"- REMark

Issue 11 = October 1980

! MR | “ g NiEsed ﬁ' = = ‘rﬂf.
.' : "' | f :.-I- =
! 11 .ls: J y
e | A
ML{? P =g ;;.-.,_J.! E.«.‘«:&ad ez L EEES

Official magazine for users of Heath computer equipme_nt'.,

HOW ABOUT A POSTER
FOR YOUR COMPUTER ROOM

on the stack

AT

MicroNET and other SOFTSTUFFccciivvinnn 3
Jim Blake
Getting Started with a Text editor 4

William N. Campbell, M.D.
Microsoft BASIC Output Flexibility

with Heath-configured CP/Mccciiiiiiiinannns 8
John R. Thomas

Local HUG NeWSccovvviennencnnnassrarssnssasnns 9

Keep It Simple, Stupid (KISS)cciviiiiinninnns 10

Changes to Doc Campbell’s Article 14
(In REMark Issue 10)

New HUG Softwarecoiiiiiieinnnnrnnnnncenns 15

DoYourOwn Thingcciiiiiiiiiiiiiiiinnnans 16
Patrick Swayne

BUG PACIS EASE 11w emon i somssms oo somseim sy i 64w 16

Using Printers withthe H11Accciiiiiinnn, 17
Jim Buszkiewicz

HB-2 INTOMTACE o wiaovinme v 56w il e e i einyenea b 18
Wallace K. Izuo

ConsUltanT’s COTMOY woi s wwe v s v s 5o 8w ariwmn 18

File Handling in BASIC0iviiinnnrnnnnnennns 19
Jim Tennant

Bugein® HUG s ivinanaine seesive saievae doiso e s 21

New Products from Non-Heath Sources................ 23

Changes for HDOS Boot-Upccvviuineiiinnninnnnns 24

Revision to HUG’s Modem

Communication Systemc.cvviviiniiienninns 26
A. Richard Tinder

Type-Ahead Buffer for HDOS 1.6ccvivvinnnn 27

Robert C. Johnson

Addendum to the Microsoft BASIC
Software Reference Manualcco0vann. 28

7
\—

\Spinwriter forthe HBYccivviivvnnnnnnnnanns 31)

“REMark” is a HUG membership magazine pub-
lished quarterly. A subscription cannot be purch-
ased separately without membership. The follow-

ing rates apply.

U.S. Canada &
Domestic Mexico International

Initial $18 $20 US FUNDS $28
Renewal $15 $17 US FUNDS $22

Membership in England, France, Germany, Bel-
gium, Holland, Sweden and Switzerland is ac-
quired through the local distributor at the prevail-
ing rate.

Back issues are available at $2.50 plus 10% handl-
ing and shipping. Requests for magazines mailed
to foreign countries should specify mailing
method and add the appropriate cost.

Send payment to:

Heath Users' Group
Hilltop Road
St. Joseph, MI 49085

Although it is a policy to check material placed in
REMark for accuracy, HUG offers no warranty,
either expressed or implied, and is not responsible
for any losses due to the use of any material in this
magazine.

Articles submitted by users and published in RE-
Mark, which describe hardware modifications, are
not supported by Heathkit Electronic Centers or
Heath Technical Consultation.

HUG Manager and Editor Jim Blake
Assistant Editor and

Software Developer Patrick Swayne
HUG Secretarycoovvmimnnnnnns Nancy Strunk
Software Developer Gerry Kabelman
Software Developer Jon Falkner

Copyright © 1980, Heath Users’ Group

HUG is provided by Heath Company as a service to
its members for the purpose of fostering the ex-
change of ideas to enhance their usage of Heath
equipment. As such, little or no evaluation of the
programs in the software catalog, REMark or other
HUG publications is performed by Heath Com-
pany, in general and HUG in particular. The pros-
pective user is hereby put on notice that the prog-
rams may contain faults the consequences of
which Heath Company in general and HUG in
particular cannot be held responsible. The pros-
pective user is, by virtue of obtaining and using
these programs, assuming full risk for all consequ-

m%REMark

2

SeREMark « Issue 11 + 1980

MicroNET and other SOFTSTUFF

In mid August the nationwide HUG dial up computerized bulletin board got on the air
through the facilities of Compu-Serve or better known to most as MicroNET. MicroNET
can be accessed from most cities via a local phone call. Initial subsription fee is
$9.00 which gets you a users manual, special ID number and password and a 1list of
phone numbers around the country through which MicroNET can be accessed. In addition
to the many features available through the NET, HUG members have their own CBBS. In
the short time it has been active, there have been almost 1000 sign-ons. Users can
leave and retrieve messages to ALL other users or to specific individual. We have
seen problems solved, questions answered within minutes. Users also can exchange
software, access the HUG software exchange, and very soon, order and down-load some
HUG software to your computer right on the spot. Connect time is $5.00 an hour and a
major credit card is required for billing purposes.

While the HUG bulletin board is open to all users, a separate, but similar Bulletin
Board is maintained on MicroNET by Chuck Sodian exclusively for H~11l users.

Access to all Special Interest Group BB's is accomplished after MicroNET sign-on by
typing R SIGS.

As we go to press, the exact procedure for subscribing to MicroNET is not defined,
but we expect to be offering it through HUG as a regular product. Call MicroNET at
614-457-8600 for details. Identify yourself as a HUG member.

Equipment needed to take advantage of the system is, at the very minimum some flavor
of terminal and modem which would allow you to do everything but save files. To take
full advantage, a computer and disk storage is desirable so that you can send and
receive files. Some communications software is also needed such as HUG's MCS or a
new SOFTSTUFF product called CPS. CPS does full error checking, has auto log-on and
employs MicroNET and/or H8/H89 protocol.

The Bulletin Board is open to everyone, but only HUG members are recognized at

sign-on and only HUG members will have access some HUG software. Hope to see you on
soon,

A new word popped up in our vocabulary a paragraph ago. SOFTSTUFF. Let me tell you
about it.

As you know, applications software for the HEATH systems has been provided
principally by yourselves, HUG members. And that software 1is available to HUG
members only.

To provide the facility to acquire more software for wider distribution and to
reward the author beyond the HUG program, a new 'division' of HEATH was established.
SOFTSTUFF. SOFTSTUFF products, may in fact, be software submitted by HUG members. Or
software written by HUG members under contract to HEATH or it may be developed from
scratch by HEATH software engineers. SOFTSTUFF is called ' affordable software tools
for your computer.' They may not have a 100 pages of documentation that you would
expect traditionally from HEATH, but sufficient documentation, and each product has
been fully checked out and works as advertised. SOFTSTUFF is GOODSTUFF. These
products are described page 15, And more neat stuff is coming. It will really RAIN
sof tware in the fourth quarter. If you have a piece of software or know of some that
you think the rest of the users would be interested in, please contact me at
616-982-3835. It is hoped to offer most products that operate both under HDOS and

(vectored to page 24)

SREMark « Issue 11 + 1980

Getting Started with a Text Editor

William N. Campbell, M.D.
249 smithbridge Road
Glen Mills, PA 19342

One approach to the understanding and use
of a "TEXT EDITOR" is documented using
HUG's "ED" for illustrative purposes. The
principles discussed can be applied to
most microcomputer text editors.

INTRODUCTORY DISCUSSION

A "TEXT EDITOR" 1is a computer program
which assists the user in the preparation
of, and revision of, data. The data may be
a letter, a manuscript, or any other
material the user wishes to write and
store for later use. (The original use of
a computer "Text Editor" was for the
preparation of Assembly language programs
for the computer 1itself.) The data is
usually entered into computer memory
through a terminal keyboard, and after
revision, may be transferred as a "data
file" from memory to "permanent" storage
(usually a "floppy disk", or cassette
tape.) After any additional desired
revisions are made, by transferring the
data from "permanent storage" back to
memory for editing with the Text Editor,
the material is again transferred to
"permanent" media. This process can be
repeated as many times as desired. When
all necessary revisions are completed, the
SAME DATA may then be manipulated by a
"WORD PROCESSOR". A Word Processor is
another computer program that provides
adjustments of margins, justification
(making the right margin even by inserting
spaces into the text automatically) ,
centering of headings and other formatting

niceties. This is accomplished with
minimum effort by the user. ("RUNOFF" -
HUG Part No. 885-1025 1is such a Word
Processor. Note that some relatively
expensive "Word Processors" have a

built-in text editing function.)

This article, for example, was written and
revised using HDOS (Heath Disk Operating
System) and HUG's "ED" EDITOR (HUG Part

No. 885-1022). This article was revised
about 34 times, before being processed by
RUNOFF. Of course, many times it is not
necessary to use a "Word Processsor" after
preparation of text. Most letters do not
require any word processing, for example.
(But, as originally written, this article
averaged about 70 characters per line, and
the text you are now reading was the
result of the processing by RUNOFF to the
formatting standards of REMARK (42
characters wide).

One usually uses a Text Editor in two
"stages". First, you use it to INSERT text
(data) into computer memory and the data
then becomes a disk or cassette file.
While using the "Editor" for this purpose,
you correct any noted typographical errors
or mistakes by "backspacing and typing
over". Second, after the text has been
inserted into memory, you may REVISE it
over and over again as noted above. It is
this second use where you utilize most of
the commands of the Text Editor that are
available to vyou. It is also this
"revision" stage that the newcomer to
"Text Editing" finds most troublesome.

It can be very discouraging to the novice
when his first attempts at "TEXT EDITING"

fail completely, or when certain Editor
Commands do not work the way the user
thinks they should. T have worked with 7

different Editors and have had my share of

frustrations. However, after varying
amounts of effort I have been rewarded
with success in my use of these Editors.
Since the newest Editor I have used is
HUG'S "ED", this article deals with this
particular Editor, although the same
general approach can be used with most

Text Editors!

I have found HUG's EDitor to be one of the
finest, and certainly the fastest, Editor
I have used. I found NO bugs in it!

Any "problems" encountered all disappeared
after sufficient experience was
accumulated in actual use. HUG's "ED" is a
particularly well documented Editor and
the documentation covers all the Editor
commands. However, in actual use, one uses
only a minimal number of certain commands
(or combinations of commands) again and
again.

You will find that there are numerous
single letter commands, and many of these
can be used in combination. EACH COMMAND,
OR COMBINATION OF COMMANDS, IS TERMINATED
AND EXECUTED BY HITTING THE ESC (escape)
KEY TWO TIMES.

When one starts out with a new Editor, it
is always wise to learn how to use a
limited number of commands (or command
combinations) and to 1learn these few
commands well.

$REMark « Issue 11 « 1980

One thing that may confuse you is that,
with HUG's "ED", you execute all the
commands with 2 ESCs. When you hit the ESC
key, a $ sign 1is echoed on the terminal
screen, so for the rest of this article
when you see $, that means that an ESC was
entered. All too often I have found myself
hitting the RETURN key, expecting that the
command would be executed. Not so. It must
be 2 ESCs ($$)! This way the return key is
saved for use in the text.

GENERAL APPROACH

The VERY FIRST thing to do 1is to
thoroughly review the documentation
(instructions) that you received with your
Text Editor. In the case of HUG's "ED",
the documentation is on the disk that
contains the "ED" program. Also on the
disk 1is the complete assembly language
source program for "ED" so that advanced
programmers may add their own
embellishments to the Editor. When I read
the documentation, I made short notes on a
scratch pad. I specifically looked for,
and jotted down, a few VITALLY NECESSARY
COMMANDS :

FUNDAMENTAL COMMANDS

Command(s) to "INVOKE" the Editor and name
(a new file) or access (an old file).

old file
Command to

Command to "READ" a pre-existing
intc memory for revision.
"INSERT" text data (write material into
computer memory.) Command to "EXIT" the
"Insert" mode. Command to "WRITE" data
from memory to disk and "EXIT" the Editor.

Here is what I wrote on my scratch pad:

>ED SY1:FNAME.EXT SYl:<cr>

#ASS

Bl <cr>

-------- <er>

$S

ESS
You invoke ED from the monitor prompt (>)
with the command ED, AND you name a
pre-existing file (or a new file)

immediately after the space after you type
ED. You also indicate which disk contains
an old file (the first S8Y1l: above, and
name the disk which 1is to receive the
revised or newly created file (the space
followed by the second SY1l: above.) Then
you hit RETURN on the keyboard <cr>. (If

you omit SY1: the default in either or
both instances will be to 8Y0:.) The
program loads, the file is "opened", and

ED's prompt (-) (a dash) is displayed.

#ASS "appends" or reads ALL the data from
disk from pre-existing "FNAME.EXT" into
computer memory, called "buffer" memory.
(You don't need $A$$ if you are starting a
new file from scratch.) The 2 dollar signs
are automatically echoed by ED when you
hit the ESC key 2 times., This 1is how you
execute ALL of ED's commands.

S REMark « Issue 11« 1980

"I" 1is the command to start INSERTing.
EVERYTHING vyou type after the "I"™ will be
put into computer memory . This will
continue until you hit the ESC key 2 times
(echoed on the screen as 2 dollar signs.)
When you type the 2 ESCs after inserting
one or more words, OR one or more lines,
this puts you back in ED's command mode. I
put several lines of dashes on my scratch
pad to indicate several 1lines, and ended
the Insertion with $$ which would
terminate the Insertion.

ESS exits the prodram ED after
automatically writing your text to the
diskette, closing the file, and also
automatically renaming your original
pre-existing file (unchanged) to
FNAME.BAK. This is a handy feature.

The above 1is all there
the Editor, "Reading" in pre-existing
files, "Inserting" text, "Ending" text
insertion, and "Exiting" the EDitor.

is to "Invoking"

looked for and noted some
(to me) "POINTER-MOVING" and
COMMANDS . My 1list and

NEXT, 1
important
"TEXT DISPLAY"
notes:

POINTER MOVING-TEXT DISPLAY COMMANDS

BSS moves pointer to beginning of file.
Z$$ moves pointer to end of file just past
last character of text.

nT$$ displays 'n'" lines. (If 'n' |is
omitted just displays one line on screen.)

nl, or -nL {(minus nL) moves pointer forward
(or backward) n lines. 'n' is a decimal
number. (If n omitted, default is 1 line.)

Funique word(s)$$ finds any unique word(s)
in text and moves pointer to that line.

OLTSS (zeroLT$$) - move pointer to
beginning of line (0L) and type 1line on
screen (T). A MOST IMPORTANT COMMAND!

