TFT液晶インタフェース

Monolithic IC MM1288

'98.1.30

概要

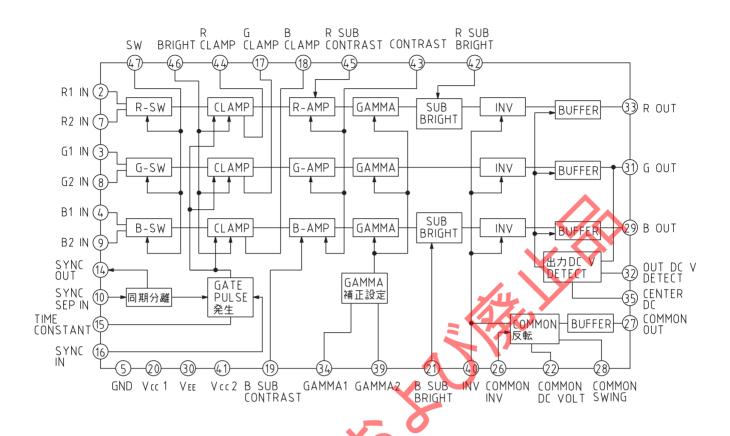
本ICは、小型モニタ付映像機器のインタフェース用ICとして開発しました。

RGB信号をγ補正、極性判定してTFT液晶用RGBに変換するICです。コモン反転回路・同期分離回路を内蔵しています。

特長

- (1) 電源電圧 + 13V、0Vまたは + 5V、-8V
- (2) 極性判定回路内蔵
- (3) γ 補整回路内蔵
- (4) コモン反転回路内蔵
- (5) 2入力切り替えスイッチ内蔵
- (6) コントラスト調整回路内蔵
- (7) 同期分離回路内蔵

パッケージ


QFP-48A(ピンピッチ 0.5mm)

用途

- (1) ナビゲーションシステム
- (2) パチンコ台(カラーTFT搭載機種)
- (3) TV電話·会議システム
- (4) ゲーム機器
- (5) その他

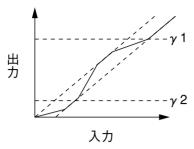
ブロック図

端子機能

ピンNo.	端子名	機能	内部等価回路図	ピンNo.	端子名	機能	内部等価回路図
1, 6 11, 12 13, 23 24, 25 36, 37	NC	**		14	SYNC OUT	同期出力	
38, 48 2, 3 4, 7 8, 9	RGB IN	RGB入力	Vcc1	15	TIME CONSTANT	同期積分	V(c 1
				16	SYNC IN	同期入力	Vcc 1
5	GND	GND					
10	SYNC SEP IN	同期分離入力	Ş				
				17, 18 44	CLAMP (RGB)	クランプ	να 2

ピンNo.	端子名	機能	内部等価回路図	ピンNo.	端子名	機能	内部等価回路図
19, 45	SUB CONTRAST CONTRAST	サブコントラストコントラスト	Vcc 1	32	OUT DC V DETECT	G出力検出	
		er les bit bits et a	<i>— — — — — — — — — — — — — — — — — — — </i>	34	GAMMA1	ガンマ補整1	Vcc2
20 21, 42	Vcc1 SUB BRIGHT	正極性端子1	Vcc2				VIII
22	COMMON DC VOLT	コモン動作点調整	Vcc1	. 35	CENTER DC	センター電圧調整	Vcc 2
26	COMMON INV	コモン反転		39	GAMMA2	ガンマ補正2	V((,2)
27	COMMON OUT	コモン出力	Vic 2	40	INV	反転	Vcc2
28	COMMON SWING	コモン振幅調整	_ <u>_V</u> cc2	41	Vcc2	正極性端子2	
29, 31	RGB OUT	RGB出力	V(c 2	46	BRIGHT	ブライト	Vcc2
33	ROD OUT	ДШИОЛ		47	SW	スイッチ	Vcc1
30	VEE	負極性端子					

