Connection management in a Lakes environment
Barry Aldred, Howard Lambert, David Mitchell

IBM UK Labs, MP 167, Hursley Park,
Winchester, Hampshire SO21 2JN, UK

ABSTRACT

Lakes is an architecture for collaborative workifeyeloped to support a widange ofcollaborative applications of
the "same time/different plac&ariety across different platfornadcommunications media. When applications wish
to share data in such an environment, connections must be estabhsheldannelsreated to providéhe necessary
communications links. Asew nodes join or leavihe conference, new connections must be made or broken. If an
application is using several distinct channels for diffetgpes ofdata, the management agahtrol of these channels
can be acomplex task.This paper presents averview ofthe Lakes architectur@nd focuses on twqarticular
features which have been designed to redbeeburden of connectioand channel management on #plication
programmer:

» theability of oneparticularLakes applicationthe call manager, tprovide flexible connectiomanagement on
behalf of other applications.

» the facility to requesthat channels arautomatically creatednd destroyed as applicatiormse shared into or
unshared from calls
1. AN OVERVIEW OF THE LAKES ARCHITECTURE
Experience gained in developing a series of desktop conferesgstgm$ over the lastfive yearshasled us to

develop Lakes, ararchitecturé which supports awide range ofcollaborative applications. Lakes definésur
important interfaces, as shown in the figure below:

CALL MANAGER COLLABORATIVE APPLICATIONS
4—— LAKES API
USER
AND
NETWORK LAKES PLATFORM
DATA
<+— LAKES DSI
I DEVICE DRIVERS AND HARDWARE
——
LAKES RLI LAKES COMMS PROTOCOLS

These interfaces are:
¢ the application programming interface (API) allows applications to request Lakes services.

¢ the device support interface (DSI) allows Lakes to support an extensibige ofsoftwareand hardwaresub-
systems.

¢ the resources interface (RLI) through which Lakes requests details of nodes, users and network data.

¢ thelLakes communication protocolsansmittedoverthe physical network, as @nsequence of application calls
through the API.

This paperdoesnot discussthe DSI orRLI, concentrating omsome specific features dhe Lakes application
programming interface, referred to from now on as the API. This APl is designed to allow applications to:

* initiate peer applicationand shareesources, on a variety bardware andoftware platforms, located on
nodes across a diverse and complex communications network.

¢ define multiple dedicated logicdhta channelbetweernshared applications, suitalflar a broadrange of
multimedia traffi¢-5, independent of the structure of the underlying physical network.

* serialize, synchronize, merge or copy the data streaming between shared applications.

e support a range of attached devices and to allow the interception and redirection of the device data.
A Lakes platform includes other components to assist application development:

* an extensible set of logical devices, interfacing to external applications and devices.

* a set of end-user utilities, written to the API, whose function can also be invoked from applications
through a command level interface (CLI).

1.1 Network, nodes and applications

At the highestevel, the programmingnodel consists of a communicating set of nodesiode is the addressable

entity in Lakes representing a usand comprises an instance of Lakesid aset of resources, such as application
programs, data etc. Usually a node is a dedicated programmable workstation, capable of communicating with its peers;
in a multi-user system a node is associated with each user.

Nodesare identified by namadleally all node names should be unique but duplicatesbe tolerated as long their
associated nodeare never required to inter-communicate. Tiede naming scheme is not prescribed by the
architecture but a hierarchicsystem, such ahatdefined bythe Interneprotocol,hasmany benefits. A collection of
inter-communicating Lakes nodes is calledlakes network. It is fundamental to the architectutieat any node,
independently of any others, can dynamically join or leave the network.

Nodescan contain logicatlevices. Alogical deviceis a software extension to Lak#sat allows an application to
manipulate or managsftware or equipmengnd to do so in svay which is consistent with the other entities in the
Lakes modelThere are manpossible Lakes logical devicascluding, for example: presentation windows,rgers,
disk drives and the system clipboard.