NEXT, I noted the only TEXT REVISION
COMMANDS I needed to get started editing:

TEXT REVISION COMMANDS

nK$$ deletes (Kills) n lines, including NL
characters. (HDOS automatically puts a
"New Line character" 1in text whenever you
hit RETURN key.) If n omitted, default is
one line.

Soldword (s)$newword (s) SOLTSS Substitute
new word(s) for old word(s), then move
pointer to beginning of line and display
the revised line.

$$ this is the same Insert
previously.

mode discussed

LAST, I looked for and noted
COMMANDS :

two "PANIC"

PANIC COMMANDS

"Control U" deletes an entire command line
(before execution with $$) and reprompts.
(Note that this command will NOT delete a
multiple line insertion.)

Q%S allows you to "Quit" the edit and
RETURN to monitor prompt with everything
exactly as it was before you invoked the
Editor!

WITH THE ABOVE NOTES FOR REFERENCE I WENT
TO THE COMPUTER, SAT DOWN AND BEGAN TO
LEARN HOW TO USE ED!

DISCUSSION

I have learned that the ONLY way to really

learn how to use an Editor 1is by actual
use, entering a very short 1listing and
manipulating the 1lines and words. My

favorite text for learning purposes is
entered and terminated like th ':

Ithis is the first line
this is the second line
this is the third line
this is the last line
$s

The 'I' means that EVERYTHING after this
command is treated as text Insertion,
UNTIL the insertion 1is ended by hitting
the ESC key 2 times. The 'I' command can
also be entered as a lower case 'i' (this
is true of all commands - upper or lower
case entry is valid for all of them.)

The above is how you insert text into
memory. Later, the text can be transferred
to disk as a "data file".

THE "POINTER"

The main problem most novices have occurs
at this point, AFTER text has been
inserted, or AFTER text has been brought
in from a previous file for editing. This
main problem presents itself to the user
who asks himself "Where, 1in this text,
where am I?". The user 1is usually aware
that somewhere in this text that appears
on the screen is an illusory and invisible
(but nevertheless actual) "POINTER! But,
WHERE is this pointer?

THE POSITION OF THE POINTER USUALLY HAS NO
RELATIONSHIP TO THE POSITION OF THE
CURSOR!! The POINTER POSITION can be

determined by having the editor type out
(display) a line of text. The pointer
position is JusT BEFORE THE FIRST
CHARACTER of any single 1line of text

printed out!

HERE IS HOW TO LOCATE THE POINTER. You
enter TS$$ (T for type, and then 2 ESCs.)
Whatever appears on the screen is whatever
is present just AFTER the pointer. Suppose
NOTHING appears (this is common). Now

gnter OLTS. This combination of commands
is one of the most important of any
combination of commands. Repeating, it is

'zero'LTS, and entered as OLT$S. This
puts the pointer at the beginning of the
line where the pointer was, and types out
the whole 1line for the user. Now, the
pointer is AT and remains at the beginning
of this 1line. You can type T$$ and

whatever was just printed out for you will
be displayed again.

However, suppose that nothing was typed
out following OLT$S. And, this is a common
occurrence. All that this means 1is that
the POINTER is either before any text,
after any text, OR is at the beginning of
a 'blank' line.

Simply enter BT$$. This puts the pointer
at the beginning of the FIRST line of text
material and types out that 1line. 1If
nothing is typed out, simply hit the
RETURN key one or more times. This moves
the pointer down one line and prints this
line, each time the RETURN key is hit!
Continue hitting the RETURN key until you
are at the beginning of the desired line.
NOTE THAT THE POINTER IS ALWAYS JUST TO
THE LEFT OF THE FIRST CHARACTER OF THE

LINE THAT HAS JUST BEEN DISPLAYED! (Don't
forget that you MUST read text with the
"$A" ‘command if you are dealing with a

pre-existing file, before you can display
or edit the text file!)

So, please remember 0LT$$. After you enter
most commands, always use OLT$S. Most of
the time this will result in a line of
displayed text, AND the pointer is at the
beginning of this line.

TEXT REVISION

Suppose you want to enter a line BETWEEN 2
pre-existing 1lines of text. You position
the pointer at the beginning of the line
which WILL be located just AFTER your
desired insertion. You move the pointer
backward through the lines of text with
-nLTS (minus nL T 2 ESCs) and the n is a
numerical value which tells the Editor how
many lines back you want to move. Example:
-2LTSS moves the pointer back 2 lines and
types out the line for you. The pointer
remains at the beginning of the line typed
out for you. OR, you can move the pointer
forward, line by line, by hitting RETURN
key, or you can move it forward n lines
(and print out the nth line) with nLTS$S.
In this latter instance the pointer
remains at the beginning of the nth line.
So, once you have the 1line displayed,
BEFORE which you wish to enter a new line,

simply type
Iand insert your new line <cr>$$. 1In this
instance we typed I (for Insert) and our
inserted 1line was "and insert your new

line" followed
and then 2 ESCs
the insertion.

by hitting the RETURN key,
were entered to execute
Now, type OLTSSS and see

HREMark - Issue 11 « 1980

what is printed out. It should be the line
AFTER your insertion. So, type -4L8T$$ and
this moves the pointer backward 4 lines
(the POINTER remains at the beginning of
the -4th line) but it and the next 8 lines
are printed out for you. Now, you can see

your insertion. (You can, of course,
insert more than one 1line simply by
continuing to type lines, each 1line

followed by a <cr»>, until you terminate

the insertion with $$.)

Suppose you wish to add text to the end of
your pre-existing text material. Simply go
forward with the pointer, moving it with
the nLT$S or Z$$ commands, or hit the
RETURN key the desired number of times
until you see the LAST 1line of your
pre-existing text displayed., Type OLTSS
for verification. You should still see the
last 1line of pre-existing text. The
pointer is at the BEGINNING of this line!!
So, type LSSS. This moves the pointer to
the beginning of the line AFTER your last
line (note that nothing can be displayed
at this point so you don't type "T" as
part of the command - you can, but nothing
can be displayed). Now, type Iand
immediately 1insert your text as usual.
Frequently, at this point the first
insertion will be a <cr> to leave a blank
line between your pre-existing LAST line
and the new text, so hit the RETURN key
and enter all the desired text until you
are finished, hit the RETURN key and type
2 ESCs. Done!

How about correcting mistakes in text? YOU
WILL FIND THAT MISTAKES WILL BE CORRECTED
QUICKER BY USING ONLY A LIMITED NUMBER OF
COMMANDS. YOU DO NOT REALLY EVER HAVE TO
USE THE nC OR nD COMMANDS. YOU USUALLY CAN
ALTER TEXT FASTER BY USING THE VERY FEW
REVISION COMMANDS WE NOTED. Here is how to
use these few commands:

Move the pointer to the beginning of the
line that needs correcting. Do this by the
-nL or nL commands, or the B or Z commands
(don't forget that hitting the RETURN key
"scrolls" down and displays next line).
When you are at the beginning of desired
line, 1look at it and decide whether the
correction can easily be done by changing
one or more words, OR whether it would be

simplest Jjust to do the entire line over.
If the latter, simply type K$$ (which
deletes the line) and

Inow type the desired line<cr>$$. You will
find the original 1line has been deleted
and replaced with the desired line. Note
that you can do the same thing with
K$Idesired line<cr>$$. On the other hand,
if correction is only for one or two
words, simply use the S command this way
(and make sure pointer is at beginning of
line first by typing OLTS$S):

Sold word $new word S$OLTSS

YREMark « Issue 11 « 1980

The S tells Editor we are going to
Substitute; enter EXACTLY the old word(s)
that need correcting and hit ESC key;

enter EXACTLY the new word(s) and hit ESC
key; now enter OLTS$S and corrected line is
displayed. From a practical standpoint you
just don't ever have to worry about moving
the pointer ' rward or backward with the
nC or -nC counwands, nor do you have to nD
or -nD to delete characters. It is usually
faster just to position the pointer at the
beginning of the 1line 1in question, and
then either delete the whole line using K
and Insert whole new line; or, use the §

command to substitute one or more words!
(Of course, you can use the C and D
commands, you don't really need to,
and most ¢ 2 time you will find that my
suggestic esult in a quicker Edit
change!l) again, in the S command,
that we 3§ (zeroLT$$) to move the
pointer reginning of the line and
type or us. This is very
importa se, after the S command,
the F 3 located AFTER the
substit T moved it to the
beginn: .ine again. To delete one
Or more :hout substitution) enter
- Swor deletedS. Here, enter
0LTSS A ESCs of the S command.

Sometime. ay need to just delete one

or more 1. in pre-existing text. The
command is un$$. K means "kill". The n is
a positive or negative number stating the

number of lines backward or forward to be
deleted (killed) . For example, 2KS$S

deletes 2 1lines, the 1line which the
pointer 1is at the beginning of, and the
next line.

The other main command you will find
extremely useful is the "F" command. This
will find any UNIQUE word or words in your
text. The F command also leaves the
pointer just AFTER the desired unique word
or words, so it is always important to use
the F command immediately followed by the
OLT command, like this:

BFunique expression$OLTSS$

This says "Find the unique expression,
then move the pointer to the beginning of

that line and print it out". The pointer
stays at the beginning of that line,
incidentally. The "B" command was used

just before the "F" command to ensure that
the Edi tor looked for the unique
expression starting at the Beginning of
the text.

ONE ADVANCED COMMAND

The documentation explains how you can use
a "MACRO" to change a word(s) throughout a
long text with just one set of commands.
However, the documentation illustration
will only change the desired word a
maximum of once per line of text. Suppose

you are editing a BASIC program (very long
and very complicated) and you have, say, a
couple hundred occurrences of a variable
called A3. Suppose you desire to change

ALL occurrences of A3 to A4! Here is the

"Macro" which will do the job:
B5000<5000<SA3SA4$>L>SS

Or if you had a BASIC program that you

wanted to change all of the occurances .OE
SYl: to SY0: the command would 1look like

this: <8S8Y1:88Y0:$5>88

SUMMARY

Whenever you are in the EDitor, you are in
the "I" (Insert) mode (which is where you
do your entering of data, text, whatever)
IF you typed "I" to enter the Insert mode,.
You terminate the Insertion by hitting the
ESC key 2 times (echoed on terminal screen
as 2 dollar signs - $$). If you are NOT in
the "Insert" mode, then you are in the
"Command" mode where you can use all the
rest of the "ED" commands for text
revision and other manipulations. All
these other commands are also terminated
and executed by hitting the ESC key two
times.
You can successfully and quickly use ED
with only minimal commands as long as you
know WELL how they are used. "I" (Insert)
is always terminated at the end of the
insertion (may be many lines, and usually
the last inserted ‘'character' 1is a <cr>)
by 2 ESCs. B$$ will always move the
pointer to the very beginning of your
text. 2Z8$ will always move the pointer
just past the very LAST character in your
text (and remember that the last character
in your text is apt to be a NL character
cr>). You can also move the pointer
backward and forward with -nL or nL,
frequently entered as -nLT$$ or nLT$$ (so
that you can see the displayed 1line). Or,
you move pointer forward by hitting the

Done!

RETURN key or by using the FIND command
(Funique expression$SOLTSS) . Use OLTSS
liberally!! Correct by wusing the "S"

command for small changes, or "K" and "I"

commands (delete and insert) to replace
the entire line.
Remember that the pointer is always

present. You can NOT see it. It may or may
not be at the cursor location. But, it is
ALWAYS at the beginning of any line which

can be displayed with the OLTS$
combination of commands!!
ENJOY YOUR EDITOR!
A FINAL NOTE
I have an HB89 with 48K of memory. If you

of memory in your system,
be sure to check the documentation EDE g
few additional commands such as W
(Write), and review all of the section on

"A" (Append) .

have a minimum

EOF

Microsoft BASIC
Output Flexibility
with
Heath-Configured CP/M"*

John R. Thomas
9312 Frostburg Way
Gaithersburg, Md. 20760
This article

describes a method that can

be used with Microsoft Basic to select
whether outputs (print statements and
program 1listings) are sent only to a CRT
screen or to both a CRT screen and a

hard-copy line printer. An often desirable
feature in microcomputer operations is the
ability to send (copy) output to either a
CRT device or to a line-printer device,
with device selection under user or
program control. Such a selection feature
can be employed in program development and
debugging, printing selected subsections
of programs on demand, or printing a hard
copy of program or game instructions only
when desired. The selection me thod
outlined here is concerned with Microsoft
Basic operating with CP/Mas configured for
Heath systems.

When operating in the CP/Mcommand system a

Control-P typed on the console allows all
subsequent console output to be
concurrently output on the assigned

listing device. Output is sent to both the
listing device and the console until the
next Control-P is typed. The capability of
this important functional feature to
switch between output devices as desired
is not maintained when operating with
Microsoft Basic. One can of course send
outputs to either the CRT screen or to the
line printer in Microsoft Basic. It is the
control over selection that is missing. A
program can be easily listed on either the
CRT or the 1listing device by using the
Basic "List" oy "“L1istM statements.
However, to output print statements to one
or the other, one must use either the
"Print" or "Lprint" command. To switch
output from the CRT screen to the 1line
printer requires that all print statements
in the program be changed to "Lprint"
which at the minimum requires the use of
an editor 1if each statement is not to be
changed one at a time. Neither of the
above two ways of switching output copies
output to both the CRT and the 1line
printer. Output is to one or the other.

The capability to switch back and forth as
desired between the CRT alone and the CRT
plus the line printer can be accomplished
in Microsoft Basic operating with aCp/M
system by the use of the CP/M IOBYTE
function. The IOBYTE function allows for

S=REMark « Issue 11 = 1980

reassignment of logical
devices to a number of

assignment or
input and output

different physical devices. It is through
the use of this IOBYTE function by which
one had flexibility to switch output

devices under program or user control with
Microsoft Basic. In the Heath-configured
CP/M system from LifeBoat Associates,
Version 1.43, the eight-bite IOBYTE
function is found at memory location 16899
decimal (4203 hex). The function is
initially configured on the cp/M
distribution disk such that the system
console is assigned to the CRT.
Communication with the user, both input
and output, is normally through the CRT.
Another possible configuration exists in
the CP/M User Area under the physical
device name of UCI: (user-defined
console). When this device is assigned to
the console logical device, the wuser
communicates input through the CRT as
usual, however, all output that would have
gone to the CRT screen now goes to the
listing device. (The listing device 1is
configured as the 1line printer on the
distribution disk). The IOBYTE function
can be changed 1in the CP/Mcommand system
by the Stat command. The command, STAT
CON:=UCl: will change the console output
device to the 1line printer and the
command, STAT CON:=CRT: will change it
back to the CRT screen. This same type of
flexible switching of output devices can
be accomplished easily in Microsoft Basic
by the use of the "Poke" command to change
the IOBYTE value. The initial IOBYTE value
as supplied on the distribution disk is
set at 129 decimal (81 hex) which assigns
the console to the CRT. By executing the
command, "Poke 16899, 131", further output

will appear at the line printer and by
entering the command, "Poke 16899,129",
output will again . appear on the CRT
screen. One can switch back and forth as

desired between these two output states in
either the direct or the indirect
Microsoft command mode.

