

r
on the cover. . ..

Sudeley Castle near Cheltenham Spa, England
(See DND Page 16 for real adventure!)

Photo by Gerry Kabelman

.

N

g on the stack

+CAT

A KISS for Assembly Programming

Create, Change, Display, and Print as
AAAress FIle cicii it panisiditsi s inssising

Safe Disk Reset S SRR SRR

Attention H11 Owners
(Hard Disk Group Purchase)

Manipulation of String Data with MBASIC
William N. Campbell, M.D.

Changes for HDOS 2.0 Boot-Up
New HUG Softwareccovovivninnnnennnnns

Adventure Using HDOS 2.0 and a
Single Drive T T,

HUG Product Listcoivivvnrnnnnnnnnnnsennsss

More on Home Conrtol with the ET-3400
Michael C. Frieders

What's a FOCALY .iviiaiisviniiisvsieis ieaieins

RS-232 to 20 mA Current Loop Converter
for the H19 or H80

Buggin’ HUG

8K Memory Blues
Kurt Shultz

HUGBB on MicroNET .
Hole to Fill
H11/H19 Video Editorccovevvinviennnns
That Football in Tiny BASICc0000vvene

L R R R I R A R R

L T B I R R I)

\

“REMark” is a HUG membership magazine pub-
lished ten times yearly. A subscription cannot be
purchased separately without membership. the
following rates apply.

U.S. Canada &

Domestic Mexico International

$20 US FUNDS $28
$17 US FUNDS $22

Initial

Renewal

$18
$15

Membership in England, France, Germany, Bel-
gium, Holland, Sweden and Switzerland is ac-
quired through the local distributor at the prevail-
ing rate.

Back issues are available at $2.50 plus 10% handl-
ing and shipping. Requests for magazines mailed
to foreign countries should specify mailing
method and add the appropriate cost.

Send payment to:

Heath Users’ Group
Hilltop Road
St. Joseph, MI 49085

Although it is a policy to check material placed in
REMark for accuracy, HUG offers no warranty,
either expressed or implied, and is not responsible
for any losses due to the use of any material in this
magazine.

Articles submitted by users and published in RE-
Mark, which describe hardware modifications, are
not supported by Heathkit Electronic Centers or
Heath Technical Consultation.

HUG Manager and Editor Bob Ellerton
Assistant Editor and

Software Developer........... Patrick Swayne
HUG Secretary0.. Nancy Strunk
Software Developer Gerry Kabelman
HUGBBoovviiiiiiniiiinnnn. Terry Jensen

Copyright © 1981. Heath Users’ Group

HUG is provided by Heath Company as a service to
its members for the purpose of fostering the ex-
change of ideas to enhance their usage of Heath
equipment. As such, little or no evaluation of the
programs in the software catalog, REMark or other
HUG publications is performed by Heath Com-
pany, in general and HUG in particular. The pros-
pective user is hereby put on notice that the prog-
rams may contain faults the consequences of
which Heath Company in general and HUG in
particular cannot be held responsible. The pros-
pective user is, by virtue of obtaining and using
these programs, assuming full risk for all consequ-
ences.

SeREMark

ScREMark « Issue 16 = 1981

A KISS for Assembly Programming

A CONTINUING ENCOUNTER

FROM REMark ISSUE #15

In Issue #15 of REMark, we discussed a
simple Assembly Language program that
would enable the beginner to become
familiar with some of the techniques used
as building blocks for this particular
method of programming a computer to do
work. If you remember, we described this
program as being runnable on both the
H8 and the H89. Also, our program was
to "ring" the "bell"” used by both of these
computers five times. You may find it
helpful to review the "KISS" article
presented in Issue $#15 before proceeding
with "the second edition" so that you
may fully understand our intended goals.

As suggested earlier, we are going to
"try" to learn something about the HDOS
Editor (EDIT) and Assembler (ASM). The
Editor will be used in this situation
to create the "source" file. 1In turn,
we will then use the source file (.ASM)
to create the "listing™" file (.LST) and
the "runnable" file (.ABS) by making use
of the HDOS Assembler (ASM).

THE HDOS EDITOR

EDIT, the Editor used by HDOS, has been
implemented by most individualsto create
text files i.e. letters, recipes, lists,
etc. For those of you that have not
explored the use of EDIT's features, it
may be helpful to examine your HDOS
Software Reference Manual. However, we
will discuss some of EDIT's "commands"
here including DELETE, INSERT, PRINT,
REPLACE, NEWOUT, READ, NEWIN, and BYE.
Also, to prevent future confusion, it
must be remembered that the Editor uses
a thing called "command completion™.
Command completion causes a completed
spelling of a partial word. As an
example: typing "I" after the EDIT prompt
invokes INSERT or typing "D" invokes
DELETE, both words (INSERT and DELETE)
will be spelled for you. The point of
this caution is aimed at proficient
typists out there that will find "garbage”
on the screen if their fingers get carried
away. Further, some words such as
"NEWOUT" require that a "NWO" be typed
to finish the word. I will try to catch
these special commands as we go.

SREMark « Issue 16 « 1981

GET IT IN....

Before beginning to input our
project, it would be best to have only
the Assembler and Editor on disk. This
will ensure plenty of disk space for
"playtime" and later experiments you may
wish to perform. You can INIT and SYSGEN
a disk, then use PIP or ONECOPY to
transfer EDIT and ASM to the finished
disk. Please review your manual for
operating procedures if necessary.

NOTE :

Beginning our programming task regquires
that we "load" the EDITor into our
computer. Once we have obtained the HDOS
prompt (>), we type EDIT followed by a
carriage return (RETURN KEY). When
loading is complete, the EDITor will
respond with its' prompt (--) indicating
we are ready to begin entry. Type "I".
EDIT will respond with "INSERT"
(--INSERT). Type RETURN. EDIT will then
move the cursor to a blank line to begin
the actual INSERTing of text.

Please examine the example given (fig.
A). (This program, in text form, is
exactly the same program shown in Issue
$#15 with the comments, stars, and extra
"goodies" removed. Issue #15 fig. B).
Note that there are four numbered "fields"
as shown at the top of the text (1. 2. 3.
4.). Each of these fields is an important
component in our completed project. EACH
FIELD IS ACCESSED BY PUSHING THE TAB KEY.

TYPE:
START (TAB) ORG (TAB) 10800 0A (TAB) COMMENTS

In this example we have entered the first
line of the source listing beginning with
the word "START". The TAB key is pushed
to enter the next "field".

THE LABEL FIELD

The first field is known as the "LABEL"
Field and is shown under the #1 at the
top of our example (fig. A). The Label
Field is used to indicate loops or GOTO
line numbers when compared to BASIC.

Also, the Label Field is used to define
words selected by the programmer (more
on this later).

