
WebSphere Data Interchange v3.2 Data Transformation
XML Document Processing Implementation Guide

Data Transformation XML Document Processing CSD Overview

WebSphere Data Interchange(WDI) development has created this CSD in response to the immediate
demand to process extremely large XML documents that contain a repeating compound element which
would produce a single output message with Data Transformation processing. WDI development has
also received several requests to process a single XML document source and create multiple target
documents. This document is not a formal IBM publication. It is a technical document written by WDI
development to help customers implement Data Transformation enhancement to XML document
processing using this CSD.

Data Transformation processing:

Translating data from any EDI, XML, or data format to any other EDI, XML, or data format using a
data transformation map. Any-to-any translation is a WebSphere Data Interchange feature that allows
you to translate data from any supported source document type to any supported target document type.
Supported document types include data formats, EDI standards, and XML data. The Utility command
PERFORM TRANSFORM is used for any-to-any translation. The XML Document Processing CSD
addresses splitting a single XML document into smaller XML documents for transformation with data
transformation processing. NOTE: The new XML document processing functionality is described in
this document.

XML Document processing:

The default XML document processing using data transformation processing enables mapping of a
single XML document to a single target document. Many XML source documents resemble EDI data.
A single XML document contains header type information, multiple messages, and trailer type
information. It is desirable for example to map the XML source document to multiple EDI target
documents. To achieve this, a double transformation process is needed to transform the XML
document to an intermediate document, for example data format, with a second transformation process
to map the intermediate document to the EDI document.

The XML document processing has been enhanced to remove the double transformation process. The
single XML document will be split based on a defined XML compound element and reconstructed
before the document enters the data transformation message flow. The following enhancements have
been made to enable the document split:

 Page:1

WDI Client DTD and Schema definitions:

An enhancement to WDI Client XML DTD and Schema definitions to contain an “Overview” tab has
been added to display a visual layout of the DTD or schema. You can right click on elements and use
functions on the popup menu to set certain fields in the General tab page. A right click on a simple
element will display a popup menu to set elements that contain the sender and receiver ID and qualifier
paths . A right click on a compound elements will display a popup menu to set XML document split
element Ids . NOTE: The split element identification is not a path, it is an element ID.

There are three elements that may be defined to split the XML document. Element identifying the
header area in the XML document, element identifying the individual messages (split area), and element
identifying the trailer area in the XML document. These definitions are used to split and reconstruct the
XML documents before they are placed in the data transformation message flow. The element
identifying the individual messages is required to split the source XML document. If the element
identification is not defined, the source XML document will not be split. If the header area is not
defined, the beginning of the XML document up to the element identifying the message will be use to
construct a header area for the split document. If the trailer area is not defined, the end root element
will be used as the trailer area for the split document. If the trailer area is defined and is actually a
terminating element in the XML source input, then the right click to define this using WDI Client is to
right click the compound element (that begins the trailer element), define the element as the trailer
element, and check the box on the general tab “Element Terminator Indicates Start of Trailer Section”.

WDI Client data transformation mapping:

A new XML source document property “MsgSplitCnt” is available and can be used to identify the
number of documents split within each header/message/trailer split. The MsgSplitCnt property is set to
zero until the last split message is processed. MsgSplitCnt property is reset with each new
trailer/header identification. The MsgSplitCnt property can be used, for example, to MapChain() to a
summary mapping by counting the number of source messages processed using a global variable within
the source document mapping and comparing this to the MsgSplitCnt property.

The “InputMsgCnt” source document property identifies the number of input messages processed and is
available in data transformation mapping. Source document property “LastMsg” identifies that WDI is
processing the last message in the input file.

 Page:2

WDI server processing:

During processing, the XML source input message is read and stored in a buffer. The “root” element is
identified (from the input message) and the WDI DTD or Schema definition is retrieved to determine if
the source XML document has been defined as a split document. This is done with all XML input
source messages and can be removed by specifying the PERFORM keyword XMLSPLIT(N).

During the XML document definition retrieval, if there are multiple DTD or Schema definitions defining
the same root element, it may be necessary to use PERFORM keywords DICTIONARY or
DOCUMENT to identify the specific DTD or Schema being used for processing.

If the XML document is to be split, the header area is identified and stored in a header area buffer, the
trailer area is identified and stored in a trailer area buffer. The header area is the beginning of the XML
document and the Header element identification up to the first Message element identification. The trailer
area is defined as the Trailer element identification up to the next header element identification. The area
between the first message element identification up to the trailer element identification are written out to
the “XMLWORK” file. During reconstruction, each split message is read from the XMLWORK file.
The header/message/trailer are constructed and sent through the data transformation message flow as
individual documents. NOTE: The XMLWORK file must be allocated.

 Page:3

Example 1:

The sample XML document below contains information about three companies. The expanded
elements (those proceeded by a dash) show the first company element contains information about the
company and information about four employees of the company. If each employee element needs to be
translated into its own document, then the “employee” element would be listed as the Message Element
on the General tab page of the Schema Editor. The Header Element would be the “company” element.
The Trailer Element would be the “ employee-list” element with the Element Terminator Indicates Start
of Trailer Section check box set.