With the above manipulation of the IOBYTE
function, output is sent to either the CRT
screen or to the line printer. When output
is to the line printer, however, it does
not appear simultaneously on the CRT
screen. This may present some difficulties
as 1t may be hard to read the current
output 1line on the line printer without
advancing the paper. A small change in the
line-printer output section in the CPM
User Area will allow concurrent output on
both the line printer and the CRT screen
when the UCl: 1is invoked. The change
involves the addition of a conditional
jump from the line-printer routine to the
CRT-output routine 1if the Basic "Poke"
statement or the Stat command sets the
CON:=UCl:. The modified line-printer
output routine for the CP/M User Area
follows at the right.

HREMark « Issue 11 = 1980

;LP OUTPUT ROUTINE
;8250 MODEM STATUS
;MASK CTS BIT
;IS H14 READY
;IS 8250 READY

LPTOUT IN HB4LPT+6
ANI 10H
JNZ LPTOUT
IN H84LPT+5

ANI 20H ;HOLD REG EMPTY BIT
JZ LPTOUT ;WAIT IF NOT READY
Mov A,C ;BOTH ARE READY

OUT HB4LPT ;PRINT CHAR ON LP
LDA IOBYT ;GET I/0 ASSIGN BYTE

CPI 83H ;SEE IF CON:=UCl:
JZ CRTOUT ; IF SO PRINT ON CRT
RET

*CP/M is a registered trademark EOF

of Digital Research, Inc.

Local HUG News

NOTICE TO ALL LOCAL HUG GROUPS:

HUG is in the process of forming a master
list of all local HUG groups. Presently
we have a list of over thirty groups,
however the information on most of these
groups is very o0ld and needs to be
updated. We need your help 1in preparing

this master list. The information needed

is as follows:

Club Name:

Geographical Area:

Club Officers:

Club Mailing Address:
Meeting Location:
Meeting Time:
Approximate Membership:
Phone Number:

An officer of each local group should get
together the needed information and mail
it to HUG CLUBS, Hilltop Road, St.
Joseph, MI 49085.

PUERTO RICO

Anyone interested in forming a local group
in Puerto Rico should contact Norberto
Collado Rivera, Box 765, Rosario, PR
00746. Norberto is also interested in
sharing Spanish programs with any senores
or senoras.

CLEVELAND, OHIO

CHUG meets every other Thursday at 7 PM.
Contact the Cleveland Heathkit Electronics
Center for details at 216-292-7553,.

Denver, Colorado

Alferd K. Carr at 621 Cherry Street,
Denver, CO 80220 would like to get a local
H8 or HB89 NOVICE users club started. His
phone number is 303-321-6289.

Keep It Simple, Stupid
(KISS)

You there, in the back of the class, waving your hand. Did you say that you wanted
to know more about the PUT, GET, FLOAD and FDUMP commands? Okay, we'll show you a
neat way to imbed them right into the program and let the computer do everything but
title the data files and place the cassettes in your cassette recorder (we WILL show
you how to include a sort routine and convert this to disk BASIC
eventually----honest).

By the way, if you are intending to upgrade to HDOS, don't include the following
modifications in your mailing list program. Disk BASIC does not have the same input
buffer addresses as Cassette BASIC, so running this program could cause some
disastrous crashes.

First, we'll cover some of the basics (no pun intended).

When you're running a cassette-based routine, such as Extended Benton Harbor BASIC,
any command (while in the command mode) that you give it is processed by a program
called the Consocle Driver. Every time you strike a key, that character is stored in
a memory buffer location called "SINBUF". This is a 31 byte-long storage area where
2nd through 31st 1locations hold the characters that you type while the first
location keeps track of how many characters were entered.

For example, when in the command mode, you type:
PUT "THIS IS A DATA FILE"

The above six words (string) will be placed in $INBUF where it will be fetched by
BASIC. BASIC will then perform the 'PUT' command by dumping the contents of all its
variables onto cassette tape.

SINBUF 1isn't used when processing a program statement when a BASIC program is
running. The program statements are located elsewhere in memory.

That is partly why the program statement,
10 PUT "THIS IS A DATA FILE"
will generate an error message when it is encountered.

If you could somehow slide that 'PUT' command into $INBUF while BASIC is running a
program, you can make it work without causing a crash. There is a way you can do
it. BASIC has a program-mode statement called POKE that allows you to modify a
memory location while the program is running. 1Its form is:

POKE (address), (data)

Where the address 1is the desired 1location in $INBUF (one location per character,
remember) and, in this case, the data is the numerical equivalent of the character
we want placed there.

But wait, you can't type "SINBUF" for the address; the POKE command requires a
decimal number here. How do you find the right address? Not only that, this address
may be different in different versions of Extended Benton Harbor BASIC.

There's an easy way to find this address. Open your Cassette System Software
Reference Manual and turn to the "Console Driver Documentation" in the introduction
(Chapter 0). Locate the assembly language 1listing (that's the one that you have to
turn the book sideways for) and turn to the last page in this listing. Here you'll
find a cross-reference (XREF) that shows, among other things, the locations of the
Console Driver subroutines.

Look down the left column until you find $INBUF. Immediately to the right of it
will be the address. If you have BASIC version 10.06.00, this will be address
040130 in split-octal. However, the POKE command requires that this address be in
decimal.

10 HREMark « Issue 11 «1980

A quick way to convert this can be found in Appendix D of your Software Reference
Manual (Chapter =zero). You simply look up the first three numbers of the above
address (040) and find the decimal equivalent of '036'. Multiplying this by 256
gives 8192. Now look up the decimal equivalent of octal 130. This turns out to be
'088', Adding 8192 to 88 gives 8280 which is the decimal location of $INBUF.

Okay, vyou got the address, now how do you convert the characters on the Kkeyboard
into numbers that the computer can understand? This too, is easily solved. The
characters are represented inside the computer by a type of code known as ASCII (
for American Standard Code for Information Interchange). The decimal number
representing the ASCII characters can be found in Appendix 'C' of chapter zero of
your Software Reference Manual.

So, to use the 'PUT "THIS IS A DATA FILE" ' function, you can write your program
like this:

5 %Z9=8280:REM 79 = the address for ease of changing with updated BASICs

10 REM The PUT command

20 POKE Z7Z9+1,80 :REM the letter 'P'

30 POKE Z9+2,85 :REM the letter 'U'

35 REM: "POKE (address),84" ('T') isn't needed--Command Completion, remember?
40 POKE Z9+3,84 :REM the letter 'T' (for THIS IS A DATA FILE)

50 POKE Z29+4,72 :REM the letter 'H'

60 POKE Z9+5,73 :REM the letter 'I'

And so on until the entire 'THIS IS A DATA FILE' string was POKEd into the buffer.
The last POKE instruction you'd give, would be 'POKE 29,21' which goes into the
first address of SINBUF and indicates how many characters were entered.

Even using multiple statements per line, this can eat up a lot of memory. Let's use
some FOR-NEXT loops and some fancy string manipulation to cut down on space and make
this routine more flexible (so you can use it for other commands). AT LAST! We're
getting away from the theory and going to a practical application!

We'll start out by deleting lines ten through 60 above and replacing this area with
the commands that we would want to implement in our program.

5 29=8280:REM S$INBUF address (#10.06.00)

10 Z8$="UN"+CHRS$ (13)+"GE" :REM ***GET*** command

15 Z7$="UN"+CHRS (13)+"LOA" :REM ***[LOAD*** command

20 26$=CHRS$ (13)+"YCON"+CHRS (13) :REM ***GET or LOAD*** confirmation
25 Z5$="PU":REM ***pUT***x

30 Z4$="DU":REM ***DUMpP***

35 Z3$=CHR$(13)+"CON"+CHR$ (13) : REM ***PUT or DUMP*** continue

Line 10 equates the string variable '2Z8$' to the 'GET' command. When in BASICs
command mode, you would UNlock the interpreter to allow loading the new variables,
hit the RETURN key (represeted by CHR$(13)) and then 'GE' indicates that you want
to GET a file. Another portion of the program will supply the file name. Line 15
does the same thing for the LOAD command (Z7%).

Line 20 must be used in conjunction with the GET or LOAD command. It provides the
carriage return after the file name that you'd normally supply manually by hitting
RETURN. The computer would then ask you if you're sure; you'd respond by tapping
the "Y" key. 1In this line, the first letter of "YCON" will do that for you. "CON"
will tell the program to continue after the file is loaded.

;ige§ 25 and 30 do the same thing for the PUT and DUMP commands, while line 35 will
initiate the command by sending a RETURN and the CONTINUE command.

Before getting to the nitty-gritty of POKING these commands into $INBUF, we'll show
you hgw to supply the file name to be used with the above strings. This is done
starting at line 5000 below.

5000 REM This routine will *GET* a file from tape

5010 LINE INPUT "what is the file name? ";Z1$

5020 2z9$=Z8$+"Z1$"+Z6$:REM *28S* & *Z6S$* indicates *GET*

5025 REM 29§ is the same as 'GET " (your string)" (return) Y CONTINUE'

5030 REM The quotes around Z1l$ prevents BASIC from generating an error message.

HREMark +Issue 11 +1980 5

The above lines will ask you for a file name (21$) and then combine it with Z8$ and
Z6% to form the complete GET operation command. However, it won't do anything yet.
To make it do something, we've got to POKE this information into $INBUF and then
STOP the program. Stopping the program allows BASIC to look at SINBUF to see if any
commands are there. So we'll add the following lines:

5040 GOSUB 65000: REM We'll put the POKE subroutine here out of the way.
5050 STOP :REM Allow access to $INBUF
5060 (return to the main loop)

The actgal POKING suproutine will start at line 65000. When the computer returns
from this routine, it will encounter the STOP command at line 5050 and will stop.
The computer will look at SINBUF and execute the GET function. Once the data is

loaded, the program will automatically CONTINUE starting at line 5060, which can be
a command to return to the main program loop.

Here is how the program would look if you wanted to implement the PUT command:

5100 LINE INPUT "What is the file name? ";Z1$

5110 29$=255+"Z21$"+Z3$:REM *2Z55* & *23$* indicates *PUT*
5120 GOSUB 65000

5130 STOP

5140 (return to the main program loop)

Can you see the major difference between this and the GET routine?

Now we'll show you how one subroutine starting at line 65000 can handle both of
these commands.

65000 REM Tape manipulation routine

65010 FOR Z0=%9+1 TO Z9+LEN(Z9S$) :REM poke in the command
65020 POKE Z0,ASC (MIDS$(29$,%20-29,1)):REM one letter at a time
65030 NEXT Z0:REM almost done

65040 POKE Z9,LEN(Z9$):REM include string length

65050 RETURN :REM all done!!

Line 65010 is a FOR-NEXT loop that starts one location after the first $INBUF
address and will count out the number of successive memory locations that are
required for the command. This number is determined by finding the length of the
command (29$) set up in the 1ine-5000 routines. The variable, 29 is the address
value of $INBUF as set in line 5 previously.

In line 65020, the data indicated as ASC(MIDS (29$,20-29,1)) 1is POKEd into the
current SINBUF address held in variable 20. A single character from 2Z9$ 1is
extracted with the MID$(Z9%$,Z0-29,1) statement. The current address that the
FOR-NEXT loop is pointing at (Z0) is subtracted from $INBUF's starting address (Z9)
to tell the MIDS command how many characters from the left of the string variable,
795, it should look to find the desired letter. The 'ASC(' statement converts this
letter into a number acceptable to the POKE command.

Line 65030 increments the Z0 pointer to the next address location and loops if all
the specified locations haven't been looked at. This looping continues until all
the characters in 295 have been POKED in successive memory locations.

Line 65040 will then find the length of Z9$ and store it in the first 1location of
SINBUF before returning to the calling program.

And finally, here's how this function can be added to the mailing list program:

5 79=8280:REM SINBUF address (#10.06.00)

10 Z8S$="UN"+CHRS (13)+"GE":REM ***GET*** command

15 Z7$="UN"+CHRS (13)+"LOA" :REM ***[,OAD*** command

20 Z6$=CHRS (13)+"YCON"+CHRS (13) :REM ***GET or LOAD*** confirmation
25 Z58="PU":REM ***p[T***

30 Z4S="DU":REM ***DUMP***

35 Z3$=CHRS (13)+"CON"+CHRS (13) :REM ***PUT or DUMP*** continue

100 IF N>0 THEN 200:REM Why do this?

110 DIM AS$S(100,6) ,TS (6)

120 FOR I=1 TO 6:READ TS$ (I):NEXT I

130 DATA "Name","Address","City State, Zip","Phone","Bus. Phone","Notes"

12 $REMark «Issue 11 = 1980

200

202

204

206

208

210

212

214

216

218

220

222

224

226

230

295

300

310

1000
1020
1030
1040
1050
1055
1060
1200
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1400
1405
1410
2000
2010
2030
2040
2060
2070
2080
3000
3010
3020
3030
5000
5002
5004
5006
5007
5008
5009
5010
5020
5030
5035
5040
5050
5060
5070
5080
5090
5100
5110

REM clear the screen & print the MENU

FOR I=0 TO 24:PRINT :NEXT I:REM clear screen

PRINT TAB(25);"M E N U"

PRINT TAB(25) ;" ======= 4

PRINT :PRINT

PRINT TAB(20);"1) List all names"

PRINT TAB(20);"2) Add names to the list"

PRINT TAB(20);"3) Edit a record in the list"

PRINT TAB(20);"4) Get a Data File from cassette"

PRINT TAB(20);"5) Put a Data File onto cassette"

PRINT TAB(20);"6) Stop"

PRINT :PRINT

LINE INPUT "Enter the number for the desired function: ";AS$
A=VAL (A$) :REM help cut down on errors
ON A GOTO 1000,2000,1200,5000,5050,3000
REM If he doesn't know what to do, give him another chance.
PRINT :PRINT :PRINT "I don't understand that (hit RETURN)..."
PAUSE :GOTO 200

REM He wants to list all the names; set up a counter

FOR I=1 TO N:REM N should equal how many names we have. Right?
FOR J=1 TO 6:REM we need to use the headings again

PRINT T$(J);":";TAB(14);AS$(I,J):REM Line it up in neat columns.
NEXT J:PRINT :NEXT I:REM *print* allows readability

PRINT "Tap the RETURN key when ready...";:PAUSE :REM give'em time
GOTO 200:REM all done!