端子機能動作説明

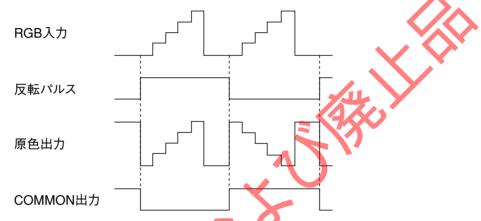

- ·R1 IN、G1 IN、B1 IN(2、3、4PIN) RGB入力端子。カップリングコンデンサを通して入力して下さい。
- ・R2 IN、G2 IN、B2 IN(7、8、9PIN) RGB入力端子。カップリングコンデンサを通して入力して下さい。
- · GND (5PIN)
- ·V_{EE} (30PIN) 負極性電源端子。
- ・SYNC SEP IN(10PIN) 同期分離回路入力端子。映像信号を入力します。
- ·SYNC OUT (14PIN) 同期分離回路により分離された同期信号を出力します。 出力信号は、同期時に"H"レベル、その他は"L"レベルになります。
- ・TIME CONSTANT (15PIN) CRの時定数によりゲートパルス幅を可変できます。
- ·SYNC IN (16PIN) この端子には、同期時に"L"レベル(=0V)、その他は"H"レベル(=3V)のパルスを入力します。 入力された同期信号と同期分離回路により、分離された同期信号のORによりゲートパルスを発生します。
- ・CLAMP R、G、B(44、17、18PIN)クランプ用の容量を付けて下さい。
- ·Vcc1、Vcc2(20、41PIN) 正極性電源端子。
- ·B SUB CONTRAST (19PIN)
 この端子に与えるDC電圧により、B信号のコントラストの微調整を行ないます。
- ・B SUB BRIGHT (21PIN)この端子に与えるDC電圧により、B信号の輝度の微調整を行ないます。
- ・COMMON DC VOLT (22PIN) この端子に与えるDC電圧により、COMMON出力のバイアスを調整できます。
- · COMMON INV (26PIN)

COMMON出力の極性を制御します。

- COMMON出力は、端子電圧をVcc2にすると40番端子入力パルスと逆相になり、ノーマリーホワイトモードに対応します
- 端子電圧をVeeにすると40番端子入力パルスと同相になります。
- ・COMMON SWING (28PIN)
 この端子に与えるDC電圧により、COMMON出力の振幅を調整できます。
- ·COMMON OUT (27PIN) 液晶パネルのCOMMONを駆動するためのパルスを出力します。
- ·R OUT、G OUT、B OUT (33、31、29PIN) 反転信号に応じて反転した原色信号を出力します。
- ・OUT DC V DETECT (32PIN) 出力センター電圧の(Vcc2+Vee)/2からのズレを平滑・保持するための容量を接続します。
- ・CENTER DC (35PIN)出力センター電圧を可変できます。

注:GAMMA1、GAMMA2(34、39PIN)

この端子に与えるDC電圧により、y 補正のDC電圧利得の変化点を設定(図参照)


γ補正

液晶パネルの特性に応じて、出力を左図のような特性 にします。

傾斜に変化を持たせる位置は、34PINと39PINより調整できます。

INV (40PIN)

この端子に入力される反転パルスに応じて原色出力(29、31、33PIN)とCOMMON出力(27PIN)を反転します。COMMON INV(26PIN)がVcc2電位の時、入力・出力・反転パルスの関係は下図のようになります。

CONTRAST (43PIN)

この端子に与えるDC電圧により、原色出力のコントラストを調整できます。

R SUB BRIGHT (42PIN)

この端子に与えるDC電圧により、R信号の輝度の微調整を行ないます。

R SUB CONTRAST (45PIN)

この端子に与えるDC電圧により、R信号のコントラストの微調整を行ないます。

BRIGHT (46PIN)

この端子に与えるDC電圧により、輝度調整を行ないます。

SW (47PIN)