<? Xml version=”1.0” encoding=”UTF-8” ?>
- <root-element xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:noNamespaceSchemaLocation=”ThisDoc.xsd”>
 - <company> <=== Header Element
 - <company-details>
 + <campany-name>
 + <campany-address>
 </company-details>
 - <employee-list>
 + <employee> <==== Message Element (Split here)
 + <employee>
 + <employee>
 + <employee>
 </employee-list> <=== Trailer Element (Element Terminator)
 </company> (Note: end of header area)
 + <company>
 + <company>
</root-element>

In the result would be one document like the following for each “employee” contained in the source
document.

<? Xml version=”1.0” encoding=”UTF-8” ?>
- <root-element xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:noNamespaceSchemaLocation=”ThisDoc.xsd”>
 - <company>
 - <company-details>
 <campany-name>
 + <campany-address>
 </company-details>
 - <employee-list>
 + <employee>
 </employee-list>

 Page:4

 </company>
</root-element>
Example 2:

The sample XML document below contains information about three companies. The expanded
elements (those proceeded by a dash) show the first company element contains information about the
company and information about four employees of the company. If each employee element needs to be
translated into its own document, then the “employee” element would be listed as the Message Element
on the General tab page of the Schema Editor. The Header Element would be the “company” element.
The Trailer Element would be the “ employee-list” element with the Element Terminator Indicates Start
of Trailer Section check box set.

<? Xml version=”1.0” encoding=”UTF-8” ?>
- <root-element xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:noNamespaceSchemaLocation=”ThisDoc.xsd”>
 - <company> <=== Header Element
 - <company-details>
 + <campany-name>
 + <campany-address>
 </company-details>
 </company> (Note: end of header area)
 - <employee-list>
 + <employee> <==== Message Element (Split here)
 + <employee>
 + <employee>
 + <employee>
 </employee-list> <=== Trailer Element (Element Terminator)
 + <company>
 + <company>
</root-element>

In the result would be one document like the following for each “employee” contained in the source
document.

<? Xml version=”1.0” encoding=”UTF-8” ?>
- <root-element xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:noNamespaceSchemaLocation=”ThisDoc.xsd”>
 - <company>
 - <company-details>
 <campany-name>
 + <campany-address>
 </company-details>
 </company>

 Page:5

 - <employee-list>
 + <employee>
 </employee-list>
</root-element>
Example 3:

The sample XML document below contains information about three companies. The expanded
elements (those proceeded by a dash) show the first company element contains information about the
company and information about four employees of the company. If each employee element needs to be
translated into its own document, then the “employee” element would be listed as the Message Element
on the General tab page of the Schema Editor. The Header Element would be the “company” element.
There is no real trailer element to be defined and the trailer element identification will default to the end
root element. NOTE: With no trailer area, only the first header element occurrence can be identified.
All employee elements will be split under the first company occurrence. MsgSplitCnt property will be a
total and set with the last employee split processed.

<? Xml version=”1.0” encoding=”UTF-8” ?>
- <root-element xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:noNamespaceSchemaLocation=”ThisDoc.xsd”>
 - <company> <=== Header Element
 - <company-details>
 + <campany-name>
 + <campany-address>
 </company-details>
 </company> (Note: end of header area)
 + <employee> <==== Message Element (Split here)
 + <employee>
 + <employee>
 + <employee>
 + <company>
 + <company>
</root-element>

In the result would be one document like the following for each “employee” contained in the source
document.

<? Xml version=”1.0” encoding=”UTF-8” ?>
- <root-element xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:noNamespaceSchemaLocation=”ThisDoc.xsd”>
 - <company>
 - <company-details>
 <campany-name>
 + <campany-address>

 Page:6

 </company-details>
 </company>
 + <employee>
</root-element>

WDI Utility Interface

New keywords for PERFORM TRANSFORM

The following keywords have been added to the PERFORM TRANSFORM command:

ü XMLSPLIT(Y/N) - default(Y)
For data transformation and XML source message processing. Overrides the XML DTD
or Schema definition retrieval and processes the XML input message using default
processing.

ü FILTERMSGS(UTxxxx, Upxxxx, etc).
For data transformation processing. Filters messages in the list, if severity is less than 8.
Maximum length is 80. Up to 11 individual messages may be filtered. See also
IGNOREWARN and IGNOREINFO keywords.

ü IGNOREINFO(Y/N) - default N
For data transformation processing. Filters all informational messages.

ü IGNOREWARN(Y/N) - default N
For data transformation processing. Filters all warning messages.

WDI Client Interface

New Source Document Properties available during mapping execution

MsgSplitCnt
Identifies the number of XML documents split within each header/message/trailer split. The
MsgSplitCnt property is set to zero until the last split message is processed. MsgSplitCnt property is
reset with each new trailer/header identification.

Example:
TotalNumEmployees = GetProperty ("MsgSplitCnt")
EmployeeCnt = EmployeeCnt + 1
If (EmployeeCnt = TotalNumEmployees)

MapChain ("SUMMARYMAP")

 Page:7

InputMsgCnt
Identifies the number of input messages processed. This is a running total.

LastMsg
A value of ‘Y’ indicates the current message is the last message being processed in the message flow.

 Page:8

