WebSphere Data Interchange v3.2.1
Sour ce and Target Encoding
for Data Transformation Maps

Overview

As part of WDI 3.2.1 CSD20 and CSD21, the WDI Server has been enhanced to allow usersto
specify alternate character encodings such as UTF-8 for both source and target data. Alternate
character encodings can be specified for Data Formats, EDI, and XML data.

By using alternate encodings, users can correctly read and generate data that contains characters
that cannot be represented in the current system codepage. For example, if you are mapping
XML datathat isin UTF-8 format (atype of Unicode encoding), and it contains Eastern
European characters such as A or Chinese characters such as? , then these characters cannot be
mapped correctly if your output uses a US-based codepage.

Similarly, when WDI reads theinput data, it must know how to interpret the bytes. For example,
if theinput dataisinterpreted as“1S0-8859-1", a codepage for Western European languages,
then the byte X’ AE’ would be interpreted as the character ® However, if the input datais
interpreted as“ 1 SO-8859-2", an Eastern European codepage, then it would be interpreted as the
character Z.

This document describes how WDI determines the source document encoding for Data Formats,
EDI, and XML data, and how users can specify the encoding to be used for target Data Format,
EDI, and XML documents.

Data Format (Record-oriented or flat file) Data
Deter mining the encoding of the sour ce Data Format document

The encoding of the source Data Format document is determined from Code Page valuein the
Data Format definition.

WDI v3.2.1 EDI and XML Source and Target Encoding 1
for Data Transformation Maps

"7 local-ediec32e - Data Format - XMLLAB-ADFDICT XMLLAB-ADF =%
| il v o] Bafa) 13

General | Detals | Overview | Faw Data | Comments

Data Foimiak Mame [

Dicticenany M ame |

Diescrption | ot Frumat for AL Jab]

Record ID Infarmation |

BAecord Debmiter |I:a'|iogc RelundLine Fasd hd ‘e Uzad |

Comma Delimitad Fizlds I

Coda Eage Characher Size 2 Bytez -

Document Deslination

Tupe | v|

Mame

The method to specify the encoding is unchanged from previous CSD releases. However, many
of the limitations in previous CSDs have been resolved in CSD21. Before, certain functions
were not supported if theinput datawas not in an encoding that was“similar” to the local
codepage For example, when the source datawas in UTF-16 format WDI was not able to:

Split multiple transactionsin an input file based on the header or trailer record. Instead,

the entireinput file was treated as a single transaction.

Extract trading partner information such as the sender and receiver id/qualifier.

Process characters that were outside the local codepage (for example, Japanese or certain

Eastern European characters), due to someinternal conversions that occurred.

These limitations, plus some other codepage-related issues are fixed in CSD21. UTF-16 and
other encodings are now supported for Data Format (record -oriented) data.

Setting the encoding of the target Data Format document

The encoding for the target Data Format document can be specified either by setting the
EncodeT ar get property in the map, or by setting the Code Page value in the Data Format
definition. If the EncodeT ar get property is set, it will override the Code Page value. If neither
the EncodeT ar get property nor the Code Page value is specified, the output Data Format
document is created using the default system codepage.

Field lengthsand record id offsets

WDI v3.2.1 EDI and XML Source and Target Encoding 2
for Data Transformation Maps

Prior to CSD21/FP17, the field length and record id offsets aways had to be specified in terms of
bytes. For example, if you specified a Code Page value of “UTF-16" which uses 2 bytes for each
character, and you had a 10-character field, you would have needed to specify afield length of

20 (10 characters x 2 bytes per character). Similarly, record id offsets needed to be adjusted if
the character length was more than one byte. In CSD21/FP17, anew field was added to the
Data Format definition, and another one to the Record 1D Information to make this easier.

In CSD21/FP17, aCharacter Sizefield was added to the Data Format definition. Thisfield
definesthe number of bytes per character for the dataformat, and is used to help calculate the
byte offset and length of thefields. The value can be either “1 Byte” or “2 Bytes’. The default
is“1Byte".