REM **** EDIT LIST ****

FOR I=1 TO N

FOR J=1 TO 6

PRINT TS$(J);":";TAB (14);A$(1,J)

NEXT J

LINE INPUT "Do you want to EDIT this record? <NO> ";Z$

IF LEFTS (2$,1)="Y"OR LEFTS (2$,1)="y" THEN 1300:REM allow lower case
NEXT I:GOTO 200

FOR J=1TO 6

PRINT T$ (J);":";TAB(14);A$(I,J)

LINE INPUT "New Data: ":AS$(I,J)

NEXT J

NEXT I

I=I-1:IF I=N THEN 200:REM prevent crash after edit last record
NEXT I

GOTO 200

N=N+1:PRINT :REM Set up a counter called 'N' and PRINT A BLANK LINE
PRINT T$(1l);:LINE INPUT ": ";A$(N,l):REM Print NAME on screen
IF LEN(AS(N,1))=0 THEN N=N-1:GOTO 200:REM Check to see if user is done.
FOR I=2TO 6:REM Now print address, city state etc.

PRINT TS$(I);:LINE INPUT ": ";AS(N,I):REM and file away in memory.
NEXT I:REM keep going until we get to "Notes"

GOTO 2000:REM Bump the counter and get next name.
REM Quit

PRINT "If you change your mind, type CONTINUE..."
STOP

GOTO 5:REM prevents destruction of data in memory

REM *GET* the data file from cassette

PRINT CHRS (7);"This will destroy any current data files in memory!"
LINE INPUT "Do you wish to continue? ";A$

IF A$<>"YES"THEN 200:REM error trap

PRINT "Place the Data File cassette into your player, press the 'PLAY'"
PRINT "button and hit RETURN when ready." :PAUSE

PRINT

LINE INPUT "What is the Data File name? ('RETURN' if not known)";Z1l$
29$=28$+"Z1S"+Z6S:REM *Z8S* & *26S* indicates *GET*

GOSUB 65000:REM get the file

STOP :REM necessary during *get* operations

GOTO 200:REM got the file

REM *PUT* the data file onto cassette

PRINT "Place a blank cassette into your recorder, press the 'record'"
PRINT "button and hit RETURN when ready.":PAUSE

PRINT

LINE INPUT "Please enter the Data File name: ";Z1l$

IF Z1$="" THEN PRINT CHRS$(7);:GOTO 5090:REM should have a name
Z29$=7255+"Z1$"+Z3$:REM *25%* & *23$* indicates *PUT*

$-REMark = Issue 11+ 1980

13

14

5120 GOSUB 65000:REM put the file

5125 STOP :REM necessary during *put* operations

5130 GOTO 200:REM got the file

65000 REM Tape manipulation routine

65010 FOR Z0=29+1 TO Z9+LEN(Z9$):REM poke in the command
65020 POKE Zz0,ASC(MID$(Z9%$,20-29,1)):REM one letter at a time
65030 NEXT Z0:REM almost done

65040 POKE Z9,LEN(Z9S):REM include string length

65050 RETURN :REM all done!!

We have been doing some editing to this program. The most visible change is to the
main program loop starting at line 200. After using a FOR-NEXT loop to clear the
screen, we print a MENU to more clearly display the available options. This also

makes it easier to add new functions to this program at a later date. After
selecting the number for the function that you want, the 'ON GOTO' statement will
transfer control to the program line indicated by that number. If it isn't a valid
MENU number, the computer will again print the MENU.

The GET and PUT routines starting at line 5000 have been expanded to include prompts
for handling the cassettes and some error-checking functions to make sure that you
don't accidently destroy any data.

If you've already typed in the mailing 1list program from the previous issues of
REMARK, in addition to adding the new lines above, you should check lines 300, 310,
1050, 1055, 1280, 1400, 1405, 3010, 3020 and 3030 against the above. These have
been edited to correct a couple of minor bugs and clean up the display a bit, What
each change does is documented with REMs.

Now, how about that sort routine and conversion to disk BASIC?

EOF

Changes to Doc Campbell’s Article

(REMark Issue #10)

Note the following changes in Doc Campbell's article on Random files in REMARK Issue
#10, May 1980.

Page 4 - Right column, 3rd paragraph.
Change: LASTNAME\FIRST\STREET\CITYSTATEZIP
To: LASTNAMEAFIRST\MR\ STREET\CITYSTATEZIP

Page 4 - Right column, last line.
Change: R$="LAST\FIRST\MR\STREET\CITY\STATEZIP"
To: R$="LASTNAME\FIRST\MR\STREET\CITYSTATEZIP"

Page 5 - Right Column, 1llth line.
Change: "PRINT 2," in lines 120 through
To: "PRINT #2," in lines 120 through

Page 6 - Right column, 3rd line (Program 3 listing).
Add after line 20 -
22 CLEAR 1000

Page 9 - Program 7, line 180.
Note that the end of the this line contains "."
in the INSTR statement. 1In some issues of REM,
this looks like " ". There should be a period
between the quotes.

Page 14- Program 15 at the bottom of page.
Change the numerical value 70 to 90 in lines
100, 140, 145, 190, and 280.

Miscellaneous -
Throughout the text two unfortunate errors occurred. A left bracket was printed
wherever a less than symbol (<) was present. A long vertical 1line was printed

wherever the greater than symbol (>) was present in the orignal text. This did not
happen in any of the programs, only the text material.

Thanks DOC

SREMark « Issue 11+ 1980

New HUG Software

HUG P/N 885-1083 DISK XVI MISCELLANEOUS
H8/HL17//HB89/ASM/ABS/32K $20.00

NOSPACE will delete the need to type
spaces every time you boot up a disk.
Requires HB89 or HB8 using a H8-4 I-0 card.

WCT. Wordcount program counts the words in
a RUNOFF text file. Only counts words that
are to be printed.

TTREAD are for those without printers, it
will remove linefeeds and formfeeds from
an ASCII file, so it can be read on the
console terminal without the jumping that
comes from paging.

MOUNTALIL
your
the
the
three

will

system
doors
wrong

(five

mount all disk drives in
that have disks 1in them and
are closed. Also will ignore
type of media. For a two or
inch) drive system only.

RECOVER will recover a
a sector at a time and
another disk, even if the disk 1is not
mountable. The user will still have to
know which sectors to recover in order
to save a program from a bad disk.

file from a disk

place it on

HUG P/N 885-1206
H8/H17/H19//H89/CPM/BASIC-80/48K

CP/M GAMES DISK
$21.00

disk contains the CP/M Microsoft (tm)
the games found on HUG disk

This
version of

XI1 MBASIC games disk (885-1068). Refer
to disk XII for information on these
programs. Not all programs are included
on the CP/M version due to limitations
imposed by the CP/M operating system.
The following programs are included in
this release:

SLOTS.ASC OTHELLO.ASC

WUMPUS .ASC DORNBACK .ASC

HANOI .ASC QUBIC.ASC

NIM.ASC TICTAC.ASC

HANGMAN.ASC BATTLE.ASC

All programs
the H19
all will

make use of the graphics of
terminal (or H89). Most but not
run in less than 48k of memory.

HDOS 1.6 DEVICE DRIVERS

The Device Driver Disk HUG P/N 885-1019
has resently been updated for version
1.6 of HDOS. A copy of the new version
may be ordered using the same HUG part
number 885-1019, as all current stock
at HUG has been updated to version 1.6.
The selling price remains $10.00.

4 REMark « Issue 11 - 1980

f 80
SOFTSTUFF, k
established by Heath Company,
offers you a selection of software
tools at atfordabie prices. All SQHSIUFF
programs have baen checked and confirmed
on the hardy Ihmpu'h
not as extensive as standard Heath Company d 0
lation, has been cumpﬂelely rewev.ed' and |udged accwlahle
All SOFTSTUFF products come on a %-inch disketle, unless
otherwise stated . Specify HDOS or CP/M when ordering. For value e"
and performance.. SOFTSTUFF is good stuff. e
General Ledger I:
Includes powerful programs for entry, maintenance, repoerting and analysis of
accounting data. Features include; Custom Chart of Accounts for determining accuunt
names and numbers. Any numbering system may be used, with or without decimal notatron
Comprehensive Printouts upon request.96-column. Double Entry/Automalic Entry Checking
automatically checks equality of debils and credits with each entry. Simple Data Entry, with one quick
keystroke. Account Verification helps guard aganst mistakes by prevenling enlrigs 10 non-existent
accounts and rejecting account numbers already in use. New Account Facility lels you open new accounts
any time during data enlry with no disruption to the transaction being entered. Balance Reporting lels
you call the balance of any account 1o the terminat during data enlry. All balances are instantaneously
updated with entry of new Iransactions. Audit Trail for a source number and free-form descnption. One
of the easiest-to-use, most flexible systems you'll find anywhere. Sample printouts and program
fistings included. Requires Microsoft BASIC. HDDS #SF 9004: §124.95. I:P M #5F-9104; 512! 95
(8- disk). Manual only, #595-2530: §15.00 (d when complele p geisp
Full Screen Editor:
Uses HB89 or H19 screen. Cursor motion keys position the cursor so changes can be typed anywhere on
the screen. Funclion keys perform character and line insert and delete, string search, move and copy
single and multiple ines, and scrolling of text in Ihe window. For H89 and H8 + H19. HDOS #SF-3000:
$49.95. CP/M #5F-9100: §49.95.
Text Formatter:
Performs fill and justification (straight right margins) of tex! previously prepared by your editor. Page
numbering, headers and footers, indents, hanging indents, centering and underiining . INCLUSION
feature allows automatic insertion of up to 26 user defined stnngs and merging of documents.
HOOS/H19/HBI. HDOS #SF-9001: $54.95. CP/M #SF-9101: $54.95.
Microsoft Macro 80:
B0B0/280 MACRO Assembler. intel and Zog Mnemanics supported. Refocatable linkable output
Inciudes LINK 80 and Cross Reference List utilitres. HOOS common deck MACRO included. For H and
H89. HDDS #SF-B002: $69.95.
CPS:
Permits file transfer between the H83 and HB/H19/H17 and Information Services {MicroNET). Features
include user defined keys for auto-login, mail check. etc, Full error checking and elapsed Lime clock on
screen. Very easy 1o use on lime sharing syslems. HDOS #SF-9003: $39.95. CP/M #SF-9103:
$39.95.
SORT:
An y fast I roulineg that sorts records up to 255 charactersin length with user
defined sorl fields. Could be called by MBASIC or stand-alone. Source code provided. HDOS #5F-
8004: $29.95.
Small Business Inventory
For complete inventory analysis. Up to 12-character part numbers (alpha-numeric), 18-characler
descriptions of parts, 12 items of information on each part include reorder level, usage histary by
month and year-to-date. much more. Complete printouls. Requires Microsoft BASICand H19 terminal
HODOS #5F-9005: $69.95
BDS C Compiler
Supports most features of flanguage, including Structures, Arrays, Pointers, recursive function evalua-
tion, overlays. Includes linking loader. library manager, and library comaining general purpose, file 1/0,
and I'aating point functions. Lacks initializers, statics, ffoats and longs. Includes “ The C PROGRAM-
MING LANGUAGE" by Kernighan and Ritchie. CP/M #SF-8106: $119.95.
CBASIC
Disk extended BASIC~ Non- interactive BASIC with pseudo-code compiler and run-time inlerpreter
Sugpogns full file control. g, integer and p elc, CP/M #SF-8107T:
139,
Fun for hams...RTTY Communications Processor
Split screen lets you copy incoming while checking and editing outgoing messages. On-screen graphics
presents completa system status: time, CW identification, etc. ASCH or Baudo! operation. Disk-based
autostart. HDOS #SF-9006: $100.
To order:
1. Send check or money order to Heath Company, Benton Harbor, MI 45022,
Michigan residents add 4% sales tax. Write model numbers clearly
2. Call toll-tree 800-253-0570 and use VISA or Master Card. In Michigan Alaska, & Hawaii, call
(616) 9B2-3411.
3. Visit your Heathkit Electronic Cenler* where —
SOFTSTUFF is on display. See your telephone HEATH
white pages for the location nearest you. *units
of Veritechnology Electronics Corporation. ENITH
& —d

CP/M® is a registered trademark of Digital Research Corp.
SOFTSTUFF™ is a trademark of Heath Company.
CBASIC™ is a trademark of Compiler Systems, Inc.

15

Do Your Own Thing

If you are an assembly language programmer
who writes programs that run under HDOS,
there may come a time when you want to do
console I/0 that is completely independent

of HDOS. For example, you may wish HDOS
to 1ignore all control characters, the
terminal width, etc. One way to
accomplish this 1is to write your own
console I/0 routines. Since the HDOS
routines are interrupt driven, you can
effectively "turn them off" by disabling
the interrupts generated by the hardware.
The following example shows how to do
this, and includes single character 1input

and output routines.

ORG (begin) BEGINNING OF PGM
+EXIT EQU 0 EXIT TO HDOS
IOFF EQU 0 INTERRUPT OFF BYTE
ION EQU 1 INTERRUPT ON BYTE
IPORT EQU 351Q INTERRUPT CONT PORT
SPORT EQU 355Q CONSOLE STATUS PORT
DPORT EQU 350Q CONSOLE DATA PORT
INBIT EQU 1 INPUT STATUS BIT
OUTBIT EQU 40Q OUTPUT STATUS BIT

* TURN OFF CONSOLE INTERRUPTS

MVI A,IOFF DISABLE CONSOLE
our IPORT INTERRUPTS
JMP MNPGM GO TO MAIN PGM

* SINGLE CHARACTER INPUT ROUTINE
* RETURNS CHARACTER IN A

SCIN IN SPORT CHECK CONSOLE STATUS
ANI INBIT READY TO RECIEVE?
Jz SCIN LOOP UNTIL READY
IN DPORT GET DATA
ANI 177Q STRIP PARITY BIT
RET RETURN WITH CHAR.

* SINGLE CHARACTER OUTPUT ROUTINE
* EXPECTS CHARACTER IN A

SCOouT PUSH PSW SAVE CHARACTER
SCOUTO0 1IN SPORT CHECK CONSOLE STATUS
ANI OUTBIT BUFFER EMPTY?