Multiple applications can bexecuted at a Lakes node, subjecti#® constraintémposed there bthe operating and
windowing systems. Applicationare eitherLakes-aware or Lakes-unaware; aware application invokes the
services othe Lakes API; arunaware application doesnot. Both awar@ndunaware applications will generally be
executing simultaneously at a node. Although Lakes provides logical devices to ads&ingwindows belonging to
unaware applications, @oesnot currently support the direcollaborative use of such applications, unlM&Conf4
or Shared X

The APIlconsists of a set of function calls to LAKES together with a related set of evaetsirst function call an

aware application makes establishes an eventller whichwill be sent Lakes events, most of which, beiing result

of function calls issued by remote applicatiom® asynchronous. The programmstgle isthusvery similar to that
required when writing applications for a GUI such as OS/2 Presentation Manager, Windows or X11. Work is currently
underway defining an object-oriented API and class library for Lakes.

1.2 The call manager

In order for Lakes to béully active at anode, one particular aware application musturging at thanode. This
application plays a unique role and is known asciemanager. Many callmanagersnay be available for execution
at a particular node bunly oneinstance of an aware application can be performing this roenwattime. The
distinguishing feature of a call managethst it responds to certaiavents generated by Lakes; thase typically
concerned with name resolution@source managemefar the node. Call manageesponsibilitycan be transferred
from one application to another; also the ca#inager role can lmbined with user application function tifat is
appropriate.

The Lakes support software may requtsdt theresources of one node be made available for Lakes communication
between twmther nodesthis is termegassive operationandpermission must be granted by the call manager at the
passive node. An example tifis may be twonodes,ALPHA and BETA on a LAN, with athird node GAMMA
connected to BETA by an asynchronous communicatiios If applications atALPHA and GAMMA wish to
communicate, the traffic will need to be routed via BETA. The consent of the call manBg&rAats required for its
node to be used in this way.

1.3 Sharing sets

Aware applicationganconvenientlyshare data ancesources with other aware applicationshe&t same odifferent
nodes by joining aapplication sharing set Application sharing sets are named collections of application instances.

A Lakes applicationinitiates ashare requestnaming an application sharirgpt, a destination nodend a target
application. This request is firpassed by Lakes the call manager at the sending node, which tylically transfer

it to the call manager at the destination nddieually this second call manager will launch tlegjuested application
and thesource application will be informedhe participation of the call managers in tprecess allows both local
control of thesharingprocessand otheractions to be initiated if necessaihe call managerplay a vital role in
resolving the namessed by applications to identify other nodesd applications. The sharing mechanism can be
cascaded; for example, if two applications are already sharing, one of them can initiate a shatt@rdiipplication
naming the same sharing set, with the result that all three applications are then sharing with each other.

Applications may also make locsthare requests diehalf of other applicationthereby allowing membership control

of the sharingset to be delegated. Facilities exist &ither the issuer, or the target of the share request, to name the
application sharing set. These names are not required to be unique; thus multiplesghsirivitithe same name can
exist.

Individual applications carceasesharing atany time and thereby withdraw from aharing set, the remaining
applications in the set being then notified of the application withdrawal.

1.4 Communications, channels and ports

Applications in asharingsetcan establish data communication links, known as channels, with eachGithanels

are logically dedicated, uni-directional pipes, with applicatgpecifiedtransmission characteristics. A channel is
always defined byhe sending applicatioandgoes fromthe sending application to a receiving application. The ends
of channels are known gsrts; thus each channel hase sending podndone receiving port. Aending port sends
datapacketsdownthe channel; aeceiving port receivesdatapackets inthe order in whictthey weresent down the
channel.Both sendingand receiving ports can be sharbétween differenthannels. Therenay not be a direct
mappingbetweerthe logical channel structuseen by thé akes-aware applicatiorand thephysical communication
network in existence between the nodes.

An applicationmay establismultiple channels to another application as a convemvagtto separate data traffic of
different types. Lakes mamap some orall of the logical channels on to a single physidiak, but this will be
invisible to the application.