For character-based fields, the field length is multiplied by the character size to determinethe
number of bytesin thefield. Character-based datatypesinclude:

A = Alphabetic

AC = Application Control

AN = Alphanumeric

CH = Character

DT = Date

FN = File Name

HX = Hexadecimal

= |dentifier

N = Numeric

Nn = Numeric

PW = Password

R = Redl

Rn = Real

TM =Time

Bi nary datatypes are not adjusted for the character size. Binary datatypesinclude:
BN = Binary
Bn=Binary

= Integer
Hn = Hexadecimal
= Integer
IV = Incrementing Value
Ln = Zoned Decimal
Pn = Pack Decimal
PD = Packed Decimal
Zn = Zoned Decimal
ZD = Zoned Decimal

For single-byte codepages, the Character Size value should be 1. For 16-bit encodings such as
UTF-186, this value should be 2. For mixed-length encodings such as UTF-8, this should be set
to 1, and the data should be exactly the specified number of bytesfor fixed-length dataformats.

WDI v3.2.1 EDI and XML Source and Target Encoding 3
for Data Transformation Maps

In addition to specifying the Character Size for the Data Format definition, you can also specify
the Position Type for the Record ID Information. This indicates whether the record 1D position
isintermsof characters, bytes, or fields. The following position typesare valid:
Character — The offset indi cates the number of characters from the beginning of the
record (1 indicatestherecord id startswith the first character). The position are
multiplied by the character size for the data format to determine the byte offset. If the
record id datatypeis character-based, then the record id length ismultiplied by the
character size to determine the record id length in bytes.
Byte - Number of bytes from beginning of the record (1 indicates the record id starts with
thefirst byte). No character size adjustment is made to the position or length.
Fidd - Thisisonly valid if therecord id is used for acomma delimited dataformat. The
position indicates a field number from the beginning of the record. For example, if
position = 3, thiswould indicate that the record id isthe 3rd field in the comma delimited
record, regardless of the byte or character offset. Therecord ID length is adjusted by the
character sizeto determine the length in bytes.
The default position typeisCharacter. If the position typeis set to Field and the Data Format is
not comma-separated, then position type Character will be used instead.

XML Data

Determining the encoding of the source XML document

The encoding of the source XML document is determined from the byte-order mark and XML
declaration, according to the rulesin the W3C XML Recommendation. Thisisunchanged from
previous CSD releases.

For example, the following would indicate that the data is encoded using codepage | SO 8859 -2:
<?xml version="1.0" encoding="is08859-2" ?>

For more details, see the W3C XML Recommendation (' http://www.w3.0rg/TR/2004/REG xml-
20040204/), Appendix F. Autodection of Character Encodings.

For z/OS platforms, users can override the autodetection logic using the XMLEBCDIC keyword
on the PERFORM command. Thisforces WDI to interpret the XML input using the IBM
EBCDIC codepage 1047, regardless of the encoding value specified in the XML declaration.
Thisis useful when the XML data has been converted to EBCDIC from its original encoding
when it wastransferred to the z/OS system using FTP, WebSphere MQ, or some other
mechanism. Again, thisis unchanged from previous CSD releases, and is described in more
detail inthe WDI Programmer’ s Reference, in the“ XML encoding considerations for z/OS’
section.

Setting the encoding of the target XML document

WDI v3.2.1 EDI and XML Source and Target Encoding 4
for Data Transformation Maps

The encoding for the target XML document can be specified by setting the EncodeT ar get
property inthe map. If the EncodeT ar get property isnot set, the output XML is created using
the default system codepage.

For example, if the XML output is always going to be written in UTF-8 format, the following
command can be added to the map:
SetProperty ("EncodeTarget", "UTF-8")

If different encodings are to be used for different trading partners, the EncodeTarget value can be
set based on the trading partner properties. See*“Using trading partner propertiesto determine
thetarget encoding” below.

If you use an encoding that cannot be determined using the normal autodetection logic, such as
“1S0-8859-2", you should also set the“ DIProlog” property to specify an appropriate XML
declaration. Otherwise, the output XML datamay not be interpreted correctly by other users or
applications.