Jz SCOUTO LOOP UNTIL IT IS
POP PSW RESTORE CHARACTER
ouT DPORT TRANSMIT CHARACTER
RET RETURN TO CALLER

* START MAIN PROGRAM HERE

MNPGM EQU &

* AND WHEN YOU RETURN TO HDOS, USE:

EXIT MVI A,ION RESTORE CONSOLE
ouT IPORT INTERRUPTS
XRA A
SCALL LEXIT

The above will work on an HB89 or an HS8

using the HB-4 interface. If you use the
H8-5, change the EQU's as follows:

IOFF EQU 25Q INTERRUPT OFF BYTE
ION EQU 27Q INTERRUPT ON BYTE
IPORT EQU 373Q INTERRUPT CONT PORT
SPORT EQU 373Q CONSOLE STATUS PORT
16

DPORT EQU 372Q CONSOLE DATA PORT
INBIT EQU 2 INPUT STATUS BIT
OUTBIT EQU 1 OUTPUT STATUS BIT

-~ Patrick Swayne, hereafter known as PS:

HUG Parts List o1-oct-8o

P/N Description Price
885-0017 HB Poster $ 2.95
885-0018 H89 Poster $ 2.95
885-0019 Color Graphics Poster $ 2.95
885-1008 Volume I Documentation $ 9.00
885-1009 Tape I Cassette $ 7.00
885~1010 Adventure Disk H8/HB89 $ 10.00
885-1012 Tape II BASIC Cassette S 9.00
885-1013 Volume II Documentation $ 12.00
885-1014 Tape II ASM Cassette H8 Only $ 9.00
885-1015 Volume III Documentation $ 12.00
885-1019 Device Driver Disk H8/H89 $ 10.00
885-1022 HUG Editor (ED) Disk H8/HB89 $ 15.00
885-1023 RTTY Disk H8 Only $ 22.00
885~-1024 Disk I HB8/HB9 $ 18.00
885-1025 Runoff Disk H8/HB89 $ 35.00
885-1026 Tape III Cassette $ 9.00
885-1027 Morse8 Cassette H8 Only $ 14.00
885-1028 RTTY Cassette H8 Only $ 11,00
885-1029 Disk II Games 1 H8/HB89 $ 18.00
885-1030 Disk III Games 2 H8/HB89 $ 18.00
885-1031 Disk IV MUSIC H8 Only $ 23,00
885-1032 Disk V HB/HB89 $ 18.00
885-1033 HT-11 Disk I $ 19.00
885-1034 Character Ed Cassette H8 Only $ 11.00
885-1035 ED/ASM/DEBUG Cassette H8 Only $ 11.00
885-1036 Tape IV Cassette $ 9.00
885-1037 Volume IV Documentation $ 12,00
885-1038 WISE on Disk HB8/H89 $ 18.00
885-1039 WISE on Cassette H8 Only $ 9.00
885-1040 PILOT On Cassette H8 Only $ 11.00
885-1042 PILOT on Disk H8/HB89 $ 19.00
885-1043 MODEM Heath to Heath H8/H89 $ 21,00
885-1044 Disk VI HB8/HB9 $ 18.00
885-1045 FOCAL Cassette H8 Only $ 11.00
885-1047 Stocks H8/H89 Disk $ 18.00
885-1048 Personal Account H8/H89 Disk $ 18,00
885-1049 Income Tax Records H8/HB89 Disk$ 18.00
885-1050 Modem Comm. System for H8/H89 $ 18.00
885-1051 Payroll HB8/HB89 Disk $ 50.00
885-1052 Morse8 Disk HB Only $ 18.00
B885-1054 SmBusPkg II 3 Disk H8/H19/H89 $ 60.00
885-1055 MBASIC Inventory Disk H8/H89 $ 30.00
885-1056 MBASIC Mail List H8/H89 Disk $ 30.00
885-1057 Tape V Cassette $ 9.00
885-1058 Volume V Documentation $ 12.00
885-1060 Disk VII H8/H89 $ 18.00
885-1061 TMI Load H8 ONLY Disk $ 18.00
885-1062 Disk VIII H8/H89 (2 Disks) $ 25.00
885-1063 Floating Point Disk HB8/H89 $ 18,00
885-1064 Disk IX H8/HB9 Disk $ 18.00
885-1065 Fix Point Package H8/H89 Disk $ 18.00
885-1066 Disk X H8/H89 $ 18.00
885-1068 Disk XII MBASIC Graphic Games $ 18.00
885-1069 Disk XIII Misc HB8/HBY $ 18.00
885-1075 HDOS Support Package H8/H89 $ 60.00
885-1077 TXTCON/BASCON HB8/H89 Disk $ 18.00
885-1078 HDOS ZB0 Assembler $ 25.00
885-1079 HDOS Page Editor $ 25.00
885~1080 EDITX HB8/H19/H89 Disk $ 20.00
885-1082 Programs for Printers HB8/H89 $ 20.00
885-1083 Disk XVI Misc H8/HB9 $ 20.00
885~-1201 CP/M Volumes H1 & H2 $ 21.00
885-1202 CP/M Volumes 4 & 21 C $ 21.00
885-1203 CP/M Volumes 21 A & B $ 21.00
885-1204 CP/M Volumes 26/27 A & B $ 21.00
885-1205 CP/M Volumes 26/27 C & D $ 21.00
885-1206 CP/M Games Disk $ 21.00

3REMark + Issue 11 » 1980

Using Printers with the H 11A

H11A

H14/H24/H34/H44 COMPATABLE ?

In order to interface the H14 to the H1l1A
as a line printer, a serial interface is
required. Either the H11-5, WH11l-5, or the
WHAll-5 will work. No modification is
necessary to the Hl4. The listed interface
cards will also require no modification.
All that is necessary 1is make sure that
the card is addressed and vectored
properly. The card address should be
177510. The card vector should be 200. The
rest of the card should be set up as per
the manual for RS-232 communication and
the baud rate should of course be the same
as that set up on the printer. The WH11l-51

adapter cable is required for proper
electrical connection between the
interface and printer.

In order to interface the DEC LA-34

printer to the H11lA as a line printer, the
same requirements necessary for the H1l4
apply. Since this printer runs at baud
rates up to and including 300, no
handshake signal is necessary.

The T1-810 "OMNI" printer 1is a very high
speed printer and requires a handshake
signal to the computer to tell "him" when
the printer cannot accept any characters.
If the printer was purchased from Heath
Company, no modifications are necessary to
the printer. The busy signal 1is of the
proper polarity. For the least amount of
"grief", the WHAll-5 interface card is
required. Simply connect the two units
together by way of the 134-1093 cable
(supplied with the printer) and the
WH11-51 adapter cable. Also make sure the
baud rates are the same.

If you are interfacing the printer to the
H11-5 or WH11-5 card, modifications are
necessary. A description of the
modifications that need to be performed,
can be found in issue 8 of 'REMARK'
magazine. This article was written by
Randy Borchardt and will essentially turn
your H1l-5 or WH11-5 interface into a
WHA1ll-5 as received from the factory. The
aritcle describes how to perform this
'MOD', and still remain 'H14' compatible.
This simply means you can plug either your
TI-81l0 or Hl4 into the same interface
without making any modifications and still
have either work properly.

If you do not wish to remain 'H14'
compatable, the second from the last
paragraph describes how to modify the
WHA11l-5 board for this purpose. In
addition to this jumper wire change (Pin 5
to Pin 4 on IC-21), an additional foil
must be cut and jumper wire installed.
This modification is as following and will
be referred to as 'MOD44'.

MOD44

JrREMark « Issue 11 » 1980

Objective: 1Isolate Pin 2 of IC-8 then

ground it.

Reason: Make the Software think the
printer is busy when the Software
interrogates the printer status bit.

looking at the board
with the component side facing you, and
the 'PULL' handle at the top, locate the
foil that runs vertically between Pins 30
and 31 of IC-20 (THE UART). Cut this fo;l
at any convenient location. this
will isolate Pin 2 of IC-8.

Procedure: While

Doing

Solder a jumper wire between Pins 2 and 8
of IC-8. Doing this will ground Pin 2 of
IC-8.

NOTE: MOD44 can be performed on
any WHAll-5 interface whether or not you
decide to remain 'H14' compatible. This
mod will not hinder the operation of the
card in any way. It will simply make it
more versatile.

H44 DIABLO PRINTER

The first thing that must be done to the
diablo printer when it is received, 1is to
make sure the busy signal is on the proper
pin on the J2 connector on the HPRO4
processor board in the printer. The
printer wusually comes from the factory
with the yellow wire installed into Pin 4.
This must be moved to Pin 2. Once this is
done, the busy signal will appear on Pin 4

of the RS-232 'D' style connector. The
'BUSY' condition of this signal will be
active low (-12V). This of course is the

opposite of that of the H14 printer. 1In
order to interface this printer to the
WHAl11l-5 card, two things must be done:

1. Make sure the card you have 1is a
WHAl11l-5. If it is not, you must perform
Randy Borchardts' modification.

2. The Jjumper wire on the back of the

board going to Pin 5 on IC-21 must be
moved to Pin 4 on the same IC.

3. 'MOD44' must be performed.
Interconnect the two units by way of the
WH11-51 adapteér cable and the cable that
comes with the diablo printer. No other
cables or adapters are necessary.
Unfortunately there is no way to remain
H1l4 compatible when wusing the diablo
printer unless you wish to modify the H14.
All that is necessary 1in this case 1is to
interchange the two wires going to Pins 7
and 4 on S102 in the H14 printer. The H14
'BUSY' modification will also have to be
installed.

Jim Buszkiewicz

17

H 8-2 Interface

Sometimes information is passed around via
circular ways...and this may be one of
those times, Here's information on the
H8-2 handshake requirement that I received
from Jim Buszkiewicz that I have not seen
elsewhere...in the Heath manual nor in
previous REMark 1issues. And if it is
something that had been previously
published, then you can forget this letter
completely.

I had a problem getting my H8-2 and the
ESCON Microcomputer/Selectric Interface to
talk to each other. I asked Heath what
could be wrong. According to Jim, the DATA
TAKEN pulse (RDAV) must be AT LEAST 10

uSECONDS wide. This piece of information
is not readily apparent in the Heath
manual. You can figure it out if you step
through the circuitry, look up the
handshake 74120 bit synchronizer
specifications and capabilities, etc.

Anyway, the ESCON parallel interface DATA

TAKEN=DATA ACCEPTED=RDAV pulse is 7
us...they tell you that in their book. I
assembled a 74121 "pulse stretcher" and

put it in the DATA ACCEPTED (ESCON'S name
for the Heath-named DATA TAKEN
acknowledgement) line (pin 12 of the ESCON
EIA input connector) . For anyone
interested, the values for R and C I used
were 2200 ohms and 0.01 UF (disc ceramic).
According to the chart in the Texas
Instruments TTL Data Handbook, 2nd
edition, Fig. 6, pg.6-64, this gives a
pulse about 15-20 us wide. The 74121 pin
1, the not-Q output, 1is used for RDAV. A
schematic diagram of this standard circuit
is attached, I used a disc ceramic because
it was handy. The «circuit 1is a standard
one-shot, with the negative-going 7 us
strobe used to trigger the one-shot. Pins
4 and 5 are pulled high by Vcc via the 1K
resistor. The RDAV pulse must be negative
going. The handshake requirements for DAV
and RDAV, except for the minimum pulse
width requirement for RDAV, are explained
in the manual, although not very
thoroughly.

I made a small 1x2 printed circuit board
and used double-adhesive foam tape to
mount the board just under the EIA
connector. In summary, the RDAV pulse for
the H8-2 must be negative-going, at least
10 us wide. In addition, Jim advised me to
jumper H1-H2 for the particular channel
and connect that channel to INT3.

I do not have jumpers Al-A2 (which defeats
the handshake and places the H8-2 in
continuous mode) and do not have Bl-B2
jumpered. With the pulse stretcher in the
RDAV line, the ESCON interface works well
with the H8-2.

Aloha, Wallace K. Izuo
960 Ala Lehua Street
Honolulu, Hawaii 96818
18

In this

column of
Technical Consultants
the most commonly asked guestions on Heath

REMark, the Heath
provide answers to

computer both hardware and

sof tware.

products,

Q: My H-14 works fine, but when using the
96 character per line size, the print
becomes very light. 1Is there something
I can do to create darker print in this

mode?
A: Yes, there 1is. Install a 10K ohm
resistor (Heath p/n 6-103-12) in

parallel with the existing 1K at R171,
and replace R192 with a 30.1 ohm
resistor (6-3019-12). You will then
have to re-calibrate the temperature
sensing adjustment.

Q: I am using Extended Benton Harbor BASIC
versions 10.02 or higher and I need to
be able to load the programs that were
written under the 10.01 version. How
do I do this?

A: A very simple solution 1is to.use the
OLDLOAD command instead of the LOAD
command. The OLDLOAD command only

needs to be wused when 1loading the
program in from an old tape. Once the
program has been loaded into memory the
program can be saved and it will now be
in the new format used by the higher
versions of Extended Benton Harbor
BASIC.

Q: I need more information about how HDOS
accesses the disk drives. Where can I
get this information?

A: The HDOS Programmers Guide (597-1973)
and the Addendum (597-2194) are
available from Heath Company's PARTS
DEPARTMENT. These two books provide
the needed system information for the
assembly language programmer to allow
access to the disk files and other HDOS
functions.

EOF

¥REMark « Issue 11 = 1980

File Handling in BASIC

Dear Gerry,

Here are two subroutines and two short programs for the next issue of REMark. The
programs are specially designed for those who prefer to handle files in BASIC, using
a minimum of control disk space for maximum versatility. The ideas are not new, but
the programs are better than any I have been able to find.