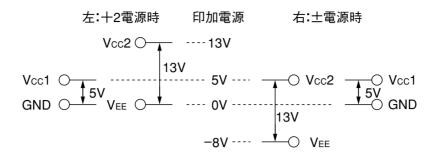
RGB入力信号の1と2の切り換えを行ないます。

"L"で入力の1がONとなり、"H"かOPENの状態で入力の2がONとなります。

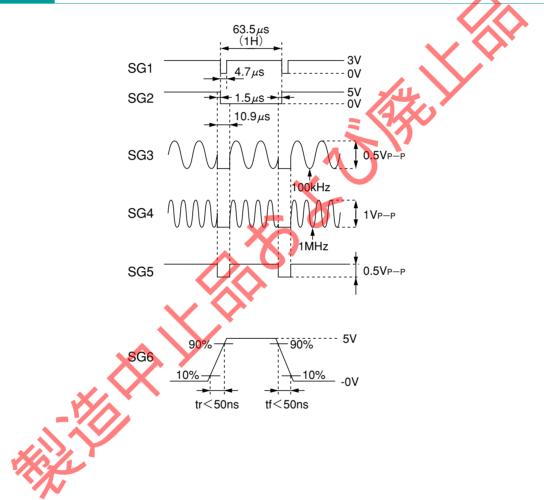
最大定格 (Ta=25℃)

項目	記 号	定 格	単 位
保存温度	Тѕтс	-40∼+125	C
動 作 温 度	Topr	-40∼+85	C
	Vcc1 – GND	6	V
電源電圧	Vcc2 - Vee	15	V
	GND – Vee	10	V
許容損失1	Pd1	380	mW
許容損失2	Pd2	1000%	mW

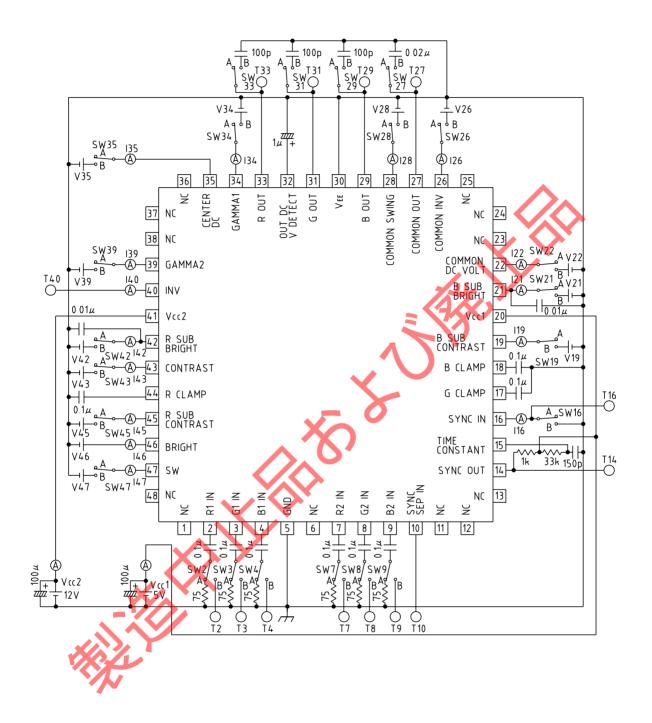
※47×75×0.8mmプリント基板(ガラスエポキシ基板)実装時


電気的特性 (特記なき場合Ta=25℃、全SW:A、Vcc1=5V、Vcc2=13V、GND=0V, Vee=0V、T16;SG1、T40;SG2、V46=3.5V)