THE MNEMONIC FIELD

The second of the four fields is defined
as the "MNEMONIC" Field. This field uses
the predefined mnemonics or abbreviations
that the that the Assembler translates
for the CPU. Examples of defined
mnemonics would include MOV, MVI, JMP,
etc. These mnemonics could also be called
command words or instructions for the
CPU similiar to PRINT, GOTO, or READ in
BASIC.

THE ARGUMENT FIELD

The third field is the "ARGUMENT" Field.
This field supplies the "argument" for
the mnemonic supplied by field #2. As
an example: "MVI" of the mnemonic field
is given the argument of B,FIVE which
translates to "MOVE IMMEDIATE to the B
register the number FIVE" or MVI B,FIVE.

THE COMMENT FIELD

The easiest field would most certainly
be $#4 or the "COMMENT" Field. This field
is used to "keep notes" on the progress
of your program, You would normally use
this area to explain your "moves" similiar
to a REM statement in BASIC. Examine
the comments of fig. B in REMark Issue
$15. The comments and extra B... were
removed to show the "bare bones" program
in this issue.

1. 2. 3. 4.
hkkkdkhkkkhhhhhkhkhhhhkhkhhhh

START ORG 106006A COMMENTS

MVI B,FIVE
LOOP CALL HORNO

MVI D,TIME1l
LOOP2 MVI E,TIMEZ2
LOOP3 DCR E

JNZ LOOP3

DCR D

JNZ LOOP2

DCR B

JNZ LOOP

JMP HDOSP
%k kdkk
FIVE EQU @85Q
HORNO EQU @02136A
TIME1 EQU 377Q
TIME2 EQU 377Q
HDOSP EQU G401006A
*kkkk _

END START

fig. A

SUMMARY ON FIELDS

There are FOUR individual FIELDS each
of which is separated by the TAB function
of EDIT. As we type the example shown
in fig. A, we ACCESS each FIELD with a
TAB after a completed entry. FIELD
1.=LABEL. FIELD 2.=MNEMONIC. FIELD
3.=ARGUMENT. FIELD 4.=COMMENTS.

1. 2. 3 4.
START ORG 10¢@@@A COMMENTS

For the most part, we have covered
the essential "tools" required to type
the program shown in fig. A. After you
have typed the info contained in each
field for each line, you will type a
RETURN to complete the line. You may
add comments if you wish (field $4) as
shown in fig. B Issue #15 of REMark or
supply your own "notes"....whatever!

WHAT ABOUT MISTAKES!!!

If some of you are like I am, you tend
to fumble around on a keyboard causing
characters to appear that you didn't
necessarily want or need. NO PROBLEM!
At this point, type a RETURN and retype
the line "accurately"™! Continue this
process until you have completed the text
listing shown in fig. A.

R R

By now probably several hours have gone
by and the wife is P.0O.ed! You've
probably noticed that I didn't tell you
everything. But, what better way to learn
than what a little experience can
provide! You should now be at the last
line waiting further instructions.

OUT OF "INSERT"

Type a Control-C or hold the CTRL key
and the "C" key down together. This
action should cause the EDITor to return
to its' prompt (--). If we then wish
to view the mess we have made of typing
the program press the "space" bar followed
by "P" for PRINT. Again EDIT will
complete the word "PRINT" for us.

NOTE: If your listing exceeds one page
on your terminal, CTRL-S is used to stop
printing and CTRL-Q is used to resume.

CORRECTING MISTAKES

OK...Let's ASSUME that some of us were
not perfect!!! (WHO? ME!) We find that
it becomes necessary to correct some of
the lines for various reasons (refer to
fig. B). We want to correct line #4.
It must be remembered that we have to
set EDIT's line "pointer" to the
appropriate line position. To accomplish
this, we type ""+3P" (--~+3PRINT). EDIT

FREMark « Issue 16 « 1981

will respond by printing the line. Now
we have several options open to us. We
can DELETE an extra line, we can REPLACE
a "defective" line, or INSERT more lines
as necessary.

DELETE A LINE

Type "D". EDIT will respond with DELETE.
If you now type RETURN, the line magically
vanishes! 1If you type CTRL-C, the DELETE
function is disabled.

REPLACE A LINE

Type "RP" (two letters). EDIT will
respond with "REPLACE". A RETURN will
allow you to retype the line as
necessary. Again, CTRL-C disables the
REPLACE command.

INSERT MORE LINES

Type "I". EDIT responds as demonstrated
earlier. A RETURN will allow us to enter
more text and CTRL-C will return us to
the command mode.

NOTE: Good practice dictates that we
re-print our listing after using any of
the commands shown above. This is done
to ensure we have correctly modified the
text. Accuracy is essential if our
finished project is to operate. To print
the text, press the "space" bar followed
by the letter "P". If you fail to press
a space before "P", only the first line
will be printed.

START ORG 1@@0@@A COMMENTS
MVI B,FIVE

LOOP CALL HORNO

ERROR JUNK ERROR JUNK ERROR JUNK

LOOP2 MVI E,TIME2
LOOP3 DCR E
JNZ LOOP3
DCR D
JNZ LOOP2
DCR B
JNZ LOOP
JMP HDOSP
* %k ok ok
FIVE EQU Be5Q
HORNO EQU #82136A
TIMEl EQU 377Q
TIME2 EQU 3770
HDOSP EQU 240160A
*kkk Kk
END START
fig. B

YREMark « Issue 16 « 1981

USING THE ($) AND THE (A)

To invoke the commands of EDIT described
above, we must know the position of the
"line pointer"™ or we will obtain some
very unexpected results (i.e. missing
lines, misplaced lines, etc.).
Accomplishing proper editing of our text
requires that we use the ($) and (a) to
"find" the correct line.

The ($) is used to indicate the bottom
of our text or the last line of text.
If we type "$P" the EDITor will respond
with --S$PRINT and a RETURN will cause
the last line of text to be printed.

END START

Further, if we type "$-1P" and a RETURN
the EDITor will print the next to the
bottom line.

% dk ko ok

Each line can be counted and every line
should be counted to give a proper
location of the line we wish to edit.
The ($) operates from the bottom of our
text using minus (-) numbers for location
while the (a) works from the top down
using positive (+) numbers.

--A+3PRINT (RETURN)
MVI D,TIMELl

Remember the importance of the "line
pointer" when editing your text. And,
don't forget to use "PRINT" before any
of the EDIT commands such as DELETE!

THE OUTPUT FILE AND FILE NAME

Some practice may be required to "build"
the desired text file shown in fig. A.
However, once you have completed the
necessary typing, your text should look
exactly like the text in fig. A. Compare
your work against this example for
accuracy. We have now reached the point
of saving our text on disk.

--NEWOUT....

NEWOUT is one-half of the necessary
command to save our project to disk.
NEWOUT is invoked by typing "NWO" followed
by our file name.