EDI Data

Deter mining the encoding of the source EDI document

X12, UCS, and UN/TDI source documents are always interpreted based on the system default
codepage. These EDI standards have relatively limited character sets, and do not currently
specify a mechanism to use alternate character encodings.

The EDIFACT standard does allow usersto specify adifferent encoding for the data by using the
Syntax ID element in the UNB segment. To determine the encoding of asource EDIFACT
document, WDI will:
- Read the Syntax 1d (UNB0101) of the source document.

Look up thevalueinthe EDISYNTX translation table

If amatching “ Source Value” isfound in the table, then the “ Target Value” isused to

interpret the data.

If no matching “ Source Vaue’ isfound, then the system default codepage is used to

interpret the data.

For example, the following EDISYNTX tableis provided as an EIF file in the “samples’
directory for the Windows and Al X builds. Thismay beimported and used as-is, or it may be
customized.

WDI v3.2.1 EDI and XML Source and Target Encoding 5
for Data Transformation Maps

= local-ediec32e - Forward Translation Table - EDISYNTX =JoEs
Bl i B8] Bz

Gereral | Comments

Mame !

Diezcription |UNBD1 Syntax D to Code Page

— Source Yalue

[rata Type 1Eharacter
M asimum Length 14

 Target Walue-

[ata Type ‘Eharacter

b aximurn Length 16

Source Value I Target WValue I
LIMOA I1SOB46-US
UMOB ISOB46-US
UMOC 150-8859-1
UMOD 150-5859-2
UMOE 150-8859-5
UMOF 150-5859-7
150-8859-3
150-8859-4
150-8859-6
150-8859-8
150-5859-9
UTF-8

If the source EDIFACT document had a Syntax id value “UNOD”, then WDI would look up
“UNOD” in the table above and find that it corresponds to encoding “1S0-8859-2". Then
encoding “1S0-8859-2" would be used to read the source document. If “UNOD” were not found
in the table, WDI would read the source document using the default system codepage.

If auser wantsto read all EDIFACT documents using the same encoding, they can set al valid
(or expected) target valuesto the desired encoding. For example, if all EDIFACT documents are
to beread as UTF-8, then the user canjust set all “Target Values’ to “UTF-8” in the table above.
Although thisis contrary to the EDIFACT rulesfor determining the encoding, it may be
appropriate if the user has an agreement with their trading partner, or if another applicationis
converting the datafrom the original encoding to acommon encoding.

WDI v3.2.1 EDI and XML Source and Target Encoding 6
for Data Transformation Maps

Setting the encoding of thetarget EDI document

The encoding for the target EDI document can be specified by setting the EncodeT ar get
property inthe map. If the EncodeT ar get property is not set, the output EDI is created using the
default system codepage.

For example, if the EDI output is always going to be written in UTF-8 format, the following
command can be added to the map:
SetProperty ("EncodeTarget”, "UTF-8")

If different encodings are to be used for different trading partners, the EncodeTarget value can be
set based on the trading partner properties. See*“Using trading partner propertiesto determine
thetarget encoding” below.

Y ou should generally set the Syntax ID in the output data so it corresp onds to the encoding that
isused. For example, if you set the EncodeTarget property to “1S0O-8859-2", you would
typically set the Syntax ID to “UNOD” to be consistent with the EDIFACT standard.

Encodings supported

Internally, WDI uses “International Components for Unicode” (ICU) to convert from one
encoding to another for Windows and AlX, and usesthe C library function iconv() do the
conversionson Z/OS. Asaresult, many different encodings are avail able, although only a subset
have been tested and are supported.

