

MT4C4256(L) 256K x 4 DRAM

DRAM

256K x 4 DRAM

STANDARD OR LOW POWER, EXTENDED REFRESH

PIN ASSIGNMENT (Top View) 20-Pin DIP 20-Pin ZIP (DA-2) (DB-1) 1 == 2 3 == 2 5 == 4 7 == 6 20 Vss OE CAS 19 DQ4 DQ3 DQ4 18 DQ3 Vss 5 WE 3 $\begin{array}{c} Vss & 5 & 5 \\ \hline DQ2 & 7 & 5 \\ \hline RAS & 9 & 5 \\ \hline A0 & 11 & 5 \\ \hline A2 & 13 & 5 \\ \hline Vsc & 15 & 5 \\ \hline Csc & 15 & 5 \\ \hline Csc & 15 & 5 \\ \hline Csc & 16 & A4 \\ \hline A5 & 17 & 5 \\ \hline Csc & 16 & A4 \\ \hline A7 & 19 & 5 \\ \hline Csc & 20 & A8 \\ \end{array}$ DQ1 17 CAS RAS 4 NC 5 16 0E 15 🛛 A8 A0 6 14 🛛 A7 A1 🛛 7 A2 🛛 8 13 🛛 A6 A3 🛛 9 12 🛛 A5 Vcc [10 11 🛛 A4 20/26-Pin SOJ (DC-1) DQ1 1 26 🛛 Vss 25 DQ4 24 DQ3 23 CAS RAS 04 NC D5 22 0 OF A0 0 9 18 🛛 A8 A1 0 10 17 A7 A2 0 11 16 🗆 A6 A3 12 15 A5 14 D A4 Vcc 113

prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after data reaches the output pin, data-out (Q) is activated and retains the selected cell data as long as \overline{CAS} remains LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ WRITE cycle. The four data inputs and four data outputs are routed through four pins using common I/O and pin direction is controlled by \overline{WE} and \overline{OE} .

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined (A0-A8) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobed-

FEATURES

- 512-cycle refresh in 8ms (MT4C4256) or 64ms (MT4C4256 L)
- Industry-standard x4 pinout, timing, functions and packages
- High-performance CMOS silicon-gate process
- Single +5V $\pm 10\%$ power supply
- Low power, 0.8mW standby; 175mW active, typical
- All inputs, outputs and clocks are TTL-compatible
- FAST PAGE MODE access cycle
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN and Extended (MT4C4256L only)
- Low CMOS Standby Current, 200µA maximum (MT4C4256 L)

OPTIONS	MARKING
Timing	
60ns access	-6
70ns acces	-7
80ns access	-8
Packages	
Plastic DIP (300 mil)	None
Plastic SOJ (300 mil)	DJ
Plastic ZIP (350 mil)	Z
Version	
512-cycle refresh in 8 ms	None
512-cycle refresh in 64 ms	L

• Part Number Example: MT4C4256DJ-7 L

GENERAL DESCRIPTION

The MT4C4256(L) is a randomly accessed solid-state memory containing 1,048,576 bits organized in a x4 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 18 address bits, which are entered 9 bits (A0-A8) at a time. RAS is used to latch the first 9 bits and CAS the latter 9 bits. READ and WRITE cycles are selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. If WE goes LOW

OBSOLETE

in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE cycle.

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS REFRESH cycle (RAS ONLY, CBR, or HIDDEN) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8ms for the MT4C4256 and every 64ms for the MT4C4256 L, regardless of sequence. The CBR REFRESH cycle will invoke the internal refresh counter for automatic RAS addressing.

FUNCTIONAL BLOCK DIAGRAM FAST PAGE MODE

*NOTE: 1. If WE goes LOW prior to CAS going LOW, EW detection circuit output is a HIGH (EARLY WRITE). 2. If CAS goes LOW prior to WE going LOW, EW detection circuit output is a LOW (LATE WRITE).