Channels have a number gfality of service characteristics, initially negotiated with Lakdaring the creation
process, which allowlata transmission characteristics to be tailored to the requirementsexfpibeted traffic. The
quality of service parametesse defined according tthe signaltype, which distinguishes analog from digital data.
They need not be specified explicitly but can be notified to Lakes in terms dditdhelasseghat are to be transmitted
downthe channel. This mechanisatiows video, voiceand other data channels to $ensibly establishe€Channel
characteristics can be re-negotiated after channel creation. Clyaaligi of service may also be lefhdefined; this
allows channels to be createdhoseoperational characteristics depends uponrdssurces available whetata is
being sent down the channel.

Channelsmay be collectednto named sets; such named s&is known ashannel setsandmay be of one of four
types:standard, mergedynchronougndserialized.Standard channel setgrovide a convenienvay of referring to
a collection ofchannels, but the individual behavior of the constituent channels is not chahgedgh amerged
channel sethowever datapacketsare takerfrom the constituent channedsaddelivered to each receiving application
through a single port. There is no guarantee¢hah application received| the datgpackets inthe samesequence,
only thateach application receivedl the packets. Through serialized channel setatapacketsare takerfrom the
constituent channebnd thendelivered to each application suttiat each receiving poreceivests datapackets in
the samesequence athe other receiving ports. Throughsgnchronized channel setlatapacketsare synchronized,
so that the packets on the separate channels are tied together (ifiortiexample voice with video), butaredelivered
through the individual ports belonging toeir respectivechannels. Channedet namesre local to an application
sharing set.

2. THE ROLE OF THE CALL MANAGER IN APPLICATION SHARING

2.1 Whatis a call?

Because oits role inhandling shareequests, the call manager is thsible manifestation of a set of policied/hat
we mean by a "call" is the result of a set of policy decisions:

* Are all the parties in a call equal? Can any one of them add a newcomer? Do the other parties get a vote?
» Can people outside the call join in or do they have to be invited in by an existing member?
» Can anyone launch a shared application? Is it automatically launched at all nodes in the call?

» Can anyone end a multi-way call or merely leave it? Can anyone leave at any time?

» Can two calls be merged into one or one call be split into two?

Most of these questions dmt have a singleight answer. Rather each combination of answers defingsssible
meaning of thevord call. It should be cleathat if weembedthe answers in theystem itself, wdardwire the notion
of a call. In the Lakes architecture we have deliberately arranged that all such callpeliaiedecisionsaresurfaced
to the call managefor resolution, which meanthat alternativepolicies can beimposed byreprogramming or
replacing it.

It should be cleathat there arenany possibleall managers. The simplestodelled orthe metaphor of an informal
telephone call, impostew rules on users. By contrast, a call manafgera formal, chaired meeting i&kely to
implement rules of order, provide facilities for minute taking and possibly support operations such as voting.

2.2 The sharing process in detalil

Before weexaminehow acall manager can implement the notion of a call, we need to examisdahagprocess
outlined in section 1.3 in more detail. An aware application initiatelsage requestby naming a sharingetand a
sourceand target applicatiomyhere the issuer need heither thesourcenor the target of the share. Treeeiver of a
share request may accept it, reject it or transfer it to another application. Such a request is passed:

» to thesource, ifthis is not the issuer. Thalows an application to prevent itself beigigared when itloes not
wish to. For example, a two-player game applicatiaght reject attempts to enlardbe size of itssharing set
beyond two unless it supported kibitzing.

» to the call manager at ttemurce nodeThis ensureshat unscrupulous applications cannot makeert calls to
other nodes withouthe call manager being aware ibf Our standard call managegjects an outgoinghare
request initiated by an application if it is to a node which is not already a party to an existing call.

» to the call manager at the target nodgpically this will either launch a fresh instance of theguested
application or, if a suitable instance is alreadgning will transfer the share td. Our standard call manager
allows applications to bmarked as non-sharable, sharable by launching a fresh instance, sharable if currently
unshared or sharable even if already shared.

» to the target application. In rac&rcumstances thisiay wish to rejecsharing, particularly if it's currerstate and
stored data is incompatible with a new sharing operation.

» assuming the share requeseventually acceptedhare confirme@ventsare sent to the existingembers of the
sharing set informing them of thenewcomer. They inurn send share confirmedvents tothe newcomer
informing it of their existence. Of course, requests to enlagieengset may beent out by moréhanone node
in the set at the same time. The order in which share confieverdsare senbut guaranteethat thisdoes not
cause confusion.