The encoding names used are based on the names registered with IANA (Internet Assigned
Numbers Authority), although not al registered names are supported by the underlying ICU and
iconv() library functions. Thefull set of IANA -registered namesis at:
http://www.iana.org/ass gnments/character-sets
A list of the encodings supported by the International Components for Unicodeis at:
http://www-950.ibm.com/software/gl obalization/i cu/demo/converters

The following encoding names have been tested and are supported for Data Formats, EDI, and
XML data on Windows and Al X.
- 1S0-8859-1

|SO-8859-2

ISO-8859-3

1SO-8859-4

|SO-8859-5

|SO-8859-6

|SO-8859-7

|SO-8859-8

|SO-8859-9

UTF-8

WDI v3.2.1 EDI and XML Source and Target Encoding 7
for Data Transformation Maps

On z/OS, ASCII-based codepages such as the ones above are not supported for EDI data. UTF-8
may be used for Data Formats and XML data, but has certain limitations (see below). Other
EBCDIC-based codepages such as“IBM -037” or “IBM-875" are supported for Data Formats,
XML and EDI dataon z/OS.

In addition to the encodings listed above, 16-bit encodingssuch as“UTF-16", “UTF-16LE”,
“UTF-16BE”, and “UCS-2" are supported for Data Formats and XML (all platforms), but are not
supported for EDI.

Speual restrictions for Data Formats:
UTF-8 and similar mixed length encodings are supported for Data Formats, but for fixed-
length records the data must still appear at consistent byte offsets. For example, suppose
you define afixed length record with a 10 character field. If the Code PageisUTF-8,
different characters are encoded using adifferent number of bytes. Characterssuch asA -
Z only take one byte, while many non-English characterstake 2 or 3 bytes. Thismeans
that the 10 characters may take anywhere from 10 to 30 bytes. Sincethisisafixed-
format record, the byte length for the field must always be the same. In this case, you
would need to define the Character Size as 1, alow the maximum number of bytes for the
field length (30), and pad with spacesif the full 30 byteswas not needed. Because
mixed-length encodings such as UTF-8 can be difficult to use with fixed-format records,
afixed-length encoding such as UTF-16 is generally a better way to handle international
character sets with fixed-format records.

SpeC|aI restrictionsfor XML data:
If input XML data uses a 16-hit encoding or an encoding that isincompatible with the
system default codepage (i.e., uses an EBCDIC-based codepage on Windowsor Al X, or
an ASClI-based codepage on z/OS), WDI will treat theentireinput fileasasi ngIeXM L
document. WDI will not split the input file into multiple XML documents based on the
XML declaration, and will not split asingle XML document into multiple documents
based on the “Document split” elements.
XML tag names must be able to be represented in the system default codepage. For
example, if your system default codepage is Windows codepage 1252, you should not use
Chinese charactersin the XML element names. However, characters outside the system
default codepage can be passed through in the XML valuesjust fine, aslong as both your
source and target encodings support them.

SpeC|aI restrictions for EDI data:
Input and output EDI data cannot use 16-bit encodings or encodings that are incompatible
with the system default codepage (i.e., an EBCDIC-based codepage on Windowsor Al X,
or an ASCII-based codepage on Z/0OS). Use of these encodings for EDI data may prevent
WDI from recognizing or generating certain types of data correctly, such asnuneric
values and some segment tags.
When transaction store images are displayed in the WDI Client, they are displayed in the
Windows codepage — not necessarily the encoding used to translate the data. (Note: This
only appliesto the user interface. Transaction images read from the transaction store for

WDI v3.2.1 EDI and XML Source and Target Encoding 8
for Data Transformation Maps

trandation or enveloping will be processed using the encoding rules described
previously.)

When using thetransaction store for deferred enveloping, non-English characters (outside
the US-ASCII range on Windows/AlX) are not supported for datain the envelope
segments (i.e., UNB, UNG, UNH), particularly if alternate encodings are used.

UTF-8 will not be supported for X12 or UCS (these EDI standards restrict the character
setsto Latin characters, so Unicode encodings are not needed.)

For UTF-8 data, delimiters must be single-byte characters. For example, in UTF-8 the
character § isrepresented by the bytes xC2 xA7, so this character should not be used asa
delimiter. (Note: If you are using encoding 1SO-8859- 1, the same character is
represented by the single byte xA7, so it would be an acceptable delimiter in that case)
Because the database, including the CHARSET and ALPHANUM tables are defined in
“local codepage”, there are some limitations on validation of EDI data containing
characters outside this character set.

o If the data contains characters that cannot be represented by the system default
codepage, validation level 2 should not be done.