—--NEWOUT/BEEP .ASM/

Above, I have used the file name "BEEP"
followed by the extension ".ASM" to
indicate that our "NEWOUT" will be a
"source" file named "BEEP". EDIT will
will respond by placing the name ONLY
on the disk. You will then type "BY"
to complete the transfer of the text to

disk.
e (vectored to page 30)

Create, Change, Display, and Print
an Address File

(For Microsoft BASIC)

Need an address or a Christmas card list,
but yet don't want a complex system that
requires a PHD to operate. The sample
program included with this article will
allow you to create, add to, change,
display and print a simple mailing list.
OQur purpose in presenting this program
is to teach you how to handle string
files.

The progam does have limitations. It
will NOT sort the list. You can not
select individual names to be printed.
You must make changes according to the
order that the names are on the disk and
as the names increase it will become quite
slow. However if you need a cheap and
easy way to get a mailing list program,
here it is.

The program is divided into seven basic
sections:

1, Setup

2. Menu

3. Add Routine

4. Change Routine
5. Print Routine
6. Subroutines

7. Error Messages

A complete discription of the program
is included for the beginner. If the
desciption is not needed proceed directly
to the STARTUP NOTES:.

SET UP
Line 10 -- Simply a title line complete
with the name of the program, brief
description, version number, which

actually is the date of the last revision.

20 -- Clears 2000 bytes of string space,
sets the terminal width to 255 (for
graphic functions), and tells the program
to go to line 20010 if there is an error.

30 -- Sets up the following
variables:

string

E$§ = (CHR$(27) (the ESC key)

E1l$ = clear the screen

P$ = enter reverse video

Q$ = return to normal video

Y$ = direct cursor addressing (+ address)
Y5$ = turn cursor on

X5$% = turn cursor off

6

40 -- Also sets up string variables:

J$ = Go to the location fourth row down
from the top, first character from the
right (more on direct cursor addressing
later) and clear remaining screen. This
is done to leave the title at the top
of the screen.

WIS = Set the cursor near the middle of
the screen, clearing everything below
and to the right of that point. Also
print the words "wWhat is the" at that
location.

50 -- This line retrieves the date from
memory which was entered when the system
was booted up. The memory locations 8383
to 8391 contain the date after bootup.

60 -- A simple spacing line.
MENU
100 -- Prints El1$ to clear the entire

screen, P$ to go into reverse video, Y$
to start the direct cursor addressing
mode. The sequence of the ESC (escape)
key followed by a capital "Y" and two
characters will select a position on the
screen of the terminal. The first
character will determine the position
down from the top. The second character
will select the position to the right
of the left margin. The actual ASCII
value (ASCII is the codes that the
computer understands for each character,
see your computer manual for an ASCII
code table) of a character such as the
space is 32. The screen is set up so
that the HOME position is 32-32 or
space-space. As the ASCII value is
increased the position on the screen
changes. In this line (100) we are using
ys"i3i», this will print on the second
line from the top and the twentieth column
(position) to the right, followed by the
title of the program and the Q$ to exit
reverse video. Note the spaces before
and after the title to give a little
fancier look to it. Try it both ways
and I think you'll agree. The colon (:)
and the apostrophe (') means the rest
of the line is a comment (REMark).

110,120,130 -- Print the menu options
on the nineth, tenth, and eleventh lines
respectively in the sixteen column to
the right of the left margin.

SREMark « Issue 16 = 1981

10 ' SAMPLE.BAS File Sample--ADD, EDIT & PRINT @
Version 02.27.81

20 CLEAR 2000:WIDTH 255:0N ERROR GOTO 20010

30 E$=CHR$(27}:El$=E$+"E":P$=E$+“p":Q$=E$+"q":Y$=E$+"Y":Y5$=E$+'y5":X5$=E$+"x5"

40 J$=YS$+"# "+ES+"JI":WIS=YS$+"00"+ES+"J"+"What is the "

50 D$="":FOR D=8383 TO 8391 :D$=DS$S+CHRS (PEEK(D)) :NEXT D

60 :

100 PRINT E1PY$"!3 Mail List Program "Q$:' Menu

110 PRINT ¥Y$"(0l. ADD to list"

120 PRINT Y$")02. CHANGE information"

130 PRINT ¥Y$"*03., PRINT list"

140 PRINT P$¥$"/0 Your choice? (1 TO 3) <END> ";:GOSUB 10030

150 ON VAL(A$) GOTO 1000,2000,3000:END:' OR SYSTEM
160 :
1000 GOSUB 10000:' Add Routine #1

1010 IF EOF(2) THEN 1030
1020 GOSUB 10040:GOSUB 10050:GOTO 1010
1030 H=1:PRINT JY"#6 Add Routine "Y$"% Hit the RETURN to <END> ";:A=1:GOSUB 10060
1040 IF A$(l)="" THEN H=0:CLOSE:GOSUB 10110:GOTO 100
1050 PRINT YS$"$% "ES"J"Y$"$0"AS$ (1) ¥Y$"&0";:A=2:GOSUB 10070 :PRINT Y$"&0"AS (2)
1060 A=3:GOSUB 10080 :PRINT YS$"'O0"AS(3)
1070 A=4:GOSUB 10090 :PRINT YS$"0S$S"AS(2)
1080 GOTO 2040
1090 :
2000 GOsuB 10000:' Change Routine #2
2010 IF H=1 THEN 1030
2020 IF EOF(2) THEN CLOSE:GOSUB 10110:GOTO 100
2030 GOSUB 10040
2040 PRINT JSYS$"#3 Change Routine "Y¥Y$"$01l. "AS$(1)YS$"&02. "AS$(2)Y$"'03. "A$(3)
2050 PRINT Y$ "(04. "AS$(4)YS$S"20If not enter which number you wish to change. (1-4)"
2060 PRINT YS$"00Are these, OK? <YES> ";:GOSUB 10030
2070 IF A$=CHR$(13) OR AS$="y" OR AS="Y" THEN GOSUB 10050:GOTO 2010
2080 A=VAL(AS$):ON A GOSUB 10060,10070,10080,10090:GOTO 2040
2090 :
3000 PRINT JSYS$"#6 PRINT LIST ":' Print Routine #3
3010 PRINT Y$"00 Do you want Hardcopy? (Y or N) <¥> ";:GOSUB 10030
3020 GOSUB 10010:IF A$="N" OR AS$="n" THEN LP$="TT:" ELSE LPS$="LP:"
3030 OPEN "O",3,LP$:PRINT #3,TAB(10)"Name List as of "D$:PRINT #3,
3040 PRINT JY"* ";:IF EOF(2) THEN CLOSE:GOTO 100
3050 GOSUB 10040:FOR I=1 TO 4:IF I=3 AND A$(3)="" THEN 3070
3060 PRINT #3,TAB(10)AS$(I)
3070 NEXT I:IF AS$(3)="" THEN PRINT #3,:
3080 PRINT #3,:IF LP$S="TT:" THEN CLOSE #3:GOSUB 10020:GOTO 3030
3090 GOTO 3040
3100 :
10000 OPEN "O",l1l,"TESTO.DAT":' Subroutines
10010 OPEN "I1",2,"TESTI.DAT":RETURN
10020 PRINT PY"50 Hit any key to continue! ";
10030 PRINT Y5Q" ";:AS=INPUTS$(1) :PRINT X5$; :RETURN
10040 FOR I=1 TO 4:LINE INPUT #2,AS$(I):NEXT I:RETURN
10050 FOR I=1 TO 4:PRINT #1,AS$(I) :NEXT I:RETURN
10060 PRINT WI$"name";:GOTO 10100
10070 PRINT WI$"lst street address";:GOTO 10100
10080 PRINT WI$"2nd street address”;:GOTO 10100
10090 PRINT WIS"City, ST ZIP--CODE";
10100 PRINT Y¥Y5$"? ";:LINE INPUT AS$(A) :PRINT X5$;:RETURN
10110 KILL "TESTI.DAT":NAME "TESTO.DAT" AS "TESTI.DAT":RETURN
20000 g Error Messages
20010 IF ERL=10010 AND AS$="2" THEN @
PRINT Y$"3#% You must start a file first!!":GOSUB 10020
20020 IF ERL=10010 THEN OPEN "O",2,"TESTI.DAT":CLOSE:RESUME 1000
20030 PRINT "ERROR #"ERR"IN LINE #"ERL