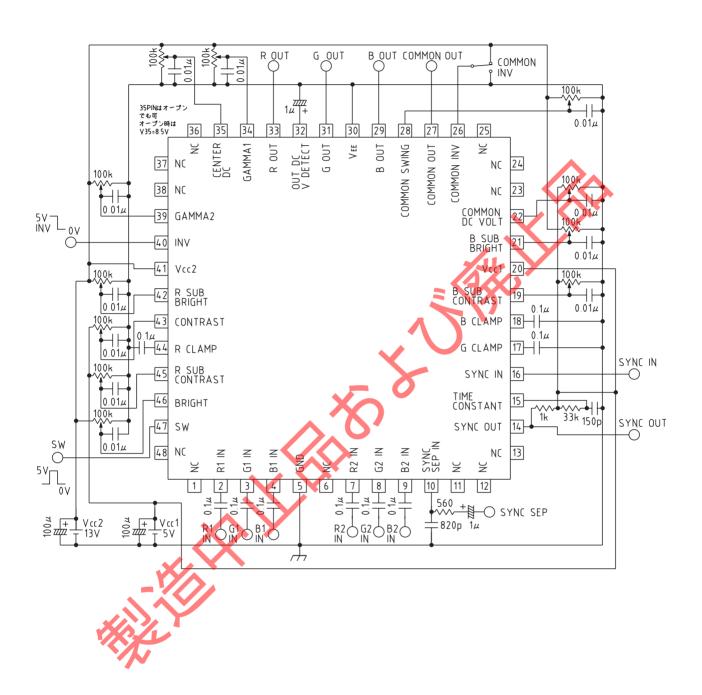
項目	記号	測定条件	最小	標準	最大	単位
Vcc1端子動作電源電圧範囲	Vcc1		4.5	5.0	5.5	V
 十2電源時動作電源電圧範囲	Vcc2+2		10.0	13.0	14.0	V
T2电标时到IF电标电冮电四	$V_{EE} + 2$			GND		V
 土電源時動作電源電圧範囲	Vcc2±		4.5	5.0	5.5	V
	V _{EE} ±		-8.5		-6.5	V
消費電流 1	Icc1	Vcc1 = 5V		8.5	15.0	mA
消費電流 2	Icc2	Vcc2 = 13V	т	17.0	22.0	mA
電圧利得	Gv	SG3とT29, 31, 33のSI 波の比を測定。	N	17		dB
入力間電圧利得差	Gvsw	SW47;B, V47=0Vと5 の時のT29, 31, 33のSI SW2~4, 7~9; 波の比を測定。	1		0.7	dB
反転・非反転間電圧利得差	GVINV	B T40=0Vと5Vの時のT2 T2~4,7~9; 31,33のSIN波の比を SG3 定。	ı ı		0.7	dB
RGB間電圧利得差	Gvrgb	V46を調整し T29, 31, 33のSIN波の てT29, 31, 33 を測定。			0.7	dB
最大電圧利得	Gv max.	の振幅を8Vに する。 SW43;B, V43=4.5V SG3とT29, 31, 33のSII 波の比を測定。	N 18			dB
最小電圧利得	Gv min.	SW43;B, V43=0.5V SG3とT29, 31, 33のSI 波の比を測定。	N		13	dB
サブコントラスト変化量	⊿Gvsub	SW2~4, 19, 45; B, T2~4; SG3 V46を調整してT29, 31, 33の振幅を8V する。V19, 45を0.5→4.5Vとした時のT2 33のSIN波とT31のSIN波の比を測定。		±1		dB
入力ダイナミックレンジ	Vindr	SW2~4, 43; B, T2~4; SG3, V43=1.5V V46を調整してT29, 31, 33の振幅を9V する。SG3の振幅を可変してT29, 31, 330 信号が飽和し始める時のSG3の振幅を 定。	1.5	1.9		V _{P-P}
スイッチクロストーク	Ctsw	SW2~4, 43, 47;B, T2~4;SG4, V47=5 V46を調整してT29, 31, 33の振幅を8V し、V43を調整してT29, 31, 33のSIN波の 振幅を5VP-Pにする。この状態でSW47を 変化させ、1MHzスペクトラムの変化を決定。		-50	-44	dB
XIVY HALL	Olaw	SW7~9, 43, 47; B, T7~9; SG4, V47=5 V46を調整してT29, 31, 33の振幅を8V し、V43を調整してT29, 31, 33のSIN波の振幅を5VP-Pにする。この状態でSW47を変化させ、1MHzスペクトラムの変化を決定。	2	-50	-44	dB