0 Codelist lookups can be done, as long as the value being looked up does not
contain charactersthat are not in the system default codepage.

0 Other types of validation (mandatory segments and el ements, min/max length
checks, etc.) will still be done, regardless of the characters or encoding of the
data.

For EDI data, the encoding name s restricted to 16 characters. Since most encoding
types have multiple aliases defined, you may need to choose one of the shorter alias
names.

Other Notesand restrictions

TheWDI 3.2.1 databaseisin the system default codepage. Therefore, any datathat is
looked up in the database must be able to be represented in the local codepage. This
includes things like trading partner ids/qualifiers, codelists (used for the “Validate”
mapping function) and transl ate tables (used for the “ Trandate” mapping function).
Other syntax-specific examples are included in the Data Format, XML and EDI sections
above. Changing your database codepage to use a multi-byte encoding suchasUTF-8 is
not supported, as this can introduce other problems.

Using trading partner propertiesto deter minethetarget encoding

In some cases, users may want to set different target encodings based on the trading partner the
document is going to. For example, auser may want to set the “EncodeTarget” property to 1SO-
8859-2 for their Eastern European trading partners, but 1SO-8859-1 for their Western European
customers.

To alow usersto usetrading partner information in their maps, the following new mapping
properties from the sender and receiver trading partner profiles are now available. Thesecan be

WDI v3.2.1 EDI and XML Source and Target Encoding 9
for Data Transformation Maps

retrieved using the GetProperty mapping function in amap, and can be used for any purpose —
not just to set the target encoding:

Property name Property Description

SenderTPProfile Sender trading partner profile name. If no profileisfound
for the sending trading partner, the value‘ UNKNOWN' is
returned.

ReceiverTPProfile Receiver trading partner profile name. If no profileis

found for the sending trading partner, the value
‘UNKNOWN' isreturned.

SenderTPUserl1- User fieldsfrom the sender’ s TP profile. If no sender TP
SenderTPUser10 profilewas found, the user fields from the ‘UNKNOWN'’
trading partner profile will be used if it exists. If the
‘UNKNOWN'’ profile does not exist, the user fieldsfrom
the 'ANY’ trading partner will be used.
RecelverTPUser1- User fieldsfrom the receiver’ s TP profile. If no receiver
ReceiverTPUser10 TP profile was found, the user fields from the
‘UNKNOWN'’ trading partner profile will be used if it
exists. If the UNKNOWN'’ profile does not exist, the user
fieldsfrom the ‘ANY’ trading partner will be used.

As an example, if you are mapping from XML -> EDIFACT, and want to set the Syntax ID
(UNBO0101) and target encoding based on the trading partner, you can set User Field 1 to the
Syntax 1D, then add mapping commands similar to the following to your map:

Get desired syntax id from trading partner profile (user field 1)
] RevrSyntaxId = GetProperty ("ReceiverTPUser17)
If trading partner has a syntax id specified, use that, Otherwise just use default from envelope profile
- udy If (1 IsEmpty(RovrSyntaxdd))
o SetProperty ("UNBD1017, RovrSyntaxId)
Look up encoding that correspands to the syntax id.
If found, use the specified encoding. Otherwise just use default encoding.
o QutputEncoding = Translate (EDISYNTX", "SOURCE", RovrSyntaxId)

- wgd# If (| IsEmpty(OutputEncoding))
5 SetProperty ("EncodeTarget”, QutputEncoding)

widy, EndIf
wi#y, EndIf

These mapping commands will:
Get the Syntax ID from the trading partner profile (user field 1)
If the Syntax ID is specified:
0 Setthe“UNBO0101" property, which WDI will useto create the EDIFACT UNB
segment.
0 Look upthe Syntax ID inthe EDISYNTX trandlate table.
o If the Syntax ID isfound, it will set the target encoding to the corresponding
encoding. If not found, it will just let WDI use the default encoding.
If no Syntax ID is specified in the trading partner profile, it will let WDI use the default
Syntax 1D (from the envel ope profile) and encoding.