HREMark « Issue 16 = 1981

140 -- Prints in reverse video at location
"/0" (line 16 column 16) the words "Your
choice? (1 to 3) <END>", The "<END>"
shows what will happen if the RETURN key
is pressed. The semi-colon (;) is used
to keep the cursor from dropping to the
next line for the gosub statement. The
GOSUB's will all be explained later.

150 == This line will select which option
you have chosen for the menu. The VAL(AS)
is used since the input of a character
was done in string form and we need a

numerical value for the "ON GOTO"
function.
160 ~-- Same as line 60.

ADD ROUTINE
1000 =-- Is the beginning of the ADD
ROUTINE. The first thing we do is GOSUB

10000 to open the input and the output
files. Again we also show a REMark to
help retrace our path at a later time.

1010 =-- Checks to see if file #2 is at
the END (EOF(2) is equal to The End Of
File #2). If it is then we GOTO 1030.

1020 -~ First we GOSUB 10040 to retrieve

information from the present mailing list
file (TESTI.DAT). Then we GOSUB 10050
to output to the new file (TESTO.DAT).
After retrieving and outputting one set
of name and address then we GOTO 1020
to check for another name and address.
This process is repeated until the EOF
is found then we go to line 1030.

1030 -- First we set an indicator (H=1)
to indicate that we are in the add routine
for use in the change routine. Then we
print J$ which clears the screen below
the title, using direct cursor addressing
we print the title for this routine, leave
a message telling us if we have any more
names and addresses to be entered to hit
the RETURN key to end. The A=l is another
indicator, this time it is to tell a
subroutine that we are requesting the
NAME of the individual to be entered to
the list. We then proceed to the
subroutine at line 10060.

1040 -- Checks to see if AS$(l)="" and
if it is, that means that the RETURN key
was hit telling us that the end of the
new entries has been reached. We then
set the indicator "H" to zero, close all
files, GOSUB 10110 to remove the input
file and rename the output file to the
new input file. We then return to menu
at line 100.

1050 -- If AS$(l) was not equal to "" in
line 1040 then we proceed to this line
where we clear the screen, below the
subtitle by printing E$ followed by a
capital "J". We then print the string
A$(l) at location "%0" (line 6 column

8

17) . We are now ready for the second
item to be entered. The indicator is
changed (A=2) and we go to the subroutine
at line 10070. Again we print the
results, this time at "&0".

1060,1070 -- Select items three and four
printing them at selected locations.

1080 -- Go to the CHANGE routine before
we return to line 1030 for another name
and address. This allows checking and
correcting the entry before the next is
entered.

1090 -- Same as line 60.

CHANGE ROUTINE

2000 -- Same as line 1000.

2010 -- Checks to see if this is the ADD
routine and if it is, returns to 1030.

2020 -- Checks for the end of file number
two, if it is the end, then GOSUB 10110

and return to 100.

2030 -- Goes to the subroutine at 10040
to input the first name and address.

2040 -- Clears the screen except the
master title, prints the subtitle and
the first three pieces of the first name
and address.

2050 -- Prints the fourth piece of
information and prints information on
what to do if one of the four items is
incorrect.

2060 -- Prints the question "Are these,
OK?" with a default of "YES" and goes
to the subroutine at line 10030 for an
input (AS).

2070 -- Checks "AS$" for a carriage return
or the letter "Y" either in upper or lower
case. If the check proves true then we
GOSUB 10050 to output the data and then
return to 2010 for the next input.

2080 -- If 2070 was false the variable
"A"™ is made equal to the value of the
string variable "A$". Next, on the value
of "A" we GOSUB to the appropriate line
number, (A=1, GOSUB 10060; A=2, GOSUB
10070; etc.) to ask the question about
the incorrect piece of information and
change it. Then GOTO line 2040 for the
next input.

2090 -- Same as 60.

PRINT ROUTINE

3000 == Clears the screen except the main
title, prints the subtitle and includes
a REMark to help keep track of the
program.

HcREMark « Issue 16 « 1981

3010 -- Prints the question about hardcopy
and asks for an input (A$) through the
subroutine at line 10030.

3020 -- Goes to the subroutine at line
10010 for opening the input file for
reading. If "A$" from the previous line
was the letter "N" then the output file
(LPS) becomes the terminal (TT:) otherwise
the output file is the line printer (LP:).

3030 -- First we open the output file
for file number three and then we output
to the output file (#3) a tab of ten,
the title, the date (D$) and a blank line
for spacing.

3040 -- Clears the screen and positions
the cursor on the line number eleven in
the first space. A check is done for
the end of file for file number two and
if it is we close all files and goto 100.

3050 -- The first data to be printed is
input by executing the subroutine at line
10040, and then a loop is started which
will print the information. We also
perform a check here to see if the third
item is blank, and if it is, then we jump
to 3070 for the next item.

3060 ~- This line prints a tab of ten
and the item identified as A$(I) where
the "I" is a number between one and four
from the loop started in line 3050.

3070 -- We continue the loop with the
next statement, and after the loop is
finished a check is done on "AS$(3)" to
see if it is a blank line. If it is then
we output a blank line. The extra blank
line is to keep the spacing from the first
line of a name and address the same to
the next.

3080 -- Another blank is outputted and
a check is done to determine if the output
device is the terminal (TT:). If it is,
then we close the output file and GOSUB
10020 to ask you to hit a key after having
read the information. Then we go to line
number 3030.

The output file is closed if we are using
the terminal because all data is sent
to an output device in blocks of 256
characters except when a file is closed;
then all remaining characters are sent.
In this case most of the information being
sent to the output device will be much
less than the 256 characters, so we close
the file to allow you to see it all.