Subroutine to convert name or address line A$ to lower case:

10 B=0:T$="":FOR A—1 TO LEN(A%$):N=ASC(MID$(A%,A,1):IF NI4S OR NP0 THEN B=0
20 TH=T$+CHRS (N+E) : B=32: IF NIX32 GOTO 40

30 IF

MID$ (A%, A,S)=" AND " OR MID$(A%.A.4)=" OR " THEN B=0

40 NEXT A:A$=T$:RETURN

Subroutine to recognize single key answer A$ without carriage return:

10 Vo=

PEEK (5242)+256#PEEK (2243) : VO=VO+Z0Z?:REM - Buffer pointer

20 LUO=PEEKAVO Yt LI1=PEEK (VO+1) : V=U0+25L#01 : REM —~ Buffer address

a0 POEE V,0:PRINT "7 "3:REM — Clear first byte and prompt (Go here if invalid)
40 IU=FEEE(V): IF U=0 GOTO 40:REM - Loop awaiting kevstroke

S0 PRINT: POEE VO, UO: FOEE VO+1:A%$=CHR$ () :RETURN:REM - Restore polinter

Fraternally, Jim Tennant

00010
QOOZ0
Q0030
00030
00050
QO0&0
Q0070
000=0
Q0020
QD100
00110
00120
00130
00140
00150
001460
Q0170
0010
00170
00200
Q0210
00220
QU230
00240
Q0250
QOZ4LD
00270
00220
QO2%0
00200
00310
O0OZ20
QO220
003240
DO3250
QOZRED
Q0370
QOraz0

P.0. Box 7176
Ketchikan, Alaska 99901

REM “REM.BAS", BY JIM TENNANT: HS8/(H? or H12)/H17

REM Separate or Redoin Remark Statements in BASIC Files
REM HOOS 1.43 BASIC #110.05.00

REM

CLEAR VO$="Lines"iVIi$="Bvtes"iVZ$="(Saved)"iV3i$="(Deleted)"

FO$="REM"+" ":FZ$="_BAS":F2$="_REM":LINE INPUT "File Name: "“;F%
Fas="_FGM": IF LEN(F$)>4 THEN IF MID$(F%$,LEN(F$)-2,1)="," EOTO 20
Fe=F$+F2%:REM - Default to 2YO0: and .BAS

IF MID${F$,4,1)<="2" THEN F$="SYO:"+F%

F1$=LEFT$(F$,LEN(F%$)-4):0FEN F$ FOR READ AS FILE #1
F2e=F1%$+F2$:iF3$=F1%+F2$:F4$=F1$+F4%$:REM ~ Filename Famil~

IF RIGHT$(F%$,2)="PGM" GOTO 30Q00:REM - Merge if .PGM file

REM

REM Sort: Replace SY#:XXX.BAS with SY#:XXX,.PGM & SY#:XXX.REM

REM

OPEN F4% FOR WRITE AS FILE #Z:0FEN F3% FOR WRITE AS FILE #2
E=CIN(1):IF E<=0 THEN CLOSE #1,#2,#32:G0TC 220

B=B+1:LLINE INFUT #1,35T7$:T$=CHR$(E)+T$:N=MATCH(T$. F0O%,7):G1=G1+1+LEN(T$)
IF N=0 THEN F=F+1:FPRINT #2Z,;T$:G2=G2+1+LEN(T$)::GOTO 170

R=R+1:IF N<2 THEN PRINT #3, 3 T$:GE=G3+1+LEN(T$):GOTO 170

FRIMNT #3,5LEFT$(T$,4)SRIGHTS(TS, LEN(TS)—N+2) i GI=GI+LEN(T$)+9-N
F=F+1:PRINT #2Z,5LEFT$(T$,N-2):G2=G2+N-1:G0TQ 170

IF R=0 THEN FRINT "No remarks in “"3F$;"“,":UNSAVE F4%:UNSAVE F3$:END
LINSAVE F$:PRINT TAB(S)F$; TABR(ZD)F4%; TAR(SS)FE$

FRINT TAB(S)E3VO$; TAB(Z0)FP;VO$s TAB(SS)IR;VO$:FRINT TAB(S)IG13V1$s TAB(Z0) s
FRINT GZiV1$3TAB(SS)G23VI$:PRINT TAB(&)VI$: TAB(Z1)VI%: TAR(SA)V2$:END
REM

REM Merze: Rerplace ZY#H:XXX.FPGM & Sy#: XXX.REM with SY#:XXX.BAS

REM

OFEN F2% FOR READ AS FILE #2:E1=CIN(1):E2=CIN(2)

OFEN F2% FOR WRITE AS FILE #3:GOSUBR 220:G0TO 350

IF E14=0 THEN V1=4£5535:RETURN

FP=P+1:LINE INPUT #1,3T1%:T1$=CHR$(E1)+T1%:V1=VAL(T1$):E1=CIN(1)
Gl=5G1+i+LEN(T1%$):RETURN

IF EZ<=0 THEN VZ=£5535:50T0 320

R=R+1:LINE INFLUT #2,3 T2$: T2$=CHRE(E2) +T2%:VZ=VAL(T2$):E2=CIN(Z)
BZ=G2+1+LEN(TZ2%)

IF V1i=vZ GOTO 410

SREMark « Issue 11 - 1980

19

Q070 B=R+1:IF Vi<VZ THEN PRINT #3,5T1$:0G3=G3+1+LEN(T1$): GOSUR Z20:G0TO 330
00400 PRINT #2,35T2$:G3=G3+1+LEN(T2%) : GOTD 250

00410 IF V1I=A5535 GOTO 440:REM — &5535 must not be a line number

Q0420 B=B+1:PRINT #3,3T1$3RIGHT$(T2%,LEN(TZ%)~4&)

Q0450 GE=GE+LEN(TI$)+LEN(TZ%)-S: GOSUB 220:G0TO 350

00440 CLOSE #1,#2, #3:UNSAVE F$:UNSAVE F3$:FPRINT TAR(S)F2$3 TAB(ZOFE: TAR(SS)5F2%
00450 FPRINT TAB(S)BE;VO%:; TAB(ZI0)F3VOS TAB(SS)IRIVOS:FRINT TAEB(S)G2 VIS TABIR0)
00440 PRINT G13V1$sTAB(SS)IGZ3VI$:PRINT TAB(&IVES; TAB(Z1)VES; TAB(S6)VES:END

00010 REM “FRINT.BAS >, BY JIM TENNANT (HSZ/H1%/H17)
00015 REM (H? Users, delete odd—-numbered lines)
Q00Z0 REM HDDO= 1.4635 BASIC #110.05.00

00030 REM

00040 CLEAR :PRINT :LINE INFUT "File Name: "3F$:IF F%="" THEN END

00050 IF LEN(F$)>4 THEN IF MID$(F$,LEN(F$)—-3,1)="_" GOTO 70

A00LD F$=F$+" ,DAT":REM — Defaults

00070 IF MID$(F$,4,1)<>":" THEN F$="SYO:"+F%

00020 LINE INFUT "Outeput Device: "30%:IF RIGHTH (2%, 1)<>":" THEN G$=%+":"
00020 INFUT "Lines Per pase: "30:IF Q%="TT:*" GOTO 200

00100 REM

00110 REM FRINT ANY LENGTH FAFER WITH DATE % FAGE NLUMBERS

00120 REM

00130 S1$="Set parer to first print line ":52$="and RETURN."

00140 FOR A=2323 TO 2391:T$=T$+CHR&(FPEEK (/)) :NEXT A:D$=MID$(T%,4,2)

00150 IF D$="Mav" GOTD 190

00140 IF D$="Jun" THEN D&=0%+"&":0G0T0O 170

00170 IF D$="Jdul" THEN D#=D$+"¢":G0TO 120

00150 De=D%+"."

00190 D$=D$+LEFTH(STRE(VAL(TSH)) LEN(STR$(VAL(TE)))—1)+", 19"+RIGHTS(T$,2)
00200 P=1:0PEN F$ FOR READ AS FILE #1:G0OSUUB 2Z20:FRINT S1%352%;3

00210 FAUSE tFRINT #2,3F$3TAB(&0)sDH:FRINT #Z2,:GOTO Z40

00220 OPEN % FOR WRITE AS FILE #2:RETURN

O0Z20 PRINT S1%5"af Fase"3F3S52%35:iPAUSE PRINT #2,5F$5 TAB(LD) "Page"sPIFPRINT #2,
00240 FOR A=1 TO Q:E=CIN(1):IF E<=0 GOTO 220

00250 IF E=10 THEN A=A+1:REM — skip leading zero next

00260 LINE INPUT #1,3T$:IF RIGHT$(F$, 2)<>"RAS" OR E<>42 THEN T3%=CHR$(E)+T%
QOZ70 PRINT #2,3TH:iNEXT A: CLOSE #Z:P=F+1: G050 220106070 230

00280 CLOSE #1:PRINT #2, :FPRINT #2, TAB(21)"s#2x eof ##":CLOSE #2:507T0 40
00290 REM

00200 REM NO-SCROLL DISFLAY WITH LINE & BYTE COUNTS

00310 REM

00212 DIM E$(4):FOR A=1 TO 4:E$(A)=CHR$(Z7):READ

00217 FOR E=1 TO C:READ E:E$(A)=E3(A)+CHRS(E):NEXT E:NEXT A

00320 OPEN F$ FOR READ AS FILE #1:I=CINC(1)

00330 A=

00335 PRINT E$(Z):REM — blank cursor & erase

00240 LINE INFPUT #1,31$:I1$=CHR$&(I)+Is:L=L+1:A=A~1:1F LEN(I%)>=7% THEN A=A4-1
003250 G=G+1+LEN(IS):FPRINT I$s5:1=CIN(1):IF I=10 THEN A=A-1:lL=L+1

00340 IF I>0 GOTO 410

Q0370 IF A»=1 THEN FOR B=1 TO A:FRINT :NEXT B

00220 T$=" End “"+F%$+"7 at Line"+LEFT$(ZTRS(L),LEN(STRE(LL))=1)+", RETLURN"
Q0320 GOSUBR 440

00295 FRINT E$(2)3E$(4):REM -~ erase & reset escapes

Q0400 CLOSE #1:G0OTO 40

00410 IF AF=1 THEN PRINT :=:IF A1 GOTO 240

00420 T$=" RETURN far Line"+STRS(L+1)+"af “"+F$+""":G0SUE 440

00425 PRINT E$(2):REM — exit reverse wvideo % restare cursor

00430 GOTO 330

00440 Te=Ts+". {("+RIGHT$(STRS(G3), LEN(STRH(5)) =1)+"Bytes) "

0044S PRINT E$(1)3:REM ~ save cursor, enable line 25, set cursor, reverse video
00450 PRINT TAB(10)T$s : PAUSE :RETURN

00455 DATA 10,106,27,120,89,27.39,586,82,27-112,25 115,27, 107:4,5,120,53,27: 69,1, 122

EOF

20 SREMark - Issue 11 = 1980

BUGGIN’

Dear Jim,

The " .LOADD" illustrated in

scall, as

example C.2 of the addendum to the HDOS
system programmer's guide (597-2194), is
insufficient. Just invoking the scall

will load a device driver, but not lock it
in memory. (If you excute the prologue,
and then RESET SY0:, the driver(s) will
not be saved.

To lock in the driver(s), add the
following called subroutine following the
main program logic:

SLOAD LHLD S.SYSM
SHLD 040356A
LHLD 041053A
LXI b2
DAD D
MOV A,M
ORI 2
MOV M,A
RET

Then re-assemble the prologque so that this

subroutine is called after any successful
.LOADD, I.E.-

LOAD1l LXI H-PROAA
SCALL .LOADD
JcC LOAD2
CALL SLOAD Lock the DVD
CALL STYPTX
DB 'LP: LOADED' ,ENL
LOAD2 LXI H,PROAB
SCALL .LOADD
JcC LOAD3
CALL SLOAD Lock the DVD
CALL STYPTX
+ » « Bte.
The "SLOAD" subroutine is taken directly

from the current SYSCMD.SYS. It is tested
and recommended for use (in a prologue or
program) ONLY with HDOS version 1.6.

Keep up the good work! Al Heigl

3REMark « Issue 11 = 1980

Dear Gerry,

I was disappointed

to hear that you have
so little software

available from the
users of the ET-3400 and ETA-3400. I am
enclosing a small program that does
checkbook validation. It might be of
interest to some ETA-3400 users.

George Brown
2428 Eck Drive
Raleigh, NC 27604

1 PR"CHECE VALIDATION"

2 PR"FPROGRAM BY GEORGE BROWN 7/20"
3 PR"INFUT DOLLARS, CENTS.M

4 FR"L=E MINUS FOR WITHDRAWALS. "
S PR"START WITH INITIAL BALANCZE"
10 LET X=0

20 LET Y=0

25 PR"TRANSACTION"

20 INFUT O,C

40 IF D<O GOTO 170

G0 X=X+D

L0 f =Y+

70 IF C=0 GOTO 190

20 IF Y=0 GOTO 190

25 IF Y<0 GOTo 140

O Z=Y=-100

100 IF Z<0 GOTO 1920
110 X=X+1

120 Y=Y-100

120 GOTO 1920
140 Y=Y+100
150 X=X-1
140 GATO 120
170 C=—ixC
180 GOTO SO
190 FR"

200 G0TO 25

BALANCE $"iXs"."s:Y

Dear HUG,

1f there are any other HUG members that
are interested in getting two H8's running
together and talking to each other, I

would be happy to exchange ideas. The set
up I have is geared towards a RTTY
"Mailbox" that I run on a local two meter

repeater. It is set up around a specific
set of programs but it is easliy adaptable
to run almost any machine language program
and allows direct access to the disk
drives of the main system from the second
computer. If there are any other members
working in this area I would appreciate
hearing from them.

Glenn R. Beard
236 East 6th Street
Red Hill, PA 18076

21

Dear HUG,

My computer system includes a H-14 line
printer. As you know, one of the
criticisms of the H-14 is that it does not
produce a very dark printout, hence the
printout does not reproduce very well.

I took this
manufacturer.

problem to a local ribbon

They made up a special
ribbon for me to try, and it produces an
appreciably darker printout than I have
been getting with ordinary typewriter
ribbons.

These ribbons may be ordered from:

Frankel Manufacturing Company
285 Rio Grande Boulevard
Denver, CO 80223
att: Mr. John Murray

Specifications;

dual 4 spools
18 yards Super Kemlon ribbon
black Matrix ink

The ribbons are $23.00 per box of one
dozen. Minimum order is one box. I am sure
other H-14 owners will be interested to
know this.

F. B. McLaughlin
8915 Piney Creek Road
Parker, CO 80134

Dear JB:

I would 1like to announce the Pf Glare
Screen; now available for the Heath H89 -
H19. These units significantly reduce the
discomfort and fatigue associated with
using CRT display terminals. Originally
produced for our own use, the Glare
Screens were so effective it was decided
to produce and market them publicly.

The units are constructed of 1/8 inch grey

acrylic plastic with neoprene inserts
centered on each side. Installation |is
accomplished by merly pressing the Glare

Screen into the face plate aperature. The
neprence inserts provide a friction fit
against the edge of the face plate.

The price of $13.49 includes postage and
handling charges. A club discount of
$1.00 per screen is offered on orders of

five or more. California residents add
sales tax. Additional charges for
shipping outside continental United
States.