The unsharing process is much simpler:
* anunshare request is sent to the target of the unshare, if this is not the issudlowian application teefuse
to be unshared if it is in the middle of an uninterruptible operation, such as the transfer of data as a series of

blocks to other members of its sharing set.

» assuming the application agrees to be unshared, unshamtsare sent to thenembers ofthe sharing set
informing them of the departing instance.

2.3 The role of the standard call manager

Given the way sharing works, our standard call manager implements the concept of a call bydhamirggets with
other call managers. Each such shasegdefineshe set ohodeswithin that call. Further, iprovides commands by
which the user can share applications into a call or unshareftbenone.Sharing an application into a callvolves
constructing an application sharisgtthat is"congruent” with the call manager sharisgt, that isinvolving the
same set of nodes. The cadhnager tries t&eep such applicatiosharingsets congruent witthe corresponding call
manager sharing set. Thus wheneav node is invited to join a call, its callanagejoins a callmanager sharinget.
The inviting call manager willhenissueshare requests drehalf ofall the applications currently shared into the call
to extend their sharing sets to the new node too. Similarly when a node lealesta call manager thdeaves such

a sharing set. It wilthenissueunshare requester all the applications in the call tausethem toleavetheir sharing
sets too.

To illustrate this, consider the following sequence:

1. the user at node ALPHA makes a call to node BETA. A share request is sent to the call manager at BETA, asking
it to join a sharinget. The namehosen by ALPHA, identifiethe call - let us assume it'il8LPHA 1". The call
manager aBETA recogniseghe request as an incoming call, sincéself is the target, and eitheesponds
automatically or asks the userdecide. Assuminghe call isacceptedthe call managers &LPHA and BETA
are now in a sharing set.

2. the user at node BET#éseshis call manager to launch a shared text editor applicatidnthen share it into the
call. A share request is sentAbPHA, wherethe call managerecognises it as a requeststoare the appropriate
application. It launches an instance of the shared text exditbtransfers the sharequest tdt. Assuming the
application acceptthe request, thievo shared text editors arew in asharingset which matchethat of thecall
managers.

3. the user at node ALPHA extends the call to include node GAMMA. A share request is sent to GAMMA, using the
name"ALPHA 1". If the call manager @&AMMA accepts,the sharingset will now havehree members. The
inviting call manager, aALPHA, will thenissue ashare request to nod@&AMMA on behalf ofthe shared text
editor which is currently shared into caiILPHA 1". Assuming such an application is launche@AMMA and
accepts the share request, the shared text editor sharing set will then also have three members.

4. the user at nod&LPHA decides to leavthe call.His call managerssues amnshare otbehalf ofthe shared text
editor, to remove it fronthe call and then unsharéself. As a result, the call managersraides BETA and
GAMMA remain in the call, as does the shared text editor at those two nodes.

It's perfectly possible for a givecall manager to participate several calls simultaneously, since each involves a
sharing set with a different name. Similarly, it's possible to write applications that can be shared across several calls.

2.4 The role of applications in sharing and unsharing

It should be cleathat this means thaipplications do not need to isssleare requests or unshare requésmselves.

The call manager's user interface provides the means by which the user can launch applchtbase and unshare
them from callsThis relievesthe application programmer of the burden of providing user interface mechanisms for
listing the available calls and nodes, selecting from them, sharing and unsharing and so forth, effevbulbitiave

to be duplicated for each aware application.

Many applications will want to take note thfe share confirmednd unsharevents however. Athe very leastthey
will need to be aware of the transition from unshared to sheotedty, becausehis is likely to have user interface
implications, for examplenenuchoicesrelating to certain shared functionsy need to be grayed or ungray&bey
may also wish tanaintain a list of whiclnodesare currently in the call. The programmieffort required toprocess
these events is typically small.