項目	記号	測定条件	最小	標準	最大	単位
RGB間クロストーク	Ctrgb	SW2;B, T2;SG4 V46を調整してT33の振幅を8Vにし、V43 を調整してT33のSIN波の振幅を5V _{P-P} に する。この状態でT33とT29, 31の信号の 1MHzスペクトラムの差を測定。G→B, R、 B→R, Gについても同様に測定。		-48	-40	dB
出力ダイナミックレンジ(B-B)	Vdr b-b	SW2~4;B, T2~4;SG4, V46=0.5V T29, 31, 33の信号を測定。	10	11		V _{P-P}
出力ダイナミックレンジ(B-W)	Vdr b-w	SW2~4, 43;B, T2~4;SG4, V43=4.5V V46を調整してT29, 31, 33の振幅を9Vに し、T29, 31, 33のSIN波の振幅を測定。	6.0	7.0		V _{P-P}
出力センター電圧	Vc	V46を調整してT29, 31, 33の振幅を0Vに し、T29, 31, 33のDC電圧を測定。	6.3	6.5	6.7	V
出力センター電圧変化量	⊿Vc	V46を調整してT29, 31, 33の振幅を0Vに し、V35=2Vと10Vの時のT29, 31, 33の DC電圧の差を測定。		8.0		V
ブライト変化量	⊿VBRIT	V46=0.5Vと4.5Vの時のT29, 31, 33の信 号の各クランプレベルの差を測定。	10.0	13.5		V
ブライトRGB間振幅差	VBRIT RGB	V46を調整してT31の振幅を5.7Vにし、 T29, 33の振幅の比を測定。	-0.5		0.5	dB
サブブライト変化量	⊿Vsubb	V46を調整してT29, 31, 33の振幅を6Vに した後、SW21, 42;Bとし、V21, 42を8→ 10Vまで変化させた時のT31とT29, 33の 振幅の差の最大値を測定。		±1		V
周波数特性	fmax.	SW2~4, 29, 31, 33;B, T2~4;SG4 V46を調整してT29, 31, 33の振幅を8Vに し、V43を調整してT29, 31, 33のSIN波の 振幅を5V _{P-P} にする。SIN波の周波数を可 変しカットオフ周波数を測定。	4.0	5.0		MHz
COMMON出力振幅	Vсом	T27の振幅を測定。	6.0	6.5		V _{P-P}
COMMON出力最大振幅	Vсом тах.	SW28;B, V28=12V T27の振幅を測定。	8.0			V _{P-P}
COMMON出力最小振幅	Vсом min.	SW28;B, V28=0V T27の振幅を測定。	-0.1	0	0.1	V _{P-P}
COMMON出力中心最大電圧	Vco max.	SW22, 28;B, V22=5V, V28=0V T27のDC電圧を測定。	8.5			V
COMMON出力中心最小電圧	Vco min.	SW22, 28;B, V22=0.5V, V28=0V T27のDC電圧を測定。			4.5	V
同期分離入力感度電流	Iis	T10の流出電流を増加していき、T14の電 圧がH→Lに変化する時の流出電流を測 定。	-50	-35	-20	μΑ
同期分離出力ロー電圧	VSYNL	T10に5V与えた時のT14の電圧を測定。		0.2	0.4	V
同期入力スレッシュ電圧	Vтн16	T16の電圧を0→5Vで可変した時、T14の反転する入力電圧を測定。	1.4	1.9	2.4	V
同期入力入力電流	I16	SW16;B T16に0Vを与えI16を測定。	-1.5			μA
サブコントラスト入力電流	I19, I45	SW19, 45, 46;B V19, 45が0.5Vと4.5Vの時のI19, 45を測 定。	-60		70	μΑ
サブブライト入力電流	120, 138	SW21, 42, 46;B V21, 42が7.5Vと10.5Vの時のI21, 42を測 定。	-50		40	μΑ

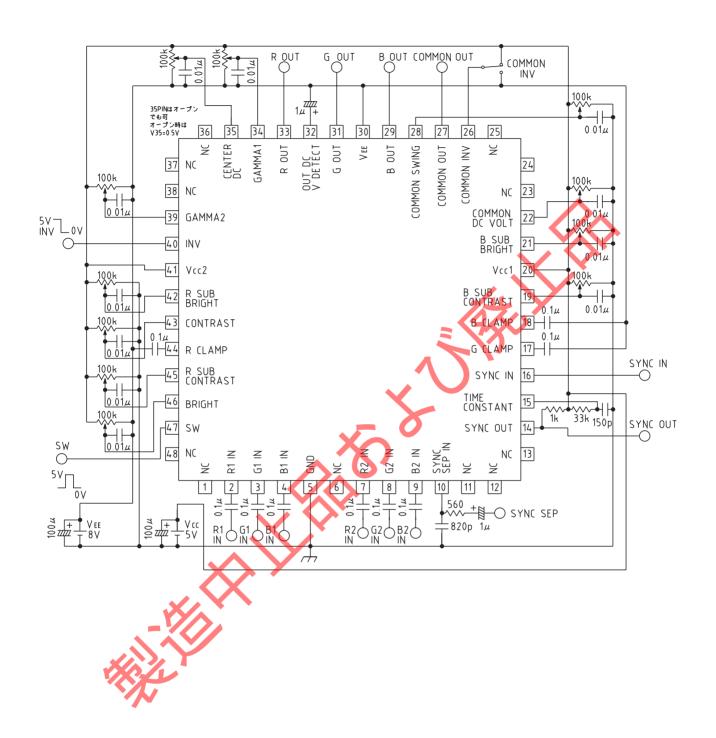
項目	記号	測定条件	最小	標準	最大	単位
COMMON DC VOLT入力電流	I21	SW22;B V22=0Vの時のI22を測定。	-100			μΑ
COMMON INVスレッシュ電圧	Vтн24	SW26;B V26を0→13Vに可変して、T27の位相が 反転する時のV26を測定。	6.0	6.5	7.0	V
COMMON INV入力電流	I24	SW26;B V26=0, 13Vの時のI26を測定。	-90		90	μΑ
COMMON SWING入力電流	I26	SW28;B V28=9, 12Vの時のI28を測定。	-60		60	μΑ
GAMMA1入力電流	I34	SW34;B V34=11Vの時のI34を測定。			6	μΑ
GAMMA2入力電流	I39	SW39;B V39=1Vの時のI39を測定。	-6			μΑ
INVスレッシュ電圧	Vтн40	T40の電圧を0→5Vに可変した時、T27の 位相が反転した時の電圧を測定。	2.5	3.0	3.5	V
INV入力電流	I40	V40が0Vの時のI40を測定。	-2			μA
コントラスト入力電流	I43	SW43;B V43が0.5Vと4.5Vの時のI43を測定。	-60		70	μΑ
ブライト入力電流	I46	V46=1.7Vの時のI46を測定。			3	μA
CENTER DC 入力電流	I35	V35=Vcc2の時のI35を測定。	105	110	165	μA
SWスレッシュ電圧	Vтн47	SW2~4, 47; B, T2~4; SG3 V46を調整してT29, 31, 33の振幅を8Vに する。V47の電圧を0→5Vに可変して T29, 31, 33のSIN波が消える時のV47を 測定。	0.8	1.4	2.0	V
SW入力電流	I43	SW47;B V47=0Vの時のI47を測定。			4.5	μA
GAMMA1変化量	△V34	SW2~4,34,43;B,T2~4;SG5 V43を調整してT29,31,33の振幅を3Vに する。V34の電圧を3→6Vに可変して T29,31,33の電圧の変化量を測定。	0.8	1.2	2.1	V
GAMMA2変化量	∠ V39	SW2~4, 39, 43; B, T2~4; SG5 V43を調整してT29, 31, 33の振幅を3Vに する。V39の電圧を6.2→8Vに可変して T29, 31, 33の電圧の変化量を測定。	0.8	1.2	2.1	V
H→L COMMON伝搬遅延時間	t _{PHL}	SW27, 28;B, T40;SG6			2	μs
L→H COMMON伝搬遅延時間	tplh .	V28を調整してT27の振幅が6Vになるよ		6	2	μs
COMMON立ち下がり時間	t _{THL}	うにする。		2	3	μs
COMMON立ち上がり時間 COMMON立ち上がり	t _{TLH}			2	3	μs
立ち下がり時間差	⊿tτ	Δtr = trhl - trlh			2	μs
H→L 原色信号伝搬遅延時間	tphl ,	SW29, 31, 33;B, T40;SG6			2	μs
L→H 原色信号伝搬遅延時間 原色信号立た下がり時間	tPLH	V46を調整してT29, 31, 33の振幅が8Vに		1	2	μs
原色信号立ち下がり時間 原色信号立ち上がり時間	tthl true	なるようにする。		1	$\frac{2}{2}$	μs
原色信号立ち上がり時間	t _{TLH}			1		μs
立ち下がり時間差	⊿tт	$\Delta t_{\rm T} = t_{\rm THL} - t_{\rm TLH} $			1	μs


電源使用方法例

入力信号波形



測定回路図



応用回路図

■ 基本接続図1 (Vcc1=5V, Vcc2=13V)

■ 基本接続図2(Vcc=5V, Vee=-8V)