3090 -- Is used to return to the next
item when the output device is a line
printer (LP:).

3100 =-- Same as 60

SREMark « Issue 16 « 1981

SUBROUTINES
10000 == This line starts the series of
subroutines used by other portions of
this program. This line is to open the
file "TESTO.DAT" for output as file number
one.

10010 -- Opens the input file "TESTI.DAT"
for input as file number two. We then
return to the line of the GOSUB.

10020 -- This line goes into reverse video
and asks you to hit any key to continue.
The semicolon (;) is used to allow the
next line to continue after this line
without dropping to the next line.

10030 -- First prints the "Y¥5$" to turn
the cursor back on then a "Q$" to make
sure the display is not in reverse video.
Now "AS" is input from the terminal as
only one character. Next the "X5$" is
printed to turn the cursor off and we
return to where we came from.

10040 -- This line is a loop to input
four items from the input file (#2) and
then to return.

10050 -- This line is a loop to output
four items to the output file (#1) and
then return.

10060 to 10090 -- Will print the question
"What is the", the item to be changed
or added and then goes to 10100.

10100 -- Turns on the cursor, prints the
question mark (?), inputs a new value
for the "AS$(I)" where "I" was determined

by the routine using this subroutine.
The cursor is shut off and we return to
the routine.

10110 -- Caution: This line can destroy
files, so be careful to type it correctly
and use it only when needed. The first
thing we do is kill the input file
(TESTI.DAT) and then rename the output
file (TESTO.DAT) to the input file. We
then return to where we came from.

ERROR MESSAGES

20000 -- This line is used to sepérate
the error messages from the rest of the
programe.

20010 -- This line checks for an error
in line number 10010 and that A$="2".
If this is true then we print a message
telling the user that a file must be

started before it can be changed. This
line continues onto line 20020.
20020 -- Checks for an error in line 10010

and then opens an output file as number
two and immediately closes the file.
The RESUME takes you back to the ADD
routine to start a file.

(vectored to page 25)

Safe Disk Reset

On my home system I have two 5-inch disk
drives, and with them I work on some
fairly large files (for example the source
for FOCAL-8), so I use stand-alone quite
a bit and do a lot of disk RESETting.
The first time I did a RESET, I wondered
if it was safe, so I looked into the drive
and saw that the head load arm is pulled
away from the disk when the door is opened
even though the drive solenoid is
engaged. I thought that all was OK until
I took a closer look into the drive and
saw that a little foam pad that holds
the disk against part of the drive frame
does not disengage when the door is opened
with the solenoid engaged. This pad is
below and behind the spindle. Each time
you remove and replace a disk in RESET,
it rubs against this pad.

It seemed to me that the pad might wear
out eventually, so I wrote the program
in the listing below. This little program
uses the .MOUNT and .DMOUN SCALL's to
accomplish a reset so that the drive
solenoid 1is not engaged when you open
the door. 1If the source is named R.ASM,
and the resulting .ABS file (R.ABS) is
placed on your system disk, then giving
the command R or R 0 will reset SYO0:,
the command R 1 will reset SYl:, and the
command R 2 will reset S5Y2:. 1If you enter
another number or character, the program
will just return control to HDOS. The
only difference from a normal reset is

TITLE

that you must press RETURN after you
insert the new disk. The program prompts
you to do this by printing "Replace disk
in SY¥n:, hit RETURN" on the console (n
in "S¥n:" is the drive number). If no
disk was already mounted in the drive,
the prompt is "Insert disk in S¥n:, hit
RETURN".

You must SET HDOS STAND-ALONE to use this
program to reset SYO0:. You only need
to do it once for each system disk,
because when you set STAND-ALONE, a flag
is set and recorded on the disk indicating
the STAND-ALONE condition. The next time
you turn on your computer and boot that
disk, the flag will still be there, and
will remain set until you SET HDOS
NOSTAND-ALONE.

If you never use STAND-ALONE, but would
like to use this program to reset drives
SYl: and SY2:, you can make the following
changes. Change the line JZ RZERO to
JZ BAD, and the line CPI '0O' to CPI 'l'.
After these changes, the program will
not reset drive SYO0:.

Another change you can make to this
program is to use the .MONMS and .DMNMS
SCALL's instead of .MOUNT and .DMOUN.
If you do this, the only message printed
on the screen will be the prompt to hit
RETURN.

PS:

'R.ASM -- SAFE DISK RESET'

STL 'by Patrick Swayne 27-FEB-81'

* THIS PROGRAM RESETS DISK DRIVES BY DISMOUNTING

* AND MOUNTING INSTEAD OF RESETTING.

THIS METHOD

* IS SAFER FOR BOTH DISKS AND DRIVES.

.SCIN EQU 1
.LOADO EQU 10Q
.CLEAR EQU 55Q
.MOUNT EQU 200Q
.DMOUN EQU 201Q
$TYPTX EQU 31136A
WBOOT EQU 40100A

ORG 42200A
START LXI H,0

DAD SP

MOV A,L

CPI 80H

Jz RZERO
GETNUM MOV A,M

CPI 40Q

INX H

Jz GETNUM

CPI L

Jc BAD

10

SINGLE CHARACTER INPUT
LOAD OVERLAYS

CLEAR CHANNEL

MOUNT DISK ON DRIVE
DISMOUNT DISK

TYPE TEXT ON CONSOLE
WARM BOOT ENTRY

NORMAL USER ENTRY
LOCATE STACK POINTER

ANY ARGUMENT ENTERED?
IF NOT, RESET SY0:

GET ARGUMENT CHARACTER
IS IT A SPACE?
INCREMENT POINTER
IGNORE SPACES

LESS THAN ZERO?

IF S0, EXIT

(listing continues on page 12)

HREMark « Issue 16 = 1981

FrREMark - Issue 16 « 1981

Attention H11 Owners
(Hard Disk Group Purchase)

The purpose of this information is is to see if you are interested in a possible
group'purchase of a hard disk subsystem for your machine., I would be willing to_
coordinate such a purchase if there is sufficient interest.

I currently know of at least three controllers that are available at the board level
and work with the new eight-inch hard disks. The controller that I am proposing,
however, is built by Andromeda Systems, a company in Los Angeles that builds
accessories for the LSI-11 and which I have had very good experience. Their
controller handles both eight-inch hard disks with the Shugart SAl00O-compatible
interface, and floppies (four drives of each type). The hard disk portion of the
controller emulates the DEC RK0S5 drive and the floppy portion emulates the RX02
(double density). This means that operating systems like RT-11, UCSD Pascal, UNIX,
etc. can be run directly without having to mess with the handlers. (You can patch
the RK05 handler to vary the amount of space on each volume--it comes from DEC set
for 2.5 megabytes per volume, but you can make it a lot bigger if you want to,
depending on the capacity of the hard disk itself.) The reason this controller
is attractive is that it would permit those of us who already have floppy systems
to sell our current controllers to offset the price of the new one. (Also this
would save slots in the backplane. For those of you with H-1lls, it fits on one
dual-width card.)

