ gg 00 F8 CC CC 1] 000H, OF8H, 000H, OFBH, OCCH, 0CCH, OCCH, 000K ; 0_ad
E186 gg 83 cC EC FC OC o8 OFCH, 00OH, OCCH, OECH, OFCH, ODCH, OCCH, 000H ; D_AS
E18E gf: 28 6C 3E 00 7E -] 03CH, 06CH, 06CH, 0IEH, O00H, O7EH, 000H, 000H ; D_A6
E196 gg gg 6C 38 00 7C oe 038H, 06CH, 06CH, 03BH, 00O, 07CH, 000H, 000K ; D_A7
E19E gg gg 30 60 CO CC o8 030H, 000H, 030H, 060H, OCOH, OCCH, 078H, 000H ; D_AB
E1A6 Zg gg 00 FC CO CO . b8 0O0OH, 000H, 000H, OFCH, OCOH, OCON, 000H, 000H ; D_A9
ElaE gg gg 00 FC OC OC o8 O0O0H, 000H, 000H, OFCH, 0OCH, 00CH, Q00H, 000H ; D_aA
E1B6 gg gg cC DE 33 66 o8 OC3H, OCEH, OCCH, ODEH, 033H, 066H, OCCH, 00FH ; D_AB
E18E tc;:ca g: cC D8 37 6F 08 0C3H, OCEH, OCCH, ODBH, 037H, O6FH, OCFH, 003H ; D_AC
ELCE i; 3: 00 18 18 18 o8 018H, 018H, 000H, 018H, 0 LBH, 0 18H, 01BH, 000K ; D_AD
EICE ;g gg 66 CC 66 33 ve 0O0O0M, 033H, 066H, OCCH, 066H, 033H, 000H, Q00H ; D_AE
E106 §§ E% 66 33 66 CC bB 00OH, OCCH, 066H, 033H, 066H, OCCH, 000H, 000K ; D_AF

A-54 ROM BIOS

EIDE 22 8P 22 80 22 88 1] 022H, 08BH, 022H, 08BBH, 022H, 0BBH, 022H, 0BBH ; D_BO

E1€6 :: ;2 85 AA 55 AA os 055H, OAAH, 055H, OAAH, 055H, 0AAH, 055H, OAAH ; D_B1
E1EE :5: ;9 0P EE 0B 77 (1] ODBH, 077H, ODBH, OEEH, 0DBH, 077H, 0DBH, OEEN ; D_82
EIFE 1§ 15 18 18 18 18 o8 01BH, 018H, 018H, 018H, 018H, 018H, 018H,018H ; D_B3
EIFE :: i: 18 18 F8 18 1] 018H, 018H, O18H, 018H, OFBH, 018H, 01BH, 018H ; D_B4
€206 :a :: F8 18 FB 18 1] 018H, O18H, OFBH, 018H, OF8H, 018H, 018H, O1BH ; D_B%
E20E ég ?:E 36 36 F6 36 (1] 036H, 036H, 036H, 036H, OFEH, 036H, 036H, 036H ; D_B86
€216 00 00 00 00 FE 36 o8 000H, 000H, GOOH, 000H, OFEH, 036H, 036H, 036H ; 0_B7
E21E :g :g F8 18 F8 18 o8 000H, 000H, OF8H, 0 18H, OFBH, 018H, 018H, 01BH ; D_BS
€226 ::: é: F6 06 F6 36 o8 036H, 036H, OF 6H, 006H, OFEH, 036H, 036H, 036H ; D_B9
E22E gg a: 36 36 36 36 o8 036H, 036H, 036H, 0IEH, 0I6H, 036H, 0I6H, 036H ; D_BA
€236 :o gg FE 06 F6 36 o8 O00H, 000H, OFEH, DOEH, OFEH, 036H, 036H, 036H ; D_88
€23€ g: g: F6 06 FE 00 1] 036H, 036H, OF6H, 006H, OFEH, 000H, 000H, 000H ; D_BC
€246 gg g: 36 36 FE 00 o8 036H, 036H, 036H, 03EH, OFEH, 000H, 000H, 000H ; 0_BD
€24€ ‘:g 2: F8 18 F8 00 o8 018H, 018H, OFBH, 0 18H, OFBH, 000H, 000H, 000H ; D_BE
E256 :g gg 00 00 F8 18 1] 000H, 000H, 000H, 000H, OF8H, 018H, 018H, 0184 ; D_BF
18 18
E25€ 19 18 18 18 IF 00 oe 018H, 018H, 0 18H, 0 18H, O1FH, 000H, 000H, 000H ; D_CO
€266 2: ‘1,: 18 18 FF 00 oB 018H, 01BH, 018H, 0 18H, OFFH, 000H, 000H, 000K ; D_C1
£26€ gg gg 00 00 FF 18 06, ©0OM, 000H, 00OH, QOOH, OFFH, 018H, 018H,01BH ; D_C2
€276 :: :: 18 18 IF 18 o8 018H, 018H, 01BH, 018H, 01FH, 018H, 01BH,01BH ; D_C3
€27E ;: ég 00 00 FF 00 08 000H, 000H, 000H, 000H, OFFH, 000N, 000H, 000H ; D_C4
€286 23 3: 18 18 FF 18 oe 018H, 0168H, 018H, 0 L8H, OFFH, 018H, 018H,01BH ; D_CS
E28E :: :: 1IF 18 iF 18 o8 018H, 01BH, OLFH, 018H, 01FH, 018H, 01BH, 018H ; 0_CE
E296 ::: ::: 36 36 37 36 0B 036H, 036H, 036H, 036H, 0I7TH, 036K, 0IEH, 036K ; D_C7
€29€ g: :::: 37 30 3F 00 0B 036H, 036H, 037H, 030H, 03FH, 000H, O00H, 000H ; D_C8
E2A6 gg gg 3F 30 37 36 (1] 0O00H, 000H, 03FH, 030H, 037H, 036H, 036H, 036H ; D_C9
E2AE ;: 32 F7 00 FF 00 1] 036H, 036H, OF TH, 000H, OFFH, 000H, 000H, 000K ; D_CA
E286 g: gg FF 00 F7 36 (1] 000H, 000H, OFFH, 000H, OF 7H, 036H, 036H, 036H ; D_CB
E28E :: ;: 37 30 37 36 o8 036H, 036H, 03TH, 030H, 037H, 036H, 036H,036H ; D_CC
E2C6 :: gg FF 00 FF Q0 1] 00OH, 000M, OFFH, 000H, OFFH, 000H, 000H, 000H ; D_CD
E2CE g: gg F7 00 F7 36 o8 036H, 036H, OF 7H, 000H, OF 7H, 036H, 036H, 036H ; D_CE
€206 ::: :1': FF 00 FF 00 o8 018H, 0 1BH, OFFH, 000K, OFFH, 000H, 000H, 000H ; O_CF
00 00
E20E 36 36 36 36 FF 00 0B 036H, 036H, 036H, 036H, OFFH, 000H, 000H, 600N ; D_DO
€2E6 gg gg FF 00 FF 18 o8 000H, 000H, OFFH, 000H, OFFH, 018H, 01BH, 018H ; 0_01
E2EE ;g ;g 00 00 FF 36 0B 000H, QOOH, 000H, 00OH, OFFH, 036H, 036H, 036H ; 0_D2
E2F6 g: g: 36 36 3F 00 [1] 036H, 036H, 036H, 036H, O3FH, 000H, 000H, 000H ; D_D3
E2FE ?: ‘:: IF 18 IF 00 08 018H, 01BH, 01FH, 018H, O 1FH, 000H, 000K, 000H ; D_D4
€306 gg gg 1IF 18 IF 18 (1] 000H, 000H, 0 1FH, 0 18H, 01FH, 018H, 018H,018H ; D_DS5
E30E ég ;: 00 00 3F 36 08 QO0OH, 000H, 000H, 000H, 0IFH, 0I6H, 036H, 036H ; D_DE
€316 :: g: 36 36 FF 36 1] 036H, 036H, 036H, 036H, OFFH, 036H, 0IEH, 036H ; D_D7
E31E ::: ?: FF 18 FF 18 o8 018H, 01BH, OFFH, 018H, OFFH, 018H, 018H,01BH ; D_DB
€326 :: i: 18 18 FB 00 o8 018H, 01BH, 018H, 0 18H, OFBH, 000H, 000H, 000H ; D_D9
E32€ 33 gg 00 00 1F 18 (L] 00OH, 0OOH, 000H, 00OH, 01FH, 01BH, 018H, 018H ; D_DA
€336 rlg Fl: FF FF FF FF 0B OFFH, OFFH, OFFH, OFFH, OFFH, OFFH, OFFH, OFFH ; D_DB
E33€E ;; 55 00 00 FF FF 0B 000H, 000H, 000H, DOOH, OFFH, OFFH, OFFH, OFFH ; D_0C
€346 :': ::g FO FO FO FO o8 OFOH, OF OH, OF OH, OF OH, OFOH, OFOH, OFOH, OFOH ; D_0DD
€34€ ;g 3? OF OF OF OF o8 OOFH, 0OFH, 00FH, 0OFH, 0OFH, 0OFH, 0OFH, 00FH ; D_DE
E356 EE EE FF FF 00 00 08 OFFH, OFFH, OFFH, OFFH, 000H, QOOH, 00QH, 000H ; D_OF