Send check or money order payable to:
Pf Research

866 Hummingbird Drive
San Jose, California 95125

22

Dear Mr. Blake,

H89 users who have two disk drives
in the separate H17 cabinet may be
interestd in the easy way that I found
to add a third drive to my system. As
you may recall, Heath made a special offer
of the H17 to H89 owners in late 1979.
"SYO:" is removed from the H89 cabinet,
placed in the H17 cabinet, and the two
drives are then connected to the H89
controller board with a long 34 wire
ribbon cable.

A third drive may be added to this
configuration by installing it in the
space vacated by "SYO:" in the HS89
cabinet, and connecting it to the long
ribbon cable via a clamp-on "T"
connector. A disk drive can be obtained
from Heath (part H17-1), from a mail-order
supply house (e. g., Advanced Computer
Products), or one can get lucky and find
an unwanted, barely used one at a local
computer store, as I did.

The clamp-on "T" connector is a 3M
no. 3463-0001. I determined its proper
position on the long ribbon cable by using
the original "SYO:" connector as a guide.
I even used the black sleeving that
originally protected that connector.
One must be careful in orienting the "T"
on the long ribbon cable, because that
cable is inverted in comparison to the
original cable., The best way to determine
the proper position is to plug in the
long ribbon cable and study its
orientation with respect to the new drive
very carefully. One final note: after
the "T" connector has been firmly clamped
on the ribbon cable, using a hammer to
seat the clamp firmly, the clamp should
be locked in place by melting its ends
to the body of the connector with a
soldering iron.

I hope my experience will be useful
to some other HUG member. The whole
operation should be well within the
ability of anyone who has already
assembled the H89 and connected the H17
add-on.

Sincerely,

Victor A. Abell
1715 Summit Drive
West Lafayette, IN 47906

NEW HUG GROUP

A new local HUG group has been formed in
Warwick, Rhode Island. The first meeting
was scheduled for October 8 with the theme
"Become Agquainted with Your Fellow Heath
Users", Meatings will be held at the
Heathkit Electronics Center, 558 Greenwich
Ave., Warwick RI.

S REMark « Issue 111980

New Products from non-Heath Sources

STRETCH-8

The STRETCH-8 expansion for the Heath H8
computer more than doubles the capacity of
the H8 computer by proving eight
additional slots. With the front panel
and CPU boards in place you have 15 slots
left for memory, I/0 and special purpose
cards. A supplementary 7.5 amp, 8 volt
power supply and the oak sides panels make

the STRETCH-8 only 14 inches longer than
the present size of the HS.
Only $200.00 by cashiers check, money
order or VISA/Mastercard
(California Residents + 6% Tax)
STRETCH-8
P.0. Box 1120
Burbank, California 91507

NEW from DG Electronics
DG Electronic Development Co. has
announced the availabilty of their DG-64D
dynamic 64K RAM card. The features

included on the DG-64D make it the most
flexible memory available for the Heath HS8
computer. Low power requirements (less
than 8 watts) enable utilization of 64K in
memory while allowing a full compliment of
other peripherals.

The DG-64D 1is compatible with a standard
Heath configuration or with DG's NEW
DG-80, Z8B0 based CPU. The low cost of the
DG-64D RAM is $529; fully assembled and
burned-in.

The NEW DG-80

Z80 CPU card for the HS8

computer was also resently announced at a
selling price of $249.00. The DG-80
allows the H8 user all the power, speed

and flexibility of fered by the Z80
microprocessor. Operational speeds to
4MHz along with the full compliment of 2Z80
instructions give the user flexibilty
never before seen in the HS.

DG Electronic Development Co. announces
the DG-ADP4 plug-in hardware modification
to allow operation of the H17 disk system
at 4MHz when using the NEW DG-80, 280 CPU
card 1in the HB8 along with the DG-ADP4.
The DG-ADP4 also requires the NEW DG-FP8
descripted below. This modification plugs
into an IC socket on the H17 controller
board and reqiuires no fur ther
modification. The selling price for the
DC-ADP4 is $19.95.

A NEW monitor for the HB8 is also annouced
as the DG-FP8 Monitor selling for $69.95.
This monitor gives the user the full scope
of the present PAM-8 panel monitor, 1lus
added features to make full use of the
DG-80 the 280 CPU card. Some of the

#REMark « Issue 11+ 1980

features include: Hex or octal display and

entry; two Kkeystroke display of memory
contents pointed to by any register;
automatic start-up of program counter for

disk bootup; display and alter contents of
primary and alternate resister; allow
operation of panel monitor in Z280
alternate interrupt modes and others.

DG-80 CPU, the
DG-ADP4 4MHz

The combination of the
DG-FP8 Monitor, and the

Adapter give advanced power, flexibility
and reliability to the H8 for personal,
business, OEM and engineering
applications.

DG Electronic Development Co. has also
announced that it will be offering
standard CP/M Version 2.2 for the HS8
computer. This version of CP/M does
require the DG-80 280 CPU card and the
DG-FP8 Monitor package. The expected
price is $130.00.

For more information and complete

specification sheets contact:

DC ELECTRONIC DEVELOPMENTS CO.
P.O. 1124

Denison, Texas 75020

VIDEO LAYOUT PADS for H19, HBB or H89 are
now available from Walt Gillespie at
MINT-MAN Printing, 211 E. Allegan Street,
Otsego, Michigan 49078. The VIDEO LAYOUT
PAD is 1l by 14.5 inches and has both the
column and line numbers in their postion
value, decimal value and ASCII value. The
layout area is setup 80 across and 25 down
simulating the screen of the H19, HB8 or
H89. The thirty-three different graphic
characters are shown on the bottom of each
sheet making them very useful for creating
graphic displays. Again both the decimal
and ASCII values are provided for these
characters. The pads are selling for $2.25
for a pad of 50 sheets (including postage
and handling). The minimum order is 5 pads
for $11.25. Michigan residents add 4%
sales tax.

HT-11 ACCOUNTING SYSTEM

HT-11 is
and Service

An accounting system for
available from Radio Sales
Company at 2000 12th Avenue, Columbus,
Georgia 31901. This system includes both
accounts receivable and accounts payable.
It also includes payroll, general ledger,
letter writing and label printing
programs. The package runs on a HI11
system with a H9, H27, H36 and 24K of
memory but the terminal and printer can be
most any type. The program 1is on six
disks selling for $200.00 or just the
listings and instructions for $100.00.

23

(vectored from page 3)
ORG 0 CP/M *, The HUG software program continues as usual.

Speaking of HUG software, as summertime closes in most areas of the country software
submissions traditionally increase so 1let's have another contest. Here's a $500
gift certificate for the best piece of software submitted by November 30, 1980. What
makes a 'best piece of software'? Most important is the demand and how much work HUG
would have to put into the product before it 1is released to the rest of the
membership. By demand, we mean how many other HUG members would want your program?
And, is it easy to use?

Submit your program and documentation on tape or disk. A sample run isn't necessary,
nor is a hardcopy listing. Just explain what the program does on the submission form
and enclose it along with tape or disk.

Some hints: Any program that uses the features of the H19/H89 or that
can be modified by us for that purpose.

Any kind of small business software.

Utilities... Despooler.
Word processing.
Disk recovery routines.

POSTERS

Not long ago, Ray Massa from the'Detroit area sent us a slide of a proposed H 8
poster he had designed. We thought it was pretty neat, so we asked him and his wife
Nancy to design one for the H89 and the H B color graphics board. The posters are
18x24" and sell for $2.95. The H 8 poster is depicted on the front cover.

MEET PATRICK SWAYNE

We are very fortunate to have Patrick Swayne join the staff as of the 15th of
September. Pat not only writes good code, he will assist us in the preparation of
REMark, assuring its regular delivery to the membership each month. If you want to
contribute to the success of REMark, send your ideas and articles (preferably on
tape or disk) to either myself or Pat. Welcome aboard Pat!

Changes for HDOS BOOT-UP

...some things we learned from the Capital Heath Users' Group
John Stetson has passed around information on a short patch that would by-pass the
requirement for a "CR" at the begining of the "BOOT" of a disk. Along with this
modification are a few more from the "CHUG" news letter.
Here's what you can do:
1, Eliminate the requirement to " Type spaces to determine the BAUD RATE".
2. Eliminate the requirement for a "CR" to initiate "BOOT".
3. If the date was entered when you mounted the first disk of the day, and
power stays on the system, you can eliminate the need for the required "CR"
at the "DATE (DD-MM-YY)?" line during mounting of the next disks.
4. Modify the TT: print-out to reflect these previous modifications.
In order to implement these modifications to the operating system vyou will need
either the program "Dump" from HUG disk VIIT (885-1062) or one of the similar
programs that can access and change a byte stored on a particular sector and track

of the disk to be modified. The locations provided below are based upon the HUG
program. These modifications will work for both the HB8/H17/H19 or the HB89.

24 SREMark « Issue 11 « 1980

ELIMINATE SPACES ON BOOT-UP

This modification presumes that you will be operating your system at a baud rate of
9600. Should you have implemented this modification and change the baud rate using
the program "BAUD" (from HUG disk 885-1060) you will need to return the console
terminal' to the 9600 preset rate before you attempt to re-boot.

TRACK 0 SECTOR 4

LOCATION OLD VALUE NEW VALUE

54H 3A 21

55H 08 0C (06 for 19200 baud)
56H 20 00

57H F5 c9

ELIMINATE BOOT "CR"

This will automatically bypass the need for a "CR" after the baud rate has bheen
determined. You will lose the ability to do Checksums (big-deal) or use the Ignore
command that normally is available at the BOOT of a disk.

TRACK 0 SECTOR 0

LOCATION OLD VALUE NEW VALUE
10H Ch £3
11H 2D 22
12H 25 23

BYPASS DATE

If a date already exists in memory from a previous entry, this modification will
bypass the "CR" that would normally be required.

TRACK 2 SECTOR 0

LOCATION OLD VALUE NEW VALUE
AF 20 3a
50 A8 A0
76 C3 c9
8D 29 F

CHANGE TT: PRINTOUT

These changes to the operating system on the disk are not necessary for operation,

but since they now become somewhat meaningless it looks a little neater when they
are modified.

TRACK 0 SECTOR 0

AT LOCATION A5,A6,A7 AND A8 REPLACE THE EXISTING
VALUES WITH 00.

TRACK 2 SECTOR 9

AT LOCATION 6B TO AND INCLUDING 7E REPLACE THE
EXISTING VALUES WITH 00.

TRACK 2 SECTOR 9

LOCATION OLD VALUE NEW VALUE
TF 6D 39
80 69 36
81 6E 30
82 65 30

EOF

SREMark « Issue 11 » 1980 25

26

Revision To HUG’s Modem Communication System

*

REVISIONS TO; HUG 885-1050 'MODEM COMMUNICATIONS SYSTEM'

MCS REVISIONS BY: A. RICHARD TINDER
FOR INDIANOLA HIGH SCHOOL, INDIANOLA IA, 50125
APRIL 4, 1980

»*

THESE CHANGES TO 'MCS' ALLOW SENDING FILES TO TIME-SHARE
SYSTEMS, AND TO REMOTE TERMINALS NOT USING 'MCS'.

THE 'SEND' COMMAND WILL ASK IF IT IS TO WAIT FOR A SECOND
REFLECTED CHARACTER (PRESUMABLY A LINE FEED) AFTER SENDING
A CR BEFORE TRANSMITTING THE NEXT LINE. THIS IS REQUIRED
BY MOST TIME-SHARE INSTALLATIONS.

IF YOU ANSWER 'NO', 'SEND' THEN ASKS IF IT IS TO TRANSMIT

A LF AFTER EACH CR . THIS IS NECESSARY IF YOU ARE SEND-
ING THE FILE TO A REMOTE TERMINAL, RATHER THAN A COMPUTER.

ANSWERING 'NO' TO BOTH QUESTIONS LEAVES 'MCS' IN ITS ORIGINAL
CONFIGURATION, EXCEPT THAT IT CHECKS FOR REFLECTION OF EACH
TRANSMITTED CHARACTER. SET YOUR MODEM FOR HALF-DUPLEX UNLESS
YOU ARE COMMUNICATING WITH A FULL-DUPLEX REMOTE COMPUTER.
REMOTE TERMINALS SHOULD BE SET FOR HALF-DUPLEX, ALSO.

*

A DELAY HAS BEEN INSERTED AT THE BEGINNING OF 'CONVERSATION'
TO ALLOW THE PROMPT '.OK' TO PRINT COMPLETELY BEFORE THE 'DI'
INSTRUCTION IS EXECUTED.

»*
»
*

WARNING! THESE CHANGES TO 'MCS' HAVE BEEN TESTED ON
THE 8251 USART (H8-5, H8-2) VERSION ONLY!!

*

IN 'STORAGE' ADD THESE LINES:

W o% % N % % N % % N % N % N o % ¥ % % % % % ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

F .ECWT DB 1 FLAG: 1= WAIT FOR CHAR. AFTER CR
F .XMLF DB 0 FLAG: 1= SEND LF AFTER CR

*k IN '"MESSAGE S' ADD THESE LINES:
*

M.WLF DB A.NL,'WAIT FOR ECHO LF AFTER CR ?',' '+200Q
M .XMLF DB A.NL,'SEND LF AFTER CR ?',' '+200Q
** RIGHT AFTER 'C.CONV EQU *', INSERT:
*
* WAIT FOR PROMPT PRINTING
*
MVI A,60
CALL DLY
** RIGHT AFTER 'C.SEND EQU *' HEADER, INSERT:
*
* SET/RESET LF FLAGS
*
C.SENDO EQU *
MVT A, TRUE
STA F .ECWT SET WAIT AFTER CR FLAG
MV T A,FALSE
STA F.XMLF CLEAR SEND LF FLAG
LXI H,M.WLF
SCALL .PRINT ASK: WAIT FOR LF ?
SCALL .SCIN
Jc *-2
CPI ry! SHALL WE LEAVE THE FLAG SET?
JE C.SENOX YES, AND SKIP TO EXIT
MV A,FALSE NO,
STA F.ECWT CLEAR IT AND ASK NEXT QUES.
SCALL .CLRCO

YREMark « [ssue 11 » 1980

LXI H,M.XMLF

SCALL «.PRINT ASK: SEND LF ?
SCALL .SCIN
Jc *-2
CPI 'y SHALL WE SET THE FLAG?
JNE C.SENOX NO, LEAVE IT CLEAR AND SKIP
MVI A,TRUE YES,
STA F.XMLF SET SEND LF FLAG
C.SENOX SCALL .CLRCO EMPTY CONSOLE BUFFER
” OLD CODE RESUMES HERE WITH 'LXI H,M.EFN', ETC.
bkl REPLACE ALL THE CODE FROM 'C.SEND5'+3
b4 'CALL PUTM'
x TO 'C.SEND6'-1'
3 'ENDIF'
* ** INCLUSIVE **
¥ WITH THESE LINES:
LFLOOP1 CALL PUTM TRANSMIT CHAR.
LFLOOP2 CALL GETM READ MODEM FOR ECHO
Jc *-1 AND WAIT FOR IT
CPI A.CR WAS ITA CR ?
JNE C.SEND6 IF NOT, SKIP ALL THIS STUFF
LDA F.ECWT ELSE, CHECK WAIT FLAG
ORA A
JINZ LFLOOP2 IF SET, GO BACK AND READ MODEM
LDA F.XMLF NOW CHECK SEND LF FLAG
ORA A
Jz C.SEND6 IF CLEAR, SKIP
MVI A,A,LF ELSE,
JMP LFLOOP1 GO SEND LF
* OLD CODE RESUMES HERE WITH: 'C.SEND6 EQU *', ETC.