Andromeda's single-unit price for this controller is $2,000. 1In quantities of 10-24
this price drops to $1,800; 25-49 is $1,700; and 50-99 is $1,550. I didn't ask
about quantities above 99 because I can't imagine getting that many participants,
but, if we do it will probably drop another couple of hundred dollars.

The other part of the group purchase would be for the drives themselves, and
possibly a box and powersupply for the drives. As I mentioned, the Andromeda
controller interfaces with the Shugart SA1000drive, which is becomming a de facto
standard for the eight-inch disks. This means the controller also talks to drives
like the Seagate five-inch mini-Winchester, the Quantum drive (which offers up to
40-megabytes, I think),as well as the 10-megabyte SAl000. There are undoubtably
other drives that would be useful as well and I am investigating these--please let
me know of any that you have seen actually working and that have the correct
interface. I don't think we will want to go with the mini-Winchesters because they
cost about as much as the eight-inch drives, are slower, and have less capacity.
Prices for the drives are still unclear, depending on where we buy them and whether
we buy bare drives (you provide your own powersupply and box) or whether we get
boxed and powered units. I would guess that bare SAl000 drives in quantities of
50-99 would cost about $1,100, and boxed units would be about $2,000 in the same
guantities.

If you are potentially interested in such a group purchase, please write and let
me know. If there is enough response, I will put out another notice in about a month
with more details on exactly what we will be buying, how much it will be, and how
the money is to be handled. On this latter point, I am going to try to set up some
kind of escrow account at a bank that will protect you, but at the same time will
guarantee that the money will actually be there when needed. (This may be somewhat
complicated. If any of you have done something similiar, let me know how you did
it.) I am fairly sure that by offering cash, we can reduce the above quoted prices
a little further, but this is still up in the air.

Assuming there is enough interest, I am tentatively planning to adhere to the
following schedule:

Cut off for expression of interest.......cevec.....May 30
Formal proposal mailed to interested parties.......June 15
Cutoff for checks in escrow account....... cesesssssdJune 30
PUrchase . ciussssssensasvasnsssnsissanannnsnssssssssduly 15

It is likely that the actual shipments will be spread out over a month or two,

depending on how many we order. Shipping priorities will be determined by the date
your check reaches the escrow account.

11

Please let me know if you are interested in this idea. If you don't hear from me
by June 25, 1981 , you can assume that there wasn't enough interest and that I have
dropped the attempt. Please, also, pass along the word to any friends or associates
who may be interested, including companies, universities, etc. A hard disk system
enhances the utility of the LSI-11, and I hope we can put together a large,
supportive group to make it financially attractive as well.

For further information contact

kdkkhkkhhkhkkdkhhkdhhhhhhhdhhhhhdhhhhdhhdiihd

) * NOTE: THIS INFORMATION IS SUPPLIED *
Jim McCord * AS A SERVICE TO H-11 OWNERS. THE *
330 Vereda Leyenda * PURCHASE PLAN IS NOT SUPPORTED BY *
Goleta, CA 93117 * HUG OR HEATH. THIS PLAN IS MERELY *
Telephone: (805) 963-6589 (days) * REPRODUCED HERE FOR YOU REVIEW,... *

(805) 968-6681 (evenings) kkkkkkhkhkhkrhkhkhhhhdhhhhhhdhhhhhhhhhhkhk

(If you want to call,

I'd prefer that you do so during the day.

I'm usually there

from about 8:30 am to 6:00 pm Pacific time.)

(listing continued from page 10)

EOF

CPI 13 MORE THAN TWO?
JNC BAD IF S0, EXIT
STA DNAME+2 CORRECT MESSAGE
STA DRIVE+2 SET UP DRIVE NUMBER
RZERO MVI A,0FFH
SCALL .CLEAR CLEAR CURRENT CHANNEL
XRA A
SCALL . LOADO LOAD FIRST OVERLAY
JC BAD
MVI A,1l
SCALL . LOADO LOAD SECOND OVERLAY
JC BAD
LXI H,DRIVE POINT TO DRIVE
SCALL . DMOUN TRY TO DISMOUNT DISK
JNC REPLACE GOOD DISMOUNT, TYPE "REPLACE"
CALL STYPTX NO DISK, TYPE "INSERT"
DB 12Q, 'Insert',240Q
JMP TDISK
REPLACE CALL STYPTX
DB 12Q, 'Replace',2400Q
TDISK CALL STYPTX
DB ‘disk in °'
DNAME DB 'SY0:, hit RETURN',212Q
SCALL .SCIN WAIT FOR RETURN
JcC *-2
LXI H,DRIVE
SCALL « MOUNT MOUNT DISK
BAD JMP WBOOT RETURN TO HDOS
DRIVE DB 'sy0:',0
END START
EOF
NEWMONTH. SFS
SOFT BUGS

SF-9005 INVENTORY PACKAGE

The following line numbers should be
changed under the programs listed to
correct or improve the performance of
the respective components of the Inventory
package.

START.SFS
20 CLEAR 2000:0ON ERROR GOTO 360
210 IF D<15 THEN D=D+12

12

20 CLEAR 1000:0N ERROR GOTO 460
190 IF D<15 THEN D=D+12

ADD.SFS
20 CLEAR 4000:0N ERROR GOTO 420
600 FOR Gl=1 TO G:IF P1$=G$(Gl) THEN 630
ELSE NEXT Gl
CHANGE. SFS
20 CLEAR 2000:WIDTH 255:0N ERROR GOTO
830

¥REMark « Issue 16 = 1981

Manipulation of String Data with MBASIC

William N. Campbell, M.D.
855 Smithbridge Road

Glen Mills,

Abstract

MBASIC's MIDS$, LEN, and INSTR functions
are used to isolate certain items in
records and then strings are rearranged.
A practical use of same is demonstrated.
Of most value to newcomers to MBASIC.

Note: Reference is made to data files,
records and fields. These terms are
defined in my DBMS article in REMark,
issue 14. Reference is also made to
certain programs which were in Random
File article in REMark, issue 10
(corrections to this article in REMark,
issue 11.) Note also that the correct
text of both those articles, along with
all 21 programs are available on 5 inch
diskette postpaid for $10.00. Write Mr.
Jerry Leon, Heathkit Electronic Center,
630 Lancaster Pike, Frazer, PA 19355 and
enclose check for same if you desire the
diskette (HDOS format).