WDI v3.2.1 EDI and XML Source and Target Encoding 10
for Data Transformation Maps

Note: The WDI Client allows you to customize the trading partner profile user fields by setting
your own display names. For example, you can define the display name for “User field 1” to be
“Encoding”. To customize the trading partner user fields, select the“View” action, then
“Customize’. If you customize the display names, the mapping property does not change.
However, using the customized display names makes it easier to remember which field is used
for which purpose when you edit the trading partner profile. When thelist of available property
valuesis displayed for the GetProperty function, the customized name will be shown in brackets
next to the property name.

Setting the CCSID in outbound M Q Headers

When WDI sends data out over WebSphere MQ, it generates an MQMD header for the message,
and optionally an RFH2 header. Each of these headers includes a Coded Character Set ID
(CCSID), whichiis used to describe the character encoding for the data.

Prior to CSD21, WDI aways set the CCSID to the default value to indicate that the character
encoding matched the CCSID for the queue manager. Now that WDI allows users to encode the
data differently for different output messages, this default CCSID may not be correct.

In CSD21, WDI sets the CCSID in the MQMD or RFH2 header based on the encoding used to
generate the output data (i.e., the EncodeTarget property or the Code Page from the Data Format
definition). If only an MQMD header isincluded in the MQ message, then the CCSID in the
MQMD is set to indicate the character encoding for the trandlated data. If an RFH2 header is
included, then the CCSID inthe MQMD is set to the default value (it describes the RFH2
header), and the CCSID in the RFH2 header is set to indicate the character encoding for the
translated data.

Because the encoding specified by the EncodeTarget or the Data Format definition isastring,
and the CCSIDsin the MQ headers are integer values, aconversion needsto take place. The
following steps are used to determine the CCSID from the encoding name:

1. Theencoding name will be looked up in the ENC2CCS trandate table. 1f found, the
translated value is converted to an integer andused for the CCSID. For example, if the
EncodeTarget property was set to “UTF-8", and the translate table entry has source
value="UTF-8" and target value=" 1208", then the CodedCharsetld value will be set to
1208.

2. If the CCSID isnot found above, and the encoding nameisin the format “ibmnnnn”, the
CCSID will be set to the “nnnn” value. For example, if the EncodeTarget property was
set to “ibm-1208", the CCSID will be set to 1208.

3. If the EncodeTarget property isnot set, or if the valueis not found in the steps above,
then the CodedCharsetld will be set to MQCCS_Q_MGR (in the MQMD) or
MQCCSI_INHERIT (in the RFH2 header, if used) asit istoday.

WDI v3.2.1 EDI and XML Source and Target Encoding 1
for Data Transformation Maps

MQ Advanced Adapter -
Controlling codepage conver sion when receiving data

By default the MQ Advanced Adapter receives messages from MQ using the “ get -with-convert”
option. This convertsthe datato the CCSID defined for the queue manager. If thedataisina
different encoding and contains characters that cannot be represented in the default codepage,
then these characters may belost. For example, if the datacomesin as UTF-8 and contains
Japanese characters, but the queue manager CCSID isfor US-ASCII, then the Japanese
characters would be lost.

In CSD21, WDI Service, part of the WDI Advanced Adapter, allows external control over data
conversion through the "wdi.properties’ file. Two new properties now appear in thefile:
"CCSID" and "Convert".

The " Convert” option determinesif WMQ conversion tables should be used, and it is set
to either "yes" or "no." The default is"Convert=yes."

The"CCSID" option overridesthe typical conversion to the Queue Manager's Local
Code Page. It has a numeric argument that corresponds to the Coded Character Sets as
defined by IBM.

In addition to their usein the wdi.propertiesfile, these options may be specified on theWMQ
Queue definitionin the Trigger Data property or in the WMQ Process Definition as User Data.
When specified as part of the WM Q objects, the options supply valuesin parenthesis; for
example, it uses CCSID(1208).

WDI v3.2.1 EDI and XML Source and Target Encoding 12
for Data Transformation Maps