3. SHARING SETS AND CHANNEL SETS

As was mentioned in sectidn4, channeketsarelocal to applicatiorsharingsets, sahat applications must join a
sharing set before they can construct channels to other applicationalsbhiseanshatwhen an application leaves a
sharingset any associatethannels are automaticalliestroyed. Mergednd serialized channels have an additional
property however, which makes them extremely convenient to the programmer of collaborative applications.

3.1 Implicit channel creation

Channels can be implicitly created as a consequence of an application being, or becoming, a member of an application
sharingset. For example, if unshared applications already have a merged or serialized emahiiet, channel set
nameused is identical across these applicatidghsn when the applications share with each other, the additional
channels required will be created automatically.

The application programmer casethis mechanism to drasticalsfmplify the writing of acollaborative application.

If the application creates a merged channdistdf during initialisation and is written so that aBer input is sent out

via the sending port of this channel and processed when it arrives at the receiving port, then if the application joins the
sharing set of another application whichas defined a mergedchannelset with the samename, Lakes will
automatically construct thevo cross-channels. If third such application joins the setgainLakes will create the
necessary four cross-channels. Thus any packet of data sent by the application from its sending port will be transmitted
to each of the receiving ports. Each instance thereémevesall the packets. When an applicatideaves asharing

set, these cross-channels will be destroyed but the channel to self will be retained.

The figure below shows this process:

, s

APPLICATION APPLICATION

)
< e

S R

I

APPLICATION APPLICATION

3.2 Serialization

The use of a serializedhannelconfersthe additional advantagbat each instanceeceivesthe samepackets in the

same sequence. Using serialized channels, a shared chalkboard appiamatibow any user to use any drawing or
erasingtool at anytime, in a free-for-all, since the results at each node will be consistent. Without serialized channels
this may not be the case. For example at one node, a local drawing operatjbt beprocessed before a remote
erasing operation, while at the remote node the two operations might be received in the reverse order.

There is a performance overhead however, since serializing is achieved (in our current implementations at any rate) by
sending allpackets to a serialisation process at one node wiieh rebroadcastdhem. Thenode at which

serialisation takes placean bechosen dynamically, based ¢ime nodes inthe sharingsetand thephysical links
betweerthem.Lakes also provides alternatives to serialisation, such as a set ofmi@kergement calls whiclow
applications to serialise the use of certain resources instead of serialising data packets. Use of these facilities allows the
programmer to trade increased programming complexity for better performance.

4. CURRENT STATUS
Our first Lakes prototyperunning undeindows, implemented about 75% of Lakes. Otrer lastyear or so, we
have usedhis prototype to build a wideange of applications, includingeveral games, shared text editors and
chalkboards, as well as several different oadinagers, all witmemarkably little effort.Our simplest application, a
shared scribbling surface, consists of lékan a dozen lines of Visual Basic. A more compléiéindows
implementation is now under construction and work is also proceeding on an OS/2 version.

5. ACKNOWLEDGEMENTS

The authors wish to acknowledge the substantial contributions made to Lakes by Gordon Bonsall and Peter Cripps.

6. REFERENCES

1. T. Baldwin, I. Brackenbury, D. Mitchell. Fsachar, "A desigfior multi-media desk-to-desk conferencing”, 4th
IEE Conference on Telecommunications, pp. 160-166, Manchester, April 1993

2. B. Aldred, G. Bonsall, H. Lambert, D. Mitchell, "An application programming interfacecollaborative
working" 4th IEE Conference on Telecommunications, pp. 146-151, Manchester, April 1993

3. M. Arango et al, "Touring Machine: software architecture to supponultimedia communications4th IEEE
COMSOC MultiMedia Workshop, pp. 186-189, Monterey, April 1992

4. T. Crowley etal, "MMConf: an infrastructure for buildinghared multimedia applications”, 3ACM CSCW
Conference, pp. 329-342, Los Angeles, October 1990

5. S. Ahuja et al, "Acomparison of applicatiosharing mechanisms in real-tintkesktop conferencing systems”,
ACM Conference on Office Information Systems", pp. 238-248, Cambridge, April 1990

6. D. Garfinkel et al, "The SharedX useayside”, Technical Report STL-TM-89-07, Hewlett-Packard Labatch
1989