It is frequently necessary to dissect
string data and rearrange the string.
For example, assume you have a sequential
mailing list file with each record
formatted as follows (the reverse slash
is used as a delimiter):

LAST NAME\FIRST NAME\MRS\STREET
ADDRESS\CITYSTATEZIP

The state in the above is the 2 letter
abbreviation of the state. At present
the ZIP consists of 5 digits. Hence,
the last 5 characters of each record are
the 5 digit zip code and the 2 characters
immediately preceding the zip are the
2 letter abbreviation of the state. The
other portions of each record are
separated from each other by a
"delimiter®™, a "reverse slash". The
location of the zip and 2 letter
abbreviation of state bear a constant
relationship to the end of each record.
We can isolate either of these with the
LEN and MID$ statement. We can isolate
other items in each record by finding
the position of the delimiter immediately
preceding and immediately after each item
using the INSTR function, then the MID$
and LEN functions.

Programs for creation of such a file,
the sorting of such a sequential file,
and a program for creating labels from
such a file will be found in my Random
File article in REMark, issue 10 (programs
2, 4, and 3 respectively).

HREMark « Issue 16 « 1981

PA 19342

However, frequently one desires to have
the labels sorted in ascending order of
zip codes, with names alphabetized within
each group of different zip codes. Since
the zip is always last in our records
we need to "grab" the zip from each record
and place it first in each record. After
doing this to each record within the file,
we could THEN sort the file, then reformat
back to original format and obtain all
our objectives.

The program "GRAB.BAS", (listed at the
end of this article) is a demonstration
program that will show you how to do this,
among other things. We use the LEN, MIDS,
and INSTR functions of MBASIC in this
program. When you enter this program,
just enter the program in logical units,
then RUN and check and study the results
until you feel comfortable with the
different functions. For example, enter
lines 10 to 130 and RUN. Then add lines
140 to 200 and RUN. And so on. If we
are using the INSTR function you might
wish to add a line at 445 -- PRINT
A,B,C,D. Similarly, add this line at
485. With this program and your MBASIC
manual you should be able to fathom these
string handling functions.

Assuming you already have a sequential
file, formatted as above, you can use
program ZIPFIRST.BAS to prepare your file
for sorting. After sorting, use program
ZIPLAST.BAS to format your file back to
original format. Program ZIPFIRST.BAS
simply line inputs your file, record by
record and line 120 reformats each record
with zip code at beginning of record,
line 130 puts each reformatted record
in TEMP.DAT. This continues until EOF
when file is closed. Now, sort the output
file TEMP.DAT. The resulting file (we
will call it SORT.DAT) is now ordered
by zip code, and all records within each
zip group are alphabetized. Next, run
program ZIPLAST.BAS which simply inputs,
record by record, SORT.DAT, then reformats
back to original format and outputs
records to TEMP2.DAT. Now, use TEMP2.DAT
as the input file to SEQOUT.BAS (in issue
10 of REMark). If you want to use your
line printer for the labels, simply open
a file for output as "LP:"™ and substitute
PRINT #n, for each PRINT in program as
now listed. (n = the number of file that
was opened; example -- PRINT $2,).
Remember to close the files.

Note that the SORT program appeared in

13

issue 10 of REMark. If your data is in
a random file to begin with, just convert
it to a sequential file before
reformatting; again, program to do this
is in issue 10 of REMark.

You may wonder why you would be interested
in isolating the "street address" from
a "name and address" file as is done in
lines 370-540 in program "GRAB.BAS",
Frankly, I can't think of a good reason

10 ' GRAB.BAS
20

30 CLEAR 1000
40 '

BUT suppose the data file was not a
mailing list, but rather an inventory
data list, and suppose the 4th field of
each record was the part number of an
item in inventory. Then, you might well
wish to "grab" the 4th field, place it
girst in each record, and then sort the
ile.

EOF

using MID$, LEN, INSTR functions in MBASIC

ASSUME OUR FILE CONTAINS RECORDS FORMATTED AS IN X$:

50 X$="JONES\JACK\MR\1 FIRST AVE\FIRSTVILLEPA12345"

60 PRINT X$
70
80 A$=MIDS (X$,LEN(X$)-4,5):'
90 B$=MIDS (X$,1,LEN(X$)-5):"
100 X$=AS$+BS:'
110 PRINT AS:'
120 PRINT BS

130 PRINT X$

140
150 AS$=MIDS(X$,1,5):"
160 B$=MIDS$(X$,6,LEN(XS)-5):"’
170 X$=BS+AS:'
180 PRINT BS:'
190 PRINT AS

200 PRINT X$

print for inspection

print for inspection

ISOLATE ZIP AND PUT IT FIRST IN RECORD

grab the zip and put in AS
everything except zip goes into B$
now X$ has zip first

NOW WE PUT BACK TO ORIGINAL FORMAT

put the zip (1lst 5 char) in A$
put everything else in B$
reformat back to original format

210 ' LETS ISOLATE THE 2 LTR ABBREV OF STATE AND PUT IT FIRST

220 AS=MIDS (X$,LEN(XS$)-6,2):'
230 BS$S=MIDS (XS$,1,LEN(XS)=7):"
240 C$=MIDS (X$,LEN(X$)-4,5):"
250 XS$=AS$+BS+CS: 'reformat all with
260 PRINT A$:' print for inspection

270 PRINT BS

280 PRINT C$

290 PRINT X$

300
310 A$=MIDS$(XS$,1,2):"'
320 B$=MIDS$(XS$,LEN(XS)-4,5):"
330 X$=MIDS (X$,3,LEN(X$)-7)+AS+BS:"'

340 PRINT AS$:' print for inspection
350 PRINT B$

360 PRINT X$

370 !
380 !

isolate state and put in A$
put all before state into BS
put zip in C$

ltr state abbrev first

AND PUT BACK INTO ORIGINAL FORMAT

put state abbrev into A$

put zip in B$

concatenate back to original format

LETS GRAB THE FOURTH FIELD (STREET ADDRESS) AND PUT IT FIRST
next 2 lines finds position lst 4 delimiters & puts in A,B,C,D

390 A=INSTR(1l,X$,"™\") :B=INSTR(A+1,X$,"\")
400 C=INSTR(B+1,X$,"\") :D=INSTR(C+1,X$,"\")

410 AS$=MIDS (X$,1,C-1):'
420 BS=MIDS (X$,C+l, (D-1)-(C)) '
430 C$=MIDS (X$,D,LEN(XS)):"
440 X$=BS$+"\"+AS+CS:"

460 '

grab first three fields and put in A$
grab 4th field and put in B$

put rest in C$

reformat all with 4th field first

450 PRINT AS$:PRINT BS$:PRINT C$:PRINT X$:'
AND PUT BACK INTO ORIGINAL FORMAT

print for inspection

470 A=INSTR(1l,X$,"\") :B=INSTR(A+1,X$,"\")
480 C=INSTR(B+1,X$,"\") :D=INSTR(C+1,X$,"\")
490 AS$=MIDS(X$,1,A):' grab first field and put in A$

500 B$=MIDS (X$,A+1l,D-(LEN(AS))):"
510 C$=MID$ (X$,D+1,LEN(XS$)):"
520 X$=BS$+AS+CS:'

grab next 3
rest of record into C$
and concatenate back to original

fields and put in B$

530 PRINT A$:PRINT B$:PRINT C$:PRINT X$:' print out for inspection

540 END

14

HrREMark « Issue 16 « 1981

After program is run, TEMP.DAT contains reformatted records

After sorting TEMP.DAT,

10 ZIPFIRST.BAS pgm for reformatting to sort on zips.

20 !