>
]
o
o
2
>

ROM BIOS A-55

E3ZE 00 00 76 DC Cg DC []:] 0O0QH, 000H, 076H, ODCH, OCBH, ODCH, 076H, 000H ; D_EO

€366 00 78 CC F8 CC F8 oe OO0OH, 078H, OCCH, OF8H, OCCH, OFBH, OCOH, OCOH ; D_E1
co co
E36E 00 FC CC CcO Co CO DB OQOH, OFCH, OCCH, 0COH, OCOH, OCOH, OCOH, 000H ; D_E2
co 00
E376 00 FE 6C 6C 6C 6C pe OOOH, OFEH, 06CH, 0BCH, 06CH, 0BCH, 06CH, 000H ; D_E3
6C 00
E37E FC CC 60 30 60 CC b8 OFCH, OCCH, O60H, 030H, 060H, OCCH, OFCH, 000H ; D_E4
FC 00
£386 00 00 7E 08 D8 DB Y] 0O0OH, 0OOH, O7EH, ODEBH, OD8H, ODEH, 070H, 0QOH ; D_ES
70 00
E3BE 00 66 66 66 66 7C "] 0O0H, 066H, O66H, 066H, O66H, 07CH, 060H, 0COX ; D_E6
60 CO
€396 00 76 OC 18 18 18 o8 0OOH, 076H, ODCH, 0 18H, 018H, 0 18H, 018H, 000H ; D_E7
18 00
E39E FC 30 78 CC CC 78 o8 OFCH, 030H, 078H, OCCH, OCCH, 078H, 030H, OFCH ; D_EB
30 FC
E3A6 38 6C C6 FE C6 6C 08 038H, 06CH, OCEH, OFEH, 0CEH, 06CH, 038H, 000H ; D_ES
38 00
E3AE 38 6C C6 C6 6C 6C 08 038H, 06CH, OCEH, OCEH, OBCH, OBCH, OEEH, 000H ; D_EA
EE 00
E386 IC 30 18 7C CC CC Y 01CH, 030H, 018H, 07CH, OCCH, OCCH, 078M, 000H ; D_EB
78 00
E3IBE 00 00 7E 0B OB 7E 1] O00H, 000K, O7EH, ODBH, ODBH, OTEH, 00QH, 000H ; D_EC
00 00
E3C6 ©6 0oC 7E DB DB 7E 0B OOGH,OOCN,°7EN,ODEN,ODEN,07EH,°GOH, OCOH ; D_ED
60 CO
E3CE 3B 60 CO F8 CO 60 o8 038H, 060H, OCOM, OF8H, OCOH, 060M, 038H, 000H ; D_EE
38 00
E3DE 78 CC CC CC CC €C o8 078H, 0CCH, 0CCH, 0CCH, 0CCH, 0CCH, OCCH, 000H ; D_EF
cc 0o
E3DE 00 FC 00 FC 00 FC o8 00O, OFCH, 000H, OFCH, 00OH, OFCH, 000H, 000H ; D_FO
00 00
E3E6 30 30 FC 30 30 00 Y] 030H, 030H, OFCH, 030H, 030H, 000H, OFCH, 000K ; D_F1
FC 00
EJEE 60 30 18 30 60 00 o8 06QH, 030, 018H, 030H, OGOM, 000H, OFCH, 000H ; D_F2
FC 00 .
E3F6 18 30 €0 30 18 00 o8 018H, 030H, 060H, 030H, 0 18H, 000H, OFCH, 000K ; D_F3
FC 00
E3FE OE 1B 1B 18 18 18 oe OO0EMH, 01BH,01BH, 018H, 018H, 018H, 018H, 018K ; D_Fa
18 18
E406 18 18 18 18 18 DB o8 ©018H, 018H, 018H, 018H, 018H, ODBH, OD8H, 070H ; D_FS
08 70
E4OE 30 30 00 FC 00 30 o8 030H, 030M, D0OH, OFCH, 00OH, 030H, 030H, 000H ; D_F6
30 00
€416 00 76 DC 00 76 DC o8 000H, 076H, ODCH, 00O, 076H, ODCH, 000H, 000H ; O_F7
00 00
E41E 38 6C 6C 38 00 00 o8 03BH, 06CH, O6CH, Q38H, 00O, 00OH, 000K, 000K ; D_F8
00 00
€426 00 00 00 18 18 00 o8 000H, 000H, 0GOH, 0 18H, 0 18H, 000H, 000H, 00QH ; D_F9
00 00
E42E 00 00 00 00 18 00 -] O0OH, 000H, OOOH, 0Q0H, 018H, OCOH, 000H, 000H D_Fa
00 00
E436 OF OC OC 0C EC 6C 08 0OFH, 00CH, 00CH, QOCH, OECH, 06CH, 03CH, 01CH ; D_FB
ac 1c
E43E 78 6C 6C 6C 6C 00 o8 078H, 06CH, 06CH, 0BCH, 0ECH, 000H, 000H, 000H ; D_FC
00 00
E446 70 18 30 60 78 00 08 O70H, 018H, 030H, 060H, 078H, 0OOH, 000H, 000H ; D_FD
00 00
E44E 00 00 3C 3C 3C 3C []:} OO0OH, 000N, 03CH, 03CH, 03CH, O3CH, 000H, 000H ; D_FE
00 00
£456 00 00 00 00 Q0 00 oe 000K, 00OH, 000H, OOOH, 000H, 0QOH, 000M, 00QH ; D_FF
00 00
ASSUME CS:CODE,DS:DATA
| SET_CTYPE
; THIS ROUTINE SETS THE CURSOR VALUE
L INeuT
H (CX) HAS CURSOR VALUE CH-START LINE, CL-STOP LINE
! ouTPUT
: NONE
E4sE SET_CTYPE PROC NEAR
E4SE 80 FC 04 cup aH, 4 . IN GRAPHICS MODE?
Ed6l 72 03 JC c23x ! NO, JUMP
E463 80 CD 20 OR CH, 20H ; YES, DISABLE CURSOR
£466 B4 0a c2ax: MoV AH. 10 . 6845 REGISTER FOR CURSOR SET
E468 B89 OF 0060 R Mov CURSOR_MODE, CX . SAVE IN DATA AREA
E46C EB E472 R CALL 23 | OUTPUT CX REG
E46F E9 OF70 R P VIDEO_RETURN
; THIS ROUTINE QUTPUTS THE CX REGISTER TO THE 6845 REGS NAMED IN AH
E472 8B 16 0063 R c23. DX, ADDR_6845 ; AODRESS REGISTER
E476 8A C4 "OV AL, AH ; GET VALUE
E478 EE out DX, AL . REGISTER SET
€479 a2 INC ox ! DATA REGISTER
E47A 8A CS MoV AL,CH . DaTa
E47C EE ouT 0X, AL
€470 4A vEC oX
E47E BA Ca MOV AL, AH
E4BO FE CO INC aL . POINT TO OTHER DATA REGISTER
£4B2 EE out DX, AL i SET FOR SECOND REGISTER
E4BI 42 INC bDX
E484 BA C1 MoV AL, CL ; SECOND DATA VALUE
€486 EE out ox, AL
€487 3 RET . ALL DONE
€488 SET_CTVPE ENDP

A-56 ROMBIOS

Eq8B
EqB8
E£48A
Ea8C
E48E
€490
£494
E498
E49A
E49C
E49F
€4A2

E4A2
EdA2

E4AS
Ed4a7

E4AB
E4AD
E4AF
€482
EaB3

E4B3
E4B3
£485
E487
E4BA
E4BE
EA4B8F
E4aco
E4ac2
E4CS
E4C?
Eac9
E4cB
EACE
E4CF
E4D1

E4D5
E4D8

£40B
£408
E4DD
E4E0
E4EL
E4E3
E4ES
E4ES
E4EB
E4EE
£4FO
E4F3
E4FS
€4F8
€4FA
E4FC
E4FE
ES00
€502
ES05

EB

BB
03

o1

EB
c3

ESC2 R

ce

OE OO4E R

F9

E472 R

80
24

0062 R

OF

E3
a7

004C R

0050 R

E4A2 R
OF70 R

SET_CPOS

THIS ROUTINE SETS THE CURRENT CURSOR POSITION TO THE
NEW X-Y VALUES PASSED

DX - ROW, COLUMN OF NEW CURSOQR
BH - DISPLAY PAGE OF CURSOR

OUTPUT

CURSOR 1S SET AT 6845 IF DISPLAY PAGE IS CURRENT DISPLAY

s

c2§

ET_CPOS

PROC NEAR
MoV CL,BH
XOR CH, CH ; ESTABLISH LOOP COUNT
SAL X, 1 ; WORD OFFSET
MoV s1,Cx . USE INDEX REGISTER
MoV [SI+OFFSET CURSOR_POSN],DX ; SAVE THE POINTER
cHP ACTIVE_PAGE, BH
INZ c24 ; SET_CPOS_RETURN
MoV ax, pX ; GET ROW/COLUMN TO AX
CALL c2s ; CURSOR_SET
JNP VIDEO_RETURN

ENDP
SET CURSOR POSITION, AX HAS ROW/COLUMN FOR CURSOR
PROC NEAR

caLL POSITION ; DETERMINE LOCATION IN REGEN
; BUFFER
MoV Cx, ax
aDD CX, CRT_START ; ADD IN THE START ADDRESS FOR THIS
PAGE
SAR cx, 1 DIVIDE 8Y 2 FOR CHAR ONLY COUNT

MOV AH, 14 REGISTER NUMBER FOR CURSOR
CALL c23 QUTPUT THE VALUE TO THE 6845
RET

ENDP

INPUT

ACT_DISP_PAGE

THIS ROUTINE SETS THE ACTIVE DISPLAY PAGE, ALLOWING
THE FULL USE OF THE RAM SET ASIDE FOR THE VIDEO ATTACHMENT

AL HAS THE NEW ACTIVE O!SPLAY PAGE

QUTPUT

THE 6845 1S RESET TQ DISPLAY THAT PAGE

i
i
A

CT_DISP_PAGE PROC NEAR
TEST AL, 080H ; CRT/CPU PAGE REG FUNCTION
JN2Z SET_CRTCPU ; YES, GO HANDLE IT
MOV ACTIVE_PAGE,AL ; SAVE ACTIVE PAGE VALUE
MoV CX, CRT_LEN ; GET SAVED LENGTH OF REGEN BUFFER
caw ; CONVERT AL TO WORD
PUSH ax ; SAVE PAGE VALUE
MUL cx ; DISPLAY PAGE TIMES REGEN LENGTH
MOV CRT_START, AX ; SAVE START ADORESS FOR LATER USE
MOV CX, AX ; START ADDRESS TO CX
SAR cx, 1 ; DIVIDE BY 2 FOR 6845 HANDLING
MOV AH, 12 ; 6845 REGISTER FOR START ADDRESS
caLL c23
POP BX ; RECOVER PAGE VALUE
SAL BX, 1 ; #2 FOR WORD OFFSET
MoV AX, [BX + OFFSET CURSOR_POSN] ; GET CURSOR FOR THIS
; PAGE
caLL c25 i SET THE CURSOR POSITION
Jnp VIDEO_RETURN
; SET_CRTCPU
; THIS ROUTINE READS OR WRITES THE CRT/CPU PAGE REGISTERS
; INPUT
; (AL) = 83H SET BOTH CRT AND CPU PAGE REGS
; (BH) = VALUE TO SET IN CRT PAGE REG
; (BL) = VALUE TO SET IN CPU PAGE REG
; (aL) = B2H SET CRT PAGE REG
; (BH) = VALUE TO SET IN CRT PAGE REG
; taL) = 81H SEY CPU PAGE RE
; (BL) = VALUE TO SET IN CPU PAGE REG
; tAL) = BOH READ CURRENT VALUE OF CRT/CPU PAGE REGS
; OUTPUT
B ALL FUNCT]ONS RETURN
H (BH) = CURRENT CONTENTS OF CRT PAGE REG
; {BL) = CURRENT CONTENTS OF CPU PAGE REG
SETY_CRTCPU:
MOV AH, AL ; SAVE REQUEST IN AH
MOV DX, VGA_CTL ; SET ADDRESS OF GATE ARRAY
C26: IN AL, DX ; GET STATUS
AND AL, 08H ; VERTICAL RETRACE?
9z c26 ; NO, WAIT FOR IT
MoV DX, PAGREG ; SET 10 ADDRESS OF PAGE REG
MoV AL, PAGDAT ; GET DATA LAST OUTPUT TO REG
CMP AH, 80H ; READ FUNCTION REQUESTED?
Jz c29 ; YES, DON'T SET ANYTHING
cMP AH, 84H ; VALID REQUEST?
JNC c29 ; NO, PRETEND IT WAS A READ REQUEST
TEST AH, 1 ; SET CPU REG?
Jz c27 ; NO, GO SEE ABOUT CRY REG
SHL 8L, 1 ; SHIFT VALUE TO RIGHT BIT POSITION
SHL 8L, 1
SHL 8L, 1
AND AL, NOT CPUREG ; CLEAR QLD CPU VALUE
AND BL, CPUREG ; BE SURE UNRELATED BITS ARE ZERO
OR AL, BL ; QR IN NEW VALUE

ROM BIOS A-57

E507 F6 C4 02 C27 TEST
ES0A 74 07 Jz
ESOC 24 FB AND
ESOE 80 E7 07 AND
E511 0A C7 . OR
E513 EE ces8: our
E514 A2 00BA R MOV
E517 8A D8 c29 MoV
E519 80 £3 38 AND
E51C DO FB SAR
E51E 00 FB SAR
ES520 0O FB SAR
€522 8A F8 MOV
ES24 B0 E7 07 AND
€527 SF POP
E528 SE POP
E529 58 POP
E52A E9 OF73 R JMP
E520 ACT_DISP_PAGE

READ_CURSOR

6845,
INPUT

QUTPUT

DX - ROW,

AH, 2 ; SET CRT REG?

c28 ; NO, GO RETURN CURRENT SETTINGS
AL,NOT CRTREG ; CLEAR OLD CRT VALUE

BH, CRTREG ; BE SURE UNRELATED BITS ARE ZERO
AL, BH , OR IN NEW VALUE

DX, AL ; SET NEW VALUES

PAGDAT, AL ; SAVE COPY IN RAM

BL, AL ; GET CPU REG VALUE

BL, CPUREG ; CLEAR EXTRA BITS

BL, 1 ; RIGHT JUSTIFY IN BL

BL, 1

BL, L

BH, AL ; GET CRT REG VALUE

BH, CRTREG ; CLEAR EXTRA BITS

oI ; RESTORE SOME REGS

s1

AX ; DISCARD SAVED BX

c22 ; RETURN

ENDP

THIS ROUTINE READS THE CURRENT CURSOR VALUE FROM THE
FORMATS 1T,

AND SENDS IT BACK TO THE CALLER

BH - PAGE OF CURSOR

CX - CURRENT CURSOR

Mo s v me v

OVERSCAN COLOR,

COLUMN OF THE CURRENT CURSOR POSITION
MODE
PROC NEAR
8L,BH
BH, BH
BX, 1 WORD OFFSET

DX, [BX+OFFSET CURSOR_POSN]
CX, CURSOR_MODE
DI

SI
BX

AX ; DISCARD SAVED CX AND DX

THIS ROUTINE WILL ESTABLISH THE BACKGROUND COLOR, THE

AND THE FOREGROUND COLOR SET FOR GRAPHICS

HAS COLOR ID

THE BACKGROUND COLOR VALUE IS SET
FROM THE LOW BITS OF BL (0-31)
IN GRAPHIC MODES, BOTH THE BACKGROUND AND

IF BH=0,

BORDER ARE SET. IN ALPHA MODES, ONLY THE
BORDER 1S SET.
IF BH=1, THE PALETTE SELECTION 1S MADE
BASED ON THE LOW BIT OF BL
2 COLOR MODE:
O = WHITE FOR COLOR 1
1 = BLACK FOR COLOR 1
4 COLOR MODES
0 = GREEN, RED, YELLOW FOR

COLORS 1,2,3
1 = BLUE, CVAN,
COLORS 1,2,3
16 COLOR MODES
ALWAYS SETS UP PALETTE AS:
BLUE FOR COLOR 1
GREEN FOR COLOR 2
CYAN FOR COLOR 3
RED FOR COLOR 4
MAGENTA FOR COLOR §
BROWN FOR COLOR 6
LIGHT GRAY FOR COLOR 7
DARK GRAY FOR COLOR B
LIGHT BLUE FOR COLOR 9
LIGHT GREEN FOR COLOR 10
LIGHT CYAN FOR COLOR 11
LIGHT RED FOR COLOR 12
LIGHT MAGENTA FOR COLOR 13
YELLOW FOR COLOR 14
WHITE FOR COLOR 15

MAGENTA FOR

(BL) HAS THE COLOR VALUE TO BE USED

£520 EAD_CURSOR
E520 BA DF MOV
ES2F 32 FF XOR
€531 D1 E3 saL
E533 8B 97 0050 R MOV
€537 8B OE 0060 R MoV
E538B SF POP
E53C SE POP
E530 58 POP
ES3E 58 POP
E53F S8 POP
€540 IF POP
€841 07 POP
E%42 CF IRET
E543 READ_CURSOR

SET COLOR

INPUT

(BH)

oUTPUT
£543 ET_COLOR
€543 BA 030A MOV
ES546 EC €30: IN
€547 A8 08 TEST
€349 74 FB Jz
€548 0A FF oR
ES40 75 19 INZ

A-58 ROM BIOS

PROC NEAR

DX, VvGA_CTL ; 170 PORT FOR PALETTE

AL,DX ; SYNC UP VGA FOR REG ADDRESS
AL, 8 ; 18 VERTICAL RETRACE ON?
c3o0 ; NO, WALIT UNTIL IT IS

BH, BH ; 1S THIS COLOR 0?

Cc31 ; OUTPUT COLOR 1

——————— HANDLE COLOR O BY SETTING THE 8ACKGROUND COLOR
AND BORDER COLOR

NONE -- THE REGEN BUFFER 1S MODIFIED

€54F 80 3E 0049 R 04 CMP CRT_MODE, 4 ; IN ALPHA MODE?
ESS4 72 06 Jc €308 ; YES, JUST SET BORDER REG
€356 B0 10 nov AL, 10H ; SET PALETTE REG O
ESS8 EE ouT OX, AL ; SELECT VGA REG
€559 8A C3 MOV AL, BL ; GET COLOR
€558 EE ouT DX, AL ; SET IT
ESSC B0 02 €305: MoV aL, 2 ; SET BORDER REG
ESSE EE ouT DX, AL ; SELECT VGA BORDER REG
ESSF 8A C3 MoV AL, BL i GET COLOR
€561 EE ouT DX, AL ; SET IT
ES62 A2 0066 R MoV CRT_PALLETTE,AL ; SAVE THE COLOR VALUE
ES65 E£9 OF70 R JNP VIDEO_RETURN
o~ HANDLE COLOR 1 BY CHANGING PALETTE REGISTERS
ES68 A0 0049 R c31: HoV AL, CRT_MODE ; GET CURRENT MODE
ES68 89 0095 R MoV CX,OFFSET M0072 ; POINT TO 2 COLOR TABLE ENTRY
ES6E 3C 06 cHp aL,6 ; 2 COLOR MODE?
ES70 74 OF JE c33 ; YES, JUMP
ES72 3C 04 cHp AL, 4 ; 4 COLOR MODE?
ES74 74 08 JE c32 ; YES, JUMP
ES76 3C 05 (4713 AL,S ; 4 COLOR MOCE?
€578 74 04 JE c32 i YES, JUMP
ES7A 3C 0A CHP AL, 0AH ; 4 COLOR MODE?
ES7C 7% 20 JNE c36 ; NO, GO TO 16 COLOR SET UP
ES7E B9 ODID R c3z: MoV CX, OFFSET M0074 ; POINT TO 4 COLOR TABLE ENTRY
ESB1 00 CB €a3: ROR 8L, 1 ; SELECT ALTERNATE SETV?
€383 73 03 JNC €34 ; NO, JUMP
ES85 B3 Cl1 04 ADD €X, M0072L ; POINT TO NEXT ENTRY
€588 BB 09 c3a: MoV BX, CX ; TABLE ADDRESS IN BX
ESBA 43 INC BX ;i SKIP OVER BACKGROUND COLOR
€588 B9 0003 MoV CX,M0072L-1 ; SET NUMBER OF REGS TO FILL
ESBE B4 11 MoV AH, 11H ; AH 1S REGISTER COUNTER
E590 8A C4 €35: MOV AL, AH ; GET REG NUMBER
ES92 EE ouT DX, AL ; SELECT IT
€593 2€E: BA 07 MOV AL, CS: (8X] ; GET DATA
€596 EE out 0X, AL ; SET 1T
ES97 FE Cc4 INC AH ; NEXT REG
E%99 43 INC 8x ; NEXT TABLE VALUE
ES9A €2 F4 LooP €5
€59C EB 0D JMP SHORT €38
ESSE B4 11 c36: MoV AH, LIH ; AH 1S REGISTER COUNTER
ESAO B9 O0OF Hov CX, 15 ; NUMBER OF PALETTES
ESA3 BA C4 c37: MoV AL, AH ; GET REG NUMBER
ESAS EE out DX, AL ; SELECT IT
€546 EE ouT DX, AL ; SET PALETTE VALUE
ESA7 FE C4 INC AH ; NEXT REG
E5SA9 E2 F8 LooP c37
ESAB 32 CO c38: XOR AL, AL ; SELECT LOW REG TO ENABLE VIDEOQ
; AGAIN
€SAD EE ouTt 0X, AL
ESAE E9 OF70 R JMP VIDEO_RETURN
ESB1 SET_COLOR ENDP
i
; VIDEO STATE
; RETURNS THE CURRENT VIDEO STATE IN AX
; AH B NUMBER OF COLUMNS ON THE SCREEN
; AL = CURRENT VIDEQG MODE
; BH = CURRENT ACTIVE PAGE
ESB1 VIDEO_STATE PROC NEAR
E5B1 8A 26 004A R MoV AH,BYTE PTR CRT_COLS ; GET NUMBER OF COLUMNS
ESB5 AO 0049 R MoV AL, CRT_MODE ; CURRENT MODE
€588 BA 3E 0062 R “ov BH, ACTIVE_PAGE ; GET CURRENT ACTIVE PAGE
€58C SF . POP oI ; RECOVER REGISTERS
ESBD SE POP s1 ;
ESBE 59 POP -CX ; DISCARD SAVED 8X
ESBF E9 OF73 R JMP c22 ; RETURN TO CALLER
£3C2 VIDEO_STATE ENOP
; POSITION
H THIS SERVICE ROUTINE CALCULATES THE REGEN BUFFER ADDRESS
; - OF A CHARACTER IN THE ALPHA MOOE
; INPUT
; AX = ROW, COLUMN POSITION
; OUTPUT
; AX = OFFSETY OF CHAR POSITION IN REGEN BUFFER
£S5C2 POSITION PROC NEAR
E5C2 53 PUSH BX ; SAVE REGISTER
€5C3 B8 08B MoV BX, AX
ESCS 8A C4 MoV AL, AH ; ROWS TO AL
ESC7 F6 26 004A R MUL BYTE PTR CRT_COLS ; DETERMINE BYTES TO ROW
€5C8 32 FF XOR BH, BH
ESCO 03 c3 ADD AX, BX ; ADD IN COLUMN VALUE
ESCF D1 EO SAL Ax, 1 ; % 2 FOR ATTRISUTE BYTES
ESDL 58 POP -
€302 C3 RET
€503 POSITION ENDP
; SCROLL upP .
; THIS ROQUTINE MOVES A BLOCK OF CHARACTERS UP
; ON THE SCREEN
i INPUT |
; (AH) = CURRENT CRT MODE >
; (AL) = NUMBER OF ROWS TO SCROLL h o
H (Cx) ROW/COLUMN OF UPPER LEFT CORNER -c
H (0X) ROW/COLUMN OF LOWER RIGHT CORNER o
i (BH) = ATTRIBUTE TO BE USED ON BLANKED LINE =
H [1:3-3) DATA SEGMENT
; (ES) = REGEN BUFFER SEGMENT E—
; OUTRUT 3
i
i

ROM BIOS A-59

>

ESD3

ESD3 8A DB
E505 80 FC 04
ESD8 72 03
ESDA ES F259 R
ESDD

ESDD 53

ESDE 8B C1I
ESEQ E8 E609 R
E5E3 74 20
ESES 03 FO
E5SE7 8A E6
ESE9 2A E3
ESEB €8 E62F R
ESEE 03 FS
ESFO 03 FOD
ESF2 FE CC
E5F4 75 FS
E5F6 58

ESF7 B0 20
ESF9 EB E638 R
ESFC 03 FD
ESFE FE CB
EE00 75 F7
E602 E9 OF70 R
E£605 B8A OE
E607 EB €D
E609

E609

E609 EB8 ES5C2 R
E60C 03 06 004E R
E610 BB FB
E612 BB FO
E614 2B DI
E616 FE C6
£618 FE C2
E61A 32 ED
E61C 8B 2E 004A R
E620 03 ED
E622 B8A C3
£624 F6 26 004A R
E628 03 CO
E62A 06

E62B IF

E62C 0A DB
E62E C3

E62F

EB2F

E62F BA CA
E631 56

E632 57

E633 F3/ A5
EE€35 SF

E636 5

E637 C3

E£638

E638

EE38 BA CA
E83A 57

E63IB F3/ AB
E63D SF

EB3E C3

EB3F

EB3F

E63F FD

E640 8A D8
E642 80 FC 04
E645 72 03
E647 E9 F305 R
E64A 53

E64B 8B C2
E64D E8 E603 R
E650 74 IF
E652 28 FO
E654 8A E6
E656 2A E3

A-60

ROM BIOS

SAVE LINE COUNT IN BL
TEST FOR GRAPHICS MODE
HANDLE SEPARATELY

UP_CONTINUE
SAVE FILL ATTRIBUTE IN BH
UPPER LEFT POSITION

DO SETUP FOR SCROLL
BLANK_FIELD

FROM ADDRESS

2 ROWS IN BLOCK

£ ROWS TO BE MOVED

MOVE ONE ROW

POINT TO NEXT LINE IN BLOCK
COUNT OF LINES TO MOVE

RECOVER ATTRIBUTE IN AH
FILL WITH BLANKS

CLEAR THE ROW

POINT TO NEXT LINE

COUNTER OF LINES TO SCROLL
CLEAR_LOOP

GET ROW COUNT
GO CLEAR THAT AREA

ASSUME CS:CODE,DS:DATA,ES:DATA
SCROLL_UP PROC NEAR
LY 8L, AL ,
cMP AR, 4 ;
Jc cas .
JMP GRAPHICS_UP
c39: .
PUSH BX ;
MOV AX, CX B
cALL SCROLL_POSITION
Jz caq :
ADD S1,ax ;
MoV AH, DH ;
sue AH, BL ;
ca0 CALL cas i
ADD s1, 8P
ADD o1,8P R
DEC AH X
INZ cao . ROW_LOOP
ca1 POP ax E
MOV aL, ;
caz CALL cae ;
ADD ot,BP ;
DEC BL ;
INZ caz ;
ca3 JMp VIDEO_RETURN
caa: MOV BL,OH ;
JMP cal ;
SCROLL_UP ENDP

Hiduinhaiel HANOLE COMMON SCROLL SET
SCROLL_POSITION PROC NEAR
cA

LL POSITION

ADD AX, CRT_START

MOV D1, AX

MOV S1,AX

sue DX, CX

INC OH

INC oL

XOR CH, CH

MOV BP,CRT_COLS

ADD BP, B8P

MOV AL, BL

MUL BYTE PTR CRT_COL

ADD AX, AX

PUSH Es

POP oS

OR BL,BL
SCROLL_POSITION ENDP
=~ MOVE_ROW
c45 PROC NEAR

MOV cL, DL

PUSH s1

PUSH DI

REP MOVSW

POP 1

POP s1

RET

ENDP

CLEAR_ROW

PROC NEAR

MOV cL, oL

PUSH o1

REP STOSW

POP o1

RET
cas ENDP

UP HERE

s

CONVERT TO REGEN POINTER
OFFSET OF ACTIVE PAGE

TO ADDRESS FOR SCROLL

FROM ADDRESS FOR SCROLL

DX = SROWS, #COLS IN BLOCK

INCREMENT FOR O ORIGIN
SET HIGH BYTE OF COUNT TO ZERO
GET NUMBER OF COLUMNS IN DISPLAY
TIMES 2 FOR ATTRIBUTE BYTE
GET LINE COUNT

DETERMINE OFFSET TO FROM
ADDRESS
#2 FOR ATTRIBUTE 8YTE
ESTABLISH ADDRESSING TO REGEN
BUFFER
FOR BOTH POINTERS
O SCROLL MEANS BLANK FIELD
RETURN WITH FLAGS SET

GET % OF COLS TO MOVE

SAVE START ADDRESS
MOVE THAT LINE ON SCREEN

RECOVER ADDRESSES

GET # COLUMNS TO CLEAR

STORE THE FILL CHARACTER

SCROLL_DOWN
THIS ROUTINE MOVES THE CHARACTERS WITHIN A DEFINED

BLOCK DOWN ON THE SCREEN,

FILLING THE TOP LINES

DIRECTION FQR SCROLL DOWN
LINE COUNT TO BL
TEST FOR GRAPHICS

SAVE ATTRIBUTE IN BH
LOWER RIGHT CORNER
GET REGEN LOCATION

S1 IS FROM ADDRESS
GET TOTAL % ROWS

; WITH A DEFINED CHARACTER
. INPUT
i (AH) = CURRENT CRT MODE
; (AL) = NUMBER OF LINES TO SCROLL
; (CX) = UPPER LEFT CORNER OF REGION
; (DX) = LOWER RIGHT CORNER OF REGION
; (BH) B FILL CHARACTER
: (DS) = DATA SEGMENT
i (ES) = REGEN SEGMENT
; OUPUT
; NONE -- SCREEN 1S SCROLLED
SCROLL_DOWN PROC NEAR

STO ;

MOV BL, AL ;

cMP AH, 4 ;

Je ca7

JMP GRAPHI CS_DOWN
car: PUSH BX ;

MoV AX, DX i

caLL SCROLL_POSITION

9z cs1

suB SI,aX ;

MoV AH, DH ;

sug AH, BL ;

COUNT TO MOVE IN SCROLL

£658 E8 E62F R cas: cALL cas ; MOVE ONE ROW
E658 2B FS5 sus s1,8P
E6S5D 28 FD SUB DI,BP
E65F FE CC DEC AH
E661 75 F5 INZ cas
E663 5B cas: POP ax ; RECOVER ATTRIBUTE IN AN
£664 B0 20 MoV aL, v ¢
E666 EB E638 R c50: caLL ca6 ; CLEAR ONE ROW
€669 28 FD su8 o1,8P ; GO TO NEXT ROW
E66B FE CB DEC 8L
EBED 75 F7 INZ €50
E66F EB 91 IMP ca3 ; SCROLL_END
E671 8A DE cs1: MoV BL,OH
E673 EB EE JMP cas
E67S SCROLL_DOWN ENDP
MODE_ALIVE

THIS ROUTINE READS 256 LOCATIONS IN MEMORY AS EVERY OTHER
LOCATION IN 512 LOCATIONS. THIS IS TQ INSURE THE DATA
INTEGRITY OF MEMORY DURING MODE CHANGES

E67S JODE_AL1VE PROC NEAR
E675 50 PUSH AX ; SAVE USED REGS
E676 56 PUSH s1
E677 51 PUSH cx
£678 33 Fé XOR S1,S1
E67A B9 0100 MOV CX, 256
E670 AC C52: LobsSB
EG7E 46 INC S1
E67F E2 FC LOOP cs2
E6B1 59 POP cx
EE6B2 5E POP S1
E683 5B POP AX
E684 C3 RET
E68S MODE_ALIVE ENDP
; SET_PALLETTE
H THIS ROUTINE WRITES THE PALETTE REGISTERS
; INPUT
H (AL) = O SET PALETTE REG
H (BH) = VALUE TO SET
; (BL) = PALETTE REG TO SET
H tAL) = 1 SET BORDER COLOR REG
; (BH) B VALUE TO SET
H (AL) = 2 SET ALL PALETTE REGS AND BORDER REG
H NOTE: REGISTERS ARE WRITE ONLY.
E685 SET_PALLETTE PROC NEAR
EEBS 50 PUSH AX
E686 8B F4 MoV s1,spP
E688 36: 88 44 OC MOV AX,55:[51+12] ; GET SEG FROM STACK
E68C 8E CO MoV ES, AX
EGBE 8B F2 MoV S$1,0x ; OFFSET IN St
E690 BA 03DA MoV DX, VGA_CTL ; SET VGA CONTROL PORT
€693 EC C53: IN AL, DX ; GET VGA STATUS
E694 24 08 AND AL, 08H ; IN VERTICAL RETRACE?
€696 735 FB JNZ Ccs3 ; YES, WAIT FOR IT TQO GO AWAY
E698 EC C54: IN AL, DX ; GET VGA STATUS
€699 24 08 AND AL, 08H ; IN VERITCAL RETRACE?
E698 74 FB Jz €54 ; NO, WAIT FOR IT
E69D 3B POP AX
E69E 0A CO OR AL, AL ; SET PALETTE REG?
E6AO0 74 QC Jz [<-1.] ; YES, GO DO IT
E6A2 3C 02 CHNP AL, 2 ; SET ALL REGS?
E6A4 74 17 JE cs7 i
E6A6 3C 01 CHP AL, 1 ; SET BORDER COLOR REG?
E6A8 75 28 JNE cs9 ; NO, DON’T DO ANYTHING
EGAA BO 02 MoV AL, 2 ; SET BORDER COLOR REG NUMBER
E6AC EB 06 JMP SHORT CS6
EGAE 8A C3 C5S: MoV AL,BL ; GET DESIRED REG NUMBER IN AL
€680 24 OF AND AL, OFH ; STRIP UNUSED BITS
€682 0C 10 OR AL, 10H ; MAKE INTO REAL REG NUMBER
E6B4 EE cS6: ouT oX, AL ; SELECT REG
EGBS BA C7 MoV AL,BH ; GET DATA IN AL
£E6B7 EE ouT OX, AL ; SET NEW DATA
€688 32 CO XOR AL, AL i SET REG O SO DISPLAY WORKS AGAIN
E6BA EE ouT DX, AL
EEBB EP 18 JMP SHORT CS59
E6BD B4 10 C€57: MoV AH, 10H ;i AH IS REG COUNTER
E6BF 8A C4 C58: Moy AL, AH ; REG ADDRESS IN AL
E6CL EE out DX, AL ; SELECT IT
E6C2 26: BA 04 MoV AL,BYTE PTR ES:(S12 ;GET DATA
E6CS EE ouTt DX, AL ; PUT IN VGA REG
E6C6 46 INC s1 ; NEXT DATA BYTE
E6C7 FE C4 INC AH ; NEXT REG
E6CY 80 FC 20 CMP AH, 20H ; LAST PALETTE REG?
€E6CC 72 Fi J8 cse ; NO, DO NEXT ONE
E6CE BO 02 Hov AL,2 ; SET BORDER REG
€600 EE ouT oX, AL ; SELECT IT
E6DL 26: BA 04 Mov AL,BYTE PTR ES:[S1) ; GET DATA
E6D4 EE ouT DX, AL. . i PUT IN VGA REG

ROM BIOS A-61

E604
E6DS
E6DE
EEDE
E6D8
E6D9

E6DA
E6DO
EGDF
EEE2
E6E4
EGE6

E6ES
EGEA
EGES
E6EC

E6F2
E6F2

EGFS
E6F5
E6F6

E6F7
E6FA

E6FE
E700
E702

E704
E705
€706

E706
£706
E707
E709
E70C

E70E
E712
E714
E716
E717
E718
E719

E719
E719
E71A
E71C
E71D
E71F
E721
E723
E724
€726
€727
E728
£729

EE
ES

E9

50
FB

2E:

20
E4
E6

58
[ok]

A-62

OF70 R

0818 R

8A 25

26
21

ca
21

c9

0084 R

8A 05

FF

06
03
F8

o1
F9

01

0084 R

ROM BIOS

ouTr DX, AL ; PUT IN VGA REG

€59 JMP VIDEO_RETURN ; ALL DONE
SET_PALLETTE ENDP
MFG_UP PROC NEAR
PUSH ax
PUSH DS
ASSUME DS: XXDATA
MoV AX, XXDATA
MoV DS, AX
MOV AL, MFG_TST , GET MFG CHECKPOINT
oyT 10H, AL ; OUTPUTY IT TO TESTER
DEC AL ; DROP IT BY 1 FOR THE NEXT TEST
MOV MFG_TST, AL
ASSUME DS:ABSO
PQP DS
PQP ax
RET

MFG_UP ENDP
ASSUME (CS:CODE,DS:DATA
ORG OE6F2H
IMP NEAR PTR BOOT_STRAP

SUBROUTINE TO SET UP CONDITIONS FOR THE TESTING OF 8250 AND
8259 INTERRUPTS ENABLES MASKABLE EXTERNAL INTERRUPTS,
CLEARS THE B259 INTR RECEIVED FLAG BIT, AND ENABLES THE
DEVICE’S 8259 INTR (WHICHEVER IS BEING TESTED).

1T EXPECTS TO BE PASSED
(DS) = ADDRESS OF SEGMENT WHERE INTR_FLAG IS DEFINED
(DI} = OFFSET OF THE INTERRUPT BIT MASK

UPON RETURN:

INTR_FLAG BIT FOR THE DEVICE B 0

NO REGISTERS ARE ALTERED

B v e v e e s

vl PROC NEAR

PUSH AX

STI ; ENABLE MASKABLE EXTERNAL
; INTERRUPTS

MoV AW, CS: (DI} ; GET INTERRUPT BIT MASK

AND INTR_FLAG, AH ; CLEAR B259 INTERRUPT REC‘D FLAG
, BIT

IN AL, INTAO1L ; CURRENT INTERRUPTS

AND AL, AH ; ENABLE THIS INTERRUPT, T0O

ouTt INTAOL, AL ; WRITE TO 8259 (INTERRUPT

CONTROLLER)
AX

SUBROUTINE WHICH CHECKS [F A B259 INTERRUPT
8250 INTERRUPT
IT EXPECTS TO BE PASSED

IS GENERATED 8Y THE

(DI) = OFFSET OF INTERRUPT BIT MASK
(DS) B ADDRESS OF SEGMENT WHERE INTR_FLAG 1S DEFINED.
IT RETURNS:

(CF) B | IF NO INTERRUPT [S5 GENERATED
O IF THE INTERRUPT OCCURRED
(AL) = COMPLEMENT OF THE INTERRUPT MASK
NO OTHER REGISTERS ARE ALTERED

USH <X
sus CX, CX ; SET PROGRAM LOOP COUNT
MOV AL,CS:(DI) , GET INTERRUPT MASK
XOR AL, OFFH , COMPLEMENT MASK SO ONLY THE INTR
; TEST BIT 1S ON
AT25 TEST INTR_FLAG, AL ; B259 INTERRUPT OCCUR?
INE AT27 i YES - CONTINUE
LOOP AT25 ; WAIT SQME MORE
STC ; TIME'S UP - FAILED
AT27: POP cx
RET

C5059 ENDP

SUBROUTINE TO WAIT FOR ALL ENABLED 8250 INTERRUPTS TO CLEAR (S0
NO INTRS WILL BE PENDING). EACH INTERRUPT COULD TAKE UP TOQ
L MILLISECOND TO CLEAR. THE INTERRUPT IDENTIFICATION
REGISTER WILL BE CHECKED UNTIL THE INTERRUPT(S) IS CLEARED
OR A TIMEOUT OCCURS.

EXPECTS TO BE PASSED:
(DX) = ADDRESS OF THE INTERRUPT 1D REGISTER

(AL) = CONTENTS OF THE INTR 1D REGISTER

= 1 IF INTERRUPTS ARE STILL PENDING
0 IF NO INTERRUPTS ARE PENDING (ALL CLEAR)
NO OTHER REGISTERS ARE ALTERED

i
W

8250C PROC NEAR

PUSH cx
suB Cx, CXx

AT28: IN AL, DX ; READ INTR 1D REG
o, 13 AL, L ; INTERRUPTS STILL PENDING?
JE AT29 ; NO - GOQD FINISH
LooP AT28 ; KEEP TRYING
STC ; TIME'S UP - ERROR
JMP SHORT AT30

AT29: cLc

AT30: POP Ccx
RET

WB250C ENDP

Q3F9
02EA
Q175
008A
0050
002F
0017
0017

i
;
H
H
H
i
i
H
i
H
i
H
H
H
H
i

" THIS ROUTINE PROVIDES BYTE STREAM 1/0 TO THE COMMUNICATIONS
PORT ACCORDING TO THE PARAMETERS

(AH)=0 INITIALI2E THE COMMUNICATIONS PORY
(AL) HAS PARMS FOR INITIALIZATION
{3 5 - 3 2 --1
===- BAUD RATE ---::-—~-PARITY-——-::-STOPBIT~.:--WORD LENGTH--
000 - 110 X0 =~ NONE 0 -1 10 - 7 BITS
001 - 150 01 - 00D 1 -2 11 - 8 BITS
010 - 300 11 - EVEN
011 - 600
100 - 1200
101 - 2400
110 - 4800
111 - 4B0O
ON-RETURN, THE RS232 INTERRUPTS ARE DISABLED AND
CONDITIONS ARE SET AS IN CALL TO COMMO
STATUS (AH=3)
(AH)=1 SEND THE CHARACTER IN (AL) OVER THE COMMO LINE
(AL) REGISTER 1S PRESERVED
ON EXIT, BIT 7 OF AH 1S SET IF THE ROUTINE WAS
UNABLE TO TRANSMIT THE BYTE OF DATA OVER
THE LINE. IF BIT 7 OF AH 1S NOT SET, THE
REMAINDER QF AH 1S SET AS IN A STATUS
REQUEST, REFELECTING THE CURRENT STATUS OF
THE LINE.
{AH)=2 RECEIVE A CHARACTER IN (AL) FROM COMMO LINE BEFORE
RETURNING TO CALLER
ON EXIT, AH HAS THE CURRENT LINE STATUS, AS SET BY
THE STATUS ROUTINE, EXCEPYT THAT THE ONLY
BITS LEFT ON, ARE THE ERROR BITS
(7,4,3,2,1). IN THIS CASE, THE TIME OUT BIT
INDICATES DATA SET READY WAS NOT RECEIVED
THUS, AH IS NON ZERO ONLY WHEN AN ERROR
OCCURRED. (NOTE: IF THE TIME-OUT BIT IS SET,
OTHER BITS IN AH MAY NOT BE RELIABLE.)
(AH)=3 RETURN THE COMMO PORT STATUS IN (AX)

CARD .

AH CONTAINS THE LINE CONTROL STATUS

BIT 7 = TIME OUT

BIT 6 = TRANS SHIFT REGISTER EMPTY

B1T 5 B TRAN HOLDING REGISTER EMPTY

B1T 4 @ BREAK DETECT

BIT 3 = FRAMING ERROR

BIT 2 = PARITY ERROR

BIT 1 B OVERRUN