
MQMD/MQRFH2 Parser enhancement

Overview

This enhancement uses the MQMD and MQRFH2 parsers to provide access to the MQMD and
MQRFH2 header elements using mapping commands. If the MQ headers are present on the message,
the MQMD and MQRFH2 headers are passed to the Message Broker. The Message Broker invokes
the MQMD and MQRFH2 parsers as part of the AMM setup, which puts the elements into the AMM.
The GetProperty function and SetProperty command are enhanced to allow users to get and set these
values. Then the MQMD and MQRFH2 values are recreated using the updated values.

End-User Documentation

Mapping of MQMD and MQRFH2 values

This enhancement allows you to use mapping commands to get and set the values of the MQMD and
MQRFH2 headers used by WebSphere MQ. By allowing you to access the values in these MQ
headers from your maps, WebSphere Data Interchange can be more easily integrated with other
WebSphere MQ and JMS applications.

The header values from the input message can now be read using the "GetProperty" mapping command.
The header values on the output message can now be set using the "SetProperty" command.

Getting and setting properties in the MQMD and MQRFH2 headers

To get the values in the MQMD and MQRFH2 headers you use the GetProperty mapping function in
your map. To set new values in these headers, you use the SetProperty mapping command.

You must specify the fully qualified path, starting with “ROOT”. Each component of the path is
specified by a period (“.”). Unlike the other properties, this path name is case sensitive.

The MQMD properties are specified by path “ROOT.MQMD”. For example,
“ROOT.MQMD.ReplyToQ” is the ReplyToQ field in the MQMD header.

The MQRFH2 properties are specified by path “ROOT.MQRFH2”. For example
“ROOT.MQRFH2.Encoding” is the Encoding field in the MQRFH2 header. Folders within the
MQRFH2 folder, such as the “mcd” and “usr” folders can also be specified as part of the path. For
example, “ROOT.MQRFH2.mcd.Set” is the “Set” value in the “mcd” folder of the MQRFH2 header.

Sample mapping commands are below:

Get the value of the MQMD MsgId and save it in variable MyMsgId:

MyMsgid = GetProperty(“ROOT.MQRFH2.MsgId”)
Get the value of the MQRFH2 Format field and save it in variable Rfh2Fmt:
Rfh2Fmt = GetProperty(“ROOT.MQRFH2.Format”)

Get the value of the domain (msd) from the MQRFH2 mcd folder:
MsgDomain = GetProperty(“ROOT.MQRFH2.mcd.Msd”)

Set the value of field “MyField” in the usr folder of the MQRFH2 header:
SetProperty(“ROOT.MQRFH2.usr.MyField”, “My user data”)

Some of the fields in the MQMD and MQRFH2 use integer or binary values, instead of the character
values used by the GetProperty and SetProperty functions. To allow access to these values, the
GetProperty/SetProperty functions will convert from/to character when you get/set MQMD and
MQRFH2 fields. When you get these properties from the source message:
� Integer values will be converted to the character representation.
� Binary values will be encoded, similar to the HexEncode function. For example, an 8-byte binary

value of x0123456789ABCDEF would be returned as a 16-character string
“0123456789ABCDEF”.

� Character values include the blank padding when they are read from fixed-length header fields.

When you set these properties in the target message:
� For integer values, the character string will be converted to an integer.
� For binary values, the encoded character string should be passed, similar to the value passed to

HexDecode function. For example, to set an 8-byte binary value of x0123456789ABCDEF you
should pass a 16-character string “0123456789ABCDEF”. If the string is too short it will be
padded with null characters. If the string is too long, it will be truncated. If unable to decode the
string, a warning message will be issued..

� For character values, it will truncate the string or pad with blanks if needed for fixed-length fields.

The supported properties and associated types are listed below:

MQMD properties (ROOT.MQMD.xxx)

 Name Type Description
 StrucId Char(4) Structure identifier
 Version Int Structure version number
 Report Int Options for report messages
 MsgType Int Message type
 Expiry Int Message lifetime
 Feedback Int Feedback or reason code
 Encoding Int Numeric encoding of message data
 CodedCharSetId Int Character set identifier of message data
 Format Char(8) Format name of message data
 Priority Int Message priority
 Persistence Int Message persistence
 MsgId Binary(24) Message identifier

 CorrelId Binary(24) Correlation identifier
 BackoutCount Int Backout counter
 ReplyToQ Char(48) Name of reply queue
 ReplyToQMgr Char(48) Name of reply queue manager
 UserIdentifier Char(12) User identifier
 AccountingToken Binary(32) Accounting token
 ApplIdentityData Char(32) Application data relating to identity
 PutApplType Int Type of application that put the message
 PutApplName Char(28) Name of application that put the message
 PutDate Char(8) Date when message was put
 PutTime Char(8) Time when message was put
 ApplOriginData Char(4) Application data relating to origin

Following supported only on Windows and AIX (not z/OS and CICS):
 GroupId Binary(24) Group identifier
 MsgSeqNumber Int Sequence number of logical message in group
 Offset Int Offset of data in physical message
 from start of logical message
 MsgFlags Int Message flags
 OriginalLength Int Length of original message

MQRFH2 properties (ROOT.MQRFH2.xxx)

 Name Type Description
 StrucId Char(4) Structure identifier
 Version Int Structure version number
 StrucLength Int Total length of MQRFH2 including NameValueData
 Encoding Int Numeric encoding of data that follows
 NameValueData
 CodedCharSetId Int Character set identifier of data that follows
 NameValueData
 Format Char(8) Format name of data that follows NameValueData
 Flags Int Flags
 NameValueCCSID Int Character set identifier of NameValueData

Values in MQRFH2 folders such as the mcd (ROOT.MQRFH2.mcd.xxx) and usr
(ROOT.MQRFH2.usr.xxx) are treated as character. No padding or truncation is done.

Other Notes

� The ability to get/set the MQRFH2 values is supported on Windows, AIX, and z/OS. It is not
supported on CICS. The ability to get/set the MQMD values is supported on all platforms.

� WDI still sets the following values in the MQRFH2 header as before: Encoding, CodedCharSetId,
and the mcd folder values. So if the user sets any of these values, they will get overwritten by
WDI-specified values.

� The updated MQMD/MQRFH2 is only used if EDIRFH2 is used as the network program.
Network program EDIMQSR continues to use the original MQMD header as before (not the
values set in the map), and does not use an MQRFH2 header.

� The MQMD and MQRFH2 headers are not saved in the transaction store. The header values
cannot be retrieved or set in the map when doing deferred translation, deferred enveloping, or
reenveloping.

� Default values will be used for any MQMD/MQRFH2 values that are not set by the user.
� The MQMD/MQRFH2 values set by the user are not validated by WDI. If the user sets these to

invalid values, they may cause errors when the message is written to the queue or when it is received
by another application.