30 ¢ with zip first, followed by last name.

40 ' use ZIPLAST.BAS to place in original format, then use
50 ! TEMP2.DAT as input file when printing out labels.

60

70 CLEAR 1000

80 OPEN "I",1,"LIST.DAT":'
90 OPEN "O",2,"TEMP.DAT"
100 IF EOF(l) THEN 150

110 LINE INPUT #1,X$

quoted file should be name of your seq file

120 A$=MIDS$ (X$,LEN(X$)-4,5) :B$=MID$ (X$,1,LEN(X$)-5) :X$=A$+B$

130 PRINT #2,X$
140 GOTO 100
150 CLOSE:END
160 '

170 ° ready to be sorted.

10
20
30 ¢!
40

50 CLEAR 1000

60 OPEN "I",1,"SORT.DAT":'
70 OPEN "O",2,"TEMP2.DAT"
80 IF EOF(l) THEN 130

90 LINE INPUT #1,X$

ZIPLAST.BAS

TEMP.DAT now contains file with records formatted with zip first,

after sorting TEMP.DAT to SORT.DAT, use this pgm which
reformats back to original format; TEMP2.DAT is now)
ordered by ascending order of zips, ready for label printout

quoted file here should be name of the sorted file

100 A$=MIDS (X$,1,5) :B$=MIDS$ (X$,6,LEN(XS$)-5) :X$=B$+AS

110 PRINT #2,X$
120 GOTO 80
130 CLOSE:END

EOF

Changes for HDOS 2.0 Boot-Up

The patches presented in this article
are the version 2.0 (5 inch disks only!)
equivalent of some of the patches in the
article "Changes for HDOS Boot-up" in
REMark #11. These patches will accomplish
the following:

1. Eliminate the need to type a CR or
the letter B to initiate BOOT.

2. Eliminate the need to enter a system
date (without having to set NO-DATE).

3 Remove the printing of "BOOT" at
start-up.

To make these patches, you will need
DUMP.ABS from HUG disk VIII (885-1062) .
Other DUMP-type programs will work, but
some of them use a different sector
numbering scheme than DUMP, so be sure
to check that the old values are as listed
before you make changes.

l. Eliminate CR after <BOOT>
This patch causes BOOT to execute
automatically. You loose the ability

to do CHECKSUMS or to use the IGNORE
command .

SREMark « Issue 16 « 1981

TRACK 0 SECTOR 2

LOCATION OLD VALUE NEW VALUE

L7 CD C3
18 17 3E
19 27 25

2. Eliminate CR after date

This patch eliminates the requirement
to enter a system date or a CR after
existing date. If the system has been
on, and a date is in memory, that date
is used. If the system has been just
turned on, the last date stored on the
disk is used. You can enter a new date
with the DATE command. Note: 1If the
disk on which you make this patch has
never been used, or has been used with
NO-DATE set, it will come up with
"DD-MMM-YY" as the system date
(literally), but you can change it with
the DATE command. You should SET HDOS
DATE if NO-DATE was set., Setting NO-DATE
eliminates the need to enter a date or
type CR or enter a date, as this patch
does, but with NO-DATE set you get the

(vectored to page 31)

15

New HUG Software

885-1093 DND HDOS DISK $20.00
DND.BAS is the HUG version of the popular
game "DUNGEONS AND DRAGONS". The object
of DND is to find the lord master of the
50 level Heathkit Dungeon by exploring
it. You will begin your search on level
1l where there are taverns in which you
may cash any gold you find for experience
points. Accumulated experience points
will allow you to become a higher level
character.

During your gquest you will encounter many
obstacles and find objects that may at
sometime help you in your search. The
deeper you go into the dungeon the harder
it will be to survive as a low level
character. The lord of the dungeon will
be found in a HEATHKIT VAULT. As the
game progresses you will be given the
combination. The lord may or may not
be there -- other mysterious things may
be in a vault =-- so beware!

The minimum system requirement is a 56K
machine, H19 or H89, HDOS Microsoft BASIC,
and two drives. You will use ALL
available memory so you will not be able
to load any device drivers.

The instuctions are very brief. There
are many aspects of the game to explore.
Be adventurous, be careful and have funl!!!

Adventure using HDOS 2.0

and a Single Drive

Now that HDOS 2.0 is out, the ADVENTURE
Disk (HUG P/N 885-1010) requires a couple
of special notes. HDOS has grown again
in its minimum confiquration by several
sectors. With this increase in size of
of HDOS, Adventure becomes a little tight
on a single five and a quarter inch disk.
If all files that are NOT needed for
Adventure are deleted then the three files
ADVENT.ABS, ADVENTUR.DTB and NEWGAME,CAV
will fit., You must delete all system
files without a 'W' flag except SY.DVD.
After copying the above three files onto
the disk using ONECOPY.ABS there are only
eight (B) sectors free, less than half
required to save a game. That's fine
if you always want to start a NEWCAVE
everytime you play.

As a suggestion we recommend making a
complete copy of the Adventure Disk
without the documentation files. This
should be done by using INIT.ABS to create
a blank disk and then copying the three
Adventure files, shown above, using
ONECOPY.ABS. To check the spellings of
the file names use /L when you're in
ONECOPY and the file names will be listed
for you.

16

Once the disk is created then make another
disk this time using INIT.ABS and
SYSGEN.ABS. This disk will be known as
the 'SYSTEM' disk.

Make sure that SET.ABS is on the system
disk (if not use ONECOPY and get it from
your HDOS disk). Boot up the system disk
and proceed to what is known as HDOS
STAND-ALONE. To do this we must type
the following:

SET HDOS STAND-ALONE <CR>
Where <CR> equals the Carriage Return.

A message will appear warning you that
you could be in trouble if you proceed,
pick your heart up off the floor and do
exactly what I tell you and everything
will be fine. By the way the worse thing
that could happen is that we could destroy
one of the two disks we are working with.
But let's think positive and follow these
simple instructions and we will be playing
Adventure before you know it.

Type: RESET SY0: <CR>
When told to replace the disk take the
system disk out of the drive and replace
it with the COPY of the Adventure disk.
Wait for the HDOS prompt (») and then
type:

ADVENT <CR>

When asked which cave, simply hit the
RETURN key to get a NEW cave. An old
cave can be called by typing in the name
of the cave that has been previously
played and saved using the "SAVE" command
during the Adventure game. NOTE: When
using the SAVE command remember the name
of the CAVE that you have saved so that
it may be recalled