Type-A Head Buffer for HDOS 1.6

LOCATION OCTAL DECIMAL
HDOS Starting address (low byte) 040 320 8400
HDOS Starting address (high byte) 040 321 8401
Offset to Line Counter Byte 012 147 2663
Offset to Queue Tail Pointer (low byte) 012 153 2667
Offset to Queue Tail Pointer (high byte) 012 154 2668
Of fset to Queue Head Pointer (low byte) 012 155 2669
Offset to Queue Head Pointer (high byte) 012 156 2670
Offset to Pointer to Buffer Start (low byte) 012 157 2671
Offset to Pointer to Buffer Start (high byte) 012 160 2672
Offset to Pointer to Buffer End + 1 (low byte) 012 161 2673
Offset to Pointer to Buffer End + 1 (high byte) 012 162 2674
Offset to Buffer Start 012 166 2678
Offset to Buffer End 012 332 2778

THANKS GOES TO: Robert C. Johnson
21st Floor
One Financial Plaza,
Hartford CT. 06103

EOF

FeREMark « Issue 11 « 1980

Addendum to the Microsoft BASIC
Software Reference Manual

APPENDIX E -- ASSEMBLY LANGUAGE SUBROUTINES

The USR command in MICROSOFT BASIC allows access to assembly lanquage programs.
For example, the following BASIC program calls the "ALARM" routine that sounds the
horn on your computer. This routine is located at 902.136 in split-octal notation,
In normal octal, that is &@1136. (Octal is used for ease of conversion. Decimal
or hex could be used.)

16 DEF USR4 = &@1136
2¢ FOR I=1 TO 10
38 X = USR4(X)

40 FOR J=1 TO 208
50 NEXT J
60 NEXT I
Line 18 in the program defines where the USR starts. The alarm program is

permanently stored in your computer's firmware. Check the listing of the firmware
in your manual for more detail.

Lines 20 through 60 form a loop that will sound the horn ten times. The actual
call to the USR is on line 36. In this example, no values are passed in the
variable "X", but "X" is needed to give a proper function form.

Lines 40 and 50 form a timing loop that gives a delay between the beeps. You can
slow or speed the beeping by changing the loop count for J.

In this simple example, the code to sound the horn is already in your computer's
memory as firmware. You do not have to enter the assembly language program or
reserve space for it. Normally you will have to do both.

The next sample shows the normal procedure where you have to enter the assembly
language program yourself. You also have to reserve the necessary memory.

Memory can be reserved when you start MBASIC with the "/M" option. It can also
be reserved with the CLEAR command. HDOS is loaded just above the maximum memory
limit of MBASIC, so never set the limit higher than the top of MBASIC.

There are two ways to get data between a BASIC program and an assembly language
program. The normal way is to pass arquments through the Floating Point Accumulator
(FAC). You can also use PEEK and POKE, but this can be very risky. If you are
forced to use POKE, be sure to only POKE into the area that you have reserved for
your assembly language program.

The FAC occupies eight bytes in memory - enough for a double precision number.
The highest byte in memory of the FAC contains the exponent of sinagle or double
precision numbers. The next lower byte contains the most significant byte of the
fraction, and lower bytes contain less and less significant bytes. More detail
on the floating point format is given at the end of this appendix.

When a USR is entered, the H,L pair points to FAC-3, which is the least sign}ficant
byte of a single precision number. It is also the lower byte of a two byte integer.

Numbers can be passed to USR's in all three forms - integer (%), single precision
(1), and double precision (#). The value of the A-register tells what type of
argument is in the FAC. The list below tells how each type is sent to a USR

routine.
A-REG. TYPE OF VARIABLE

2 INTEGERS (%) are sent in FAC-2 and FAC-3, where FAC-2 has
the most significant byte. Note that the number is stored
in two's complement form.

4 SINGLE PRECISION (!) values are sent in FAC-P through

FAC-3. FAC-0 contains the exponent, FAC-1 contains the
most significant byte of the fraction, and so on.

28 #REMark = Issue 11 = 1980

8 DOUBLE PRECISION (#) values are sent in FAC-0 through
FAC-7. FAC-0 through FAC-3 are as above, and FAC-4 thgough
FAC-7 are additional bytes of precision for the fraction.

The next sample program is designed to accept a two byte integer in the FAC and
return the two bytes interchanged. It makes no check that the argument 1s an
integer, so it will also swap the bytes in FAC-2 and FAC-3 for a floating point
value. This operation is not useful, but it is shown.

An assembly language listing of the USR is shown below. It starts at
174.080A=50376000=31744, and can be run on a system with only 32K of RAM.

ORG 174000A

174.000 106 SWAP MOV B,M LOW BYTE TO B-REG
174.601 243 INX H ADVANCE TO HI BYTE
174.002 116 MOV C,M HI BYTE TO C-REG
174.0083 158 MOV M,B PUT LOW INTO HI
174,004 853 DEC H RETREAT TO LOW BYTE
174.085 161 MOV ™M,C PUT HI INTO LOW
174.906 311 RET GO BACK TO MBASIC
END SWAP

The MBASIC program and a sample output are:

10 CLEAR 108,&075777
20 DATA &0106,&50043,&0116,50150,&0053,4&0161,&0311
3% FOR I=0 TO 6
49 READ D
52 POKE &076006+I, D
68 NEXT [
70 DEF USR = &076000
80 PRINT HEXS(USR(&H1234))
99 PRINT USR@(.582)
100 END
RUN
3412
.500282
OK

Line 10 reserves 100 bytes for strings and sets the top of MBASIC's memory at
&$75777. 1In line 28, the instruction bytes for the program are givea in octal.
The loop on lines 30 through 58 read the program from the data statement and POKE
it into memory at the proper place. On line 50, ¢76000+I is the address where the
instruction is to be stored.

Line 70 defines where the USR routine (SWAP) starts in memory. Lines 80 and 90
call the USR and print the result that is returned.

The results of running the program are shown after the listing. In the first call
to the USR on line 8@, the HEX value &H1234 is sent into the USR. The output of
this call is printed in HEX and shows that the two bytes have been swapped. (HEX
is used in the example because two HEX digits form one byte. Thus, you can see
that the bytes have been swapped.)

Note that USR and USR@ have been used in the program. They are equivalent.

The second call to the USR uses a single precision floating point number. There
is no error message because the USR does not test if it has been sent an integer,
it simply swaps the two bytes in FAC-2 and FAC-3. It is not clear from the output,
but that is what has happened.

An USR that processes strings cannot use the same communication method between the
BASIC program and the assembly language program. When the USR's argument is a
string, the A register contains the value 3, and the H,L pair still points to
FAC-3. However, the D,E pair points to a "string descriptor" that describes the
string argument.

SREMark « Issue 11 « 1980

29

This "string descriptor" consists of three bytes. The first byte is thp length
of the string, and the second two are the lower and upper bytes, respectively, of
the starting address of the string.

The result of a string USR is returned to the BASIC program IN THE SAME LOCATIONS
THAT THE ARGUMENT WAS IN! Because of this, there are two precautions that you must
observe when you use string USR's.

1. You must not increase the length of a string in an
USR, although, you may shorten a string. If you do
increase the length of a string, part of memory will
be used for two purposes, and it will probably crash
MBASIC.

2, You must not use a string constant when a string USR
is called. If you do, the modification that the USR
makes will be to the string constant and your source
program will be changed. You MUST force MBASIC to
use a temporary string. Concatenating a null string
will work. For example:

PRINT USR("INPUT TEXT"+"")

A sample string USR follows. This example also starts at &076000 and can be used
with only 28K of memory. This USR example will trim the trailing spaces off the
end of a string and return only the leading characters.

1@ CLEAR 100,&875777

2¢ DATA &353,&006,&%000,&116,&171,&270,&310,&043
30 DATA &136,&043,8126,&353,&011,&053,&176,&376
40 DATA &040,&302,5030,&174,&015,&302,&015,&174
50 DATA &353,&053,&053,&161,&311

60 FOR I=@ TO 28

70 READ D

8@ POKE &@76000+I1,D

98 NEXT I

100 DEF USR = &076000

120 A$ = "TEST "

130 PRINT "+";AS$;"+"

140 PRINT “+";USR(AS);"++++++"

RUN
+TEST +
+TEST++++++

The sample program first pokes in the data. Then it sets the string A$ with
trailing blanks. AS$ is then printed with the trailing spaces and "+" signs to show
the beginning and end of the string. The last print shows the result after the
trailing spaces have been trimmed.

The assembly language program listing is given below and a description of it
follows.

ORG 174008A

174.000 353 TRIM XCHG D,E TO H,L
174.0601 gg6 000 MVI B,0

174.003 116 MOV C,M COUNT TO B,C
174.004 171 MOV A,C

174.085 270 cMp B TEST IF ZERO LENGTH
174.006 310 RZ NOTHING TO DO
174.007 943 INX H

174.010 136 MOV E,M LO ADDRS TO E-REG
174.011 043 INX H

174.012 126 MOV D,M HI ADDRS TO D-REG
174.013 353 XCHG ADDRS TO H,L
174.0814 g1l DAD B ADDRS OF LAST+1
174.815 853 LOOP DCX H

174.01%6 176 MOV A,M GRAB CHAR

174.017 376 0489 CPI ' ' TEST IF BLANK
174.021 302 0386 174 JNZ FIN NO, WE'RE DONE

30 SREMark « Issue 11 = 1980

174.024 815 DCR C

174.0825 3p2 @815 174 JNZ LOOP ALL CHARS DONE
174.030 353 FIN XCHG _
174.0831 853 DCX H BACKUP TO
174.0832 @53 DCX H COUNT ADDRS
174.0833 161 MOV M,C RESET COUNT
174.034 311 RET GO HOME

END TRIM

This program first moves the D,E pair into H,L and then fetches the string's length
and address. The length is put into B,C and tested for zero. 1If it is zero,
nothing needs to be done. After the address is loaded into D,E it is swapped into
H,L. Then the length is added to give the address of the end of the string plus
one.

In the loop, the character on the end of the string is tested to see if it is a
blank. If not, the program finishes. 1If so, the length count is decreased and
the program loops back to check the next previous character.

When the program finds the first non-blank from the end of the string (or the end
of the string), it stores the reduced count in the string descriptor. ©Note that
it is necessary to "back-up" to the location of the count before the new value is
stored. Finally, the program exits to MBASIC.

Additional information on the use of assembly language subroutines will be included
in the next release of MBASIC. Development work is presently underway by Heath's
software developers. Be patient.

EOF

Spinwriter for the H89

Spinwriter model 5510 may be used with the H89 computer by adding a jumper between

pin 19 on the printer connector to pin 4 on the H89 connector. The switches on the

Spinwriter should be set with switch numbers 2, 7, and 8 in the UP position and all

Ezehothers down. This information was provided by Blain Schmidt of Salt Lake City,
ah.

Changing your address? Be sure and let us know since the software catalog and
REMark are mailed bulk rate and it is not forwarded or returned.

HUG MEMBERSHIP RENEWAL FORM

REMEBER — ENCLOSE CHECK OR MONEY ORDER

When was the last time you renewed?

CHECK THE APPROPIATE BOX AND RETURN TO HUG
Check your ID card for your expiration date.

NEW MEMBERSHIP

IS THE INFORMATION ON THE REVERSE SIDE CORRECT? FEE IS:
IF NOT FILL IN BELOW.

RENEWAL RATES

Name - US DOMESTIC $15[] $18 [
CANADA $17 [JUS FUNDS $20 0
Address i INTERNAT’L* $22 [(JUS FUNDS $28 [
ity-State o * Membership in England, France, Germany, Belgium,
. Holland, Sweden and Switzerland is aquired through the
Zip . local distributor at the prevailing rate.

SREMark « Issue 11+ 1980 31

ey

.'-A._a i, e - ﬁ

=y

- N Ui
A m‘i \ N
.»; 2

BULK RATE
- Heath U.S.PF::;tage
’
858[.5 Heath Users’ Group
roup

Hilltop Road
St. Joseph MI 49085

POSTMASTER: If undeliverable,
plese do not return.

885-2011

	REMark_issue11_1980_Page_01
	REMark_issue11_1980_Page_02
	REMark_issue11_1980_Page_03
	REMark_issue11_1980_Page_04
	REMark_issue11_1980_Page_05
	REMark_issue11_1980_Page_06
	REMark_issue11_1980_Page_07
	REMark_issue11_1980_Page_08
	REMark_issue11_1980_Page_09
	REMark_issue11_1980_Page_10
	REMark_issue11_1980_Page_11
	REMark_issue11_1980_Page_12
	REMark_issue11_1980_Page_13
	REMark_issue11_1980_Page_14
	REMark_issue11_1980_Page_15
	REMark_issue11_1980_Page_16
	REMark_issue11_1980_Page_17
	REMark_issue11_1980_Page_18
	REMark_issue11_1980_Page_19
	REMark_issue11_1980_Page_20
	REMark_issue11_1980_Page_21
	REMark_issue11_1980_Page_22
	REMark_issue11_1980_Page_23
	REMark_issue11_1980_Page_24
	REMark_issue11_1980_Page_25
	REMark_issue11_1980_Page_26
	REMark_issue11_1980_Page_27
	REMark_issue11_1980_Page_28
	REMark_issue11_1980_Page_29
	REMark_issue11_1980_Page_30
	REMark_issue11_1980_Page_31
	REMark_issue11_1980_Page_32