TRUTH TABLE

						ADDRESSES		DATA-IN/OUT	
FUNCTION		RAS	CAS	WE	ŌĒ	^t R	^t C	DQ1-DQ4	
Standby		Н	H→X	Х	Х	Х	Х	High-Z	
READ		L	L	Н	L	ROW	COL	Data-Out	
EARLY WRITE		L	L	L	Х	ROW	COL	Data-In	
READ WRITE		L	L	H→L	L→H	ROW	COL	Data-Out, Data-In	
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	L	ROW	COL	Data-Out	
READ	2nd Cycle	L	H→L	Н	L	n/a	COL	Data-Out	
FAST-PAGE-MODE	1st Cycle	L	H→L	L	Х	ROW	COL	Data-In	
EARLY-WRITE	2nd Cycle	L	H→L	L	Х	n/a	COL	Data-In	
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	
RAS ONLY REFRESH		L	Н	Х	Х	ROW	n/a	High-Z	
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Data-Out	
REFRESH	WRITE	L→H→L	L	L	Х	ROW	COL	Data-In	
CBR REFRESH		H→L	L	Х	Х	Х	Х	High-Z	
Extended Refresh (MT4C4256 L only)		H→L	L	Х	Х	Х	Х	High-Z	

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Vss1V to +7	V
Operating Temperature, T _A (ambient) 0°C to +70°	Ъ
Storage Temperature (plastic)55°C to +150°	Č
Power Dissipation 1V	W
Short Circuit Output Current 50m	А

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) (Vcc = +5V ±10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	
Input High (Logic 1) Voltage, all inputs	Vін	2.4	Vcc+1	V	
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le 6.5V$ (All other pins not under test = 0V)	lı	-2	2	μA	
OUTPUT LEAKAGE CURRENT: (Q is disabled; $0V \le V_{OUT} \le 5.5V$)	loz	-10	10	μA	
OUTPUT LEVELS Output High Voltage (Iout = -5mA)	Vон	2.4		V	
Output Low Voltage (lout = 4.2mA)	Vol		0.4	V	

				MAX]	
PARAMETER/CONDITION	VERSION	SYMBOL	-6	-7	-8	UNITS	NOTES
STANDBY CURRENT: (TTL) ($\overline{RAS} = \overline{CAS} = V_{H}$)		Icc1	2	2	2	mA	
STANDBY CURRENT: (CMOS)	MT4C4256	Icc2	1	1	1	mA	
$(\overline{RAS} = \overline{CAS} = Vcc - 0.2V)$	MT4C4256 L	Icc2	200	200	200	μA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Single Address Cycling: ^t RC = ^t RC [MIN])		Іссз	90	80	70	mA	3, 4, 29
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN])		Icc4	70	60	50	mA	3, 4, 29
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = V⊮: ^t RC = ^t RC [MIN])		Icc5	90	80	70	mA	3, 29
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])		Icc6	90	80	70	mA	3, 5
REFRESH CURRENT: Extended Average power supply current during Extended Refresh: $\overline{CAS} = 0.2V$ or CBR cycling; $\overline{RAS} = {}^{t}RAS$ (MIN) to1µs; \overline{WE} , A0-A8 and DIN = Vcc -0.2V or 0.2V (DIN may be left open); ${}^{t}RC = 125\mu s$ (512 rows at 125µs = 64ms)	MT4C4256 L	Ісст	200	200	200	μΑ	3, 5, 27

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	Cı1		5	pF	2
Input Capacitance: RAS, CAS, WE, OE	Cı2		7	pF	2
Input/Output Capacitance: DQ	Сю		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = +5V ±10%)

AC CHARACTERISTICS			-6		-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	110		130		150		ns	
READ WRITE cycle time	^t RWC	165		185		205		ns	
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		45		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	90		95		100		ns	
Access time from RAS	^t RAC		60		70		80	ns	14
Access time from CAS	^t CAC		20		20		20	ns	15
Output Enable	^t OE		20		20		20	ns	
Access time from column-address	^t AA		30		35		40	ns	
Access time from CAS precharge	^t CPA		35		40		45	ns	
RAS pulse width	^t RAS	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width (FAST PAGE MODE)	^t RASP	60	100,000	70	100,000	80	100,000	ns	
RAS hold time	^t RSH	20		20		20		ns	
RAS precharge time	^t RP	40		50		60		ns	
CAS pulse width	^t CAS	20	100,000	20	100,000	20	100,000	ns	
CAS hold time	^t CSH	60		70		80		ns	
CAS precharge time	^t CPN	10		10		10		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	^t RCD	20	40	20	50	20	60	ns	17
CAS to RAS precharge time	^t CRP	5		5		5		ns	
Row-address setup time	^t ASR	0		0		0		ns	
Row-address hold time	^t RAH	10		10		10		ns	
RAS to column- address delay time	^t RAD	15	30	15	35	15	40	ns	18
Column-address setup time	^t ASC	0		0		0		ns	
Column-address hold time	^t CAH	15		15		15		ns	
Column-address hold time (referenced to RAS)	^t AR	45		55		60		ns	
Column-address to RAS lead time	^t RAL	30		35		40		ns	
Read command setup time	^t RCS	0		0		0		ns	
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	^t CLZ	0		0		0		ns	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = +5V ±10%)

AC CHARACTERISTICS		-	6		-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	tOFF	3	20	3	20	3	20	ns	20, 26, 28
Output disable	tOD		15		20		20	ns	26
WE command setup time	tWCS	0		0		0		ns	21
Write command hold time	tWCH	10		15		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		60		ns	
Write command pulse width	^t WP	10		15		15		ns	
Write command to RAS lead time	^t RWL	20		20		20		ns	
Write command to CAS lead time	tCWL	20		20		20		ns	
Data-in setup time	^t DS	0		0		0		ns	22
Data-in hold time	^t DH	15		15		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		ns	
RAS to WE delay time	^t RWD	85		100		110		ns	21
Column-address to WE delay time	^t AWD	60		65		70		ns	21
CAS to WE delay time	^t CWD	40		50		55		ns	21
Transition time (rise or fall)	tT	3	50	3	50	3	50	ns	9, 10
Refresh period (512 cycles) MT4C4256 / MT4C4256 L	^t REF		8 / 64		8 / 64		8 / 64	ms	
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		10		ns	5
CAS hold time (CBR REFRESH)	^t CHR	10		15		15		ns	5
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	15		20		20		ns	25
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		0		ns	24

NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of $100\mu s$ is required after power-up followed by any eight \overline{RAS} cycles before proper device operation is assured. The eight \overline{RAS} cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- 9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If \overline{CAS} = VIH, data output is High-Z.
- 12. If \overline{CAS} = VIL, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.

- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voн or Vol.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are not restrictive operating parameters. ^tWCS applies to EARLY WRITE cycles. ^tRWD, ^tAWD and ^tCWD apply to READ-MODIFY-WRITE cycles. If ^tWCS \geq ^tWCS (MIN), the cycle is an EARLY WRITE cycle, and the data output will remain an open circuit throughout the entire cycle. If ^tRWD \geq ^tRWD (MIN), ^tAWD \geq ^tAWD (MIN) and ^tCWD \geq ^tCWD (MIN), the cycle is a READ-MODIFY-WRITE cycle, and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. \overline{OE} held HIGH and \overline{WE} taken LOW after \overline{CAS} goes LOW results in a LATE WRITE (\overline{OE} -controlled) cycle. ^tWCS, ^tRWD, ^tCWD and ^tAWD are not applicable in a LATE WRITE cycle.
- 22. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. If $\overline{\text{OE}}$ is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$ and $\overline{OE} = HIGH$.
- 25. LATE WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. If OE is taken back LOW while CAS remains LOW, the DQs will remain open.
- 26. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS goes HIGH before OE, the DQs will open regardless of the state of OE. If CAS stays LOW while OE is brought HIGH, the DQs will open. If OE is brought back LOW (CAS still LOW), the DQs will provide the previously read data.
- 27. Extended refresh current is reduced as ^tRAS is reduced from its maximum specification during the extended refresh cycle.
- 28. The 3ns minimum is a parameter guaranteed by design.
- 29. Column-address changed once each cycle.

OBSOLETE

EARLY WRITE CYCLE

FAST-PAGE-MODE READ CYCLE

FAST-PAGE-MODE EARLY-WRITE CYCLE

FAST-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE CYCLES)

*^tPC is for LATE WRITE only.

OBSOLETE

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)

NOTE: 1. Do not drive data prior to tristate: ^tCPP(MIN) or ^tCP(whichever is greater) + ^tDS(MIN) + any guardband between data-out and driving the bus with the new data-in.

NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

2. Package width and length do not include mold protrusion; allowable mold protrusion is .01" per side.

NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

2. Package width and length do not include mold protrusion; allowable mold protrusion is .01" per side.

20/26-PIN PLASTIC SOJ (300 mil)

NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

2. Package width and length do not include mold protrusion; allowable mold protrusion is .01" per side.

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900 E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992 Micron is a registered trademark of Micron Technology, Inc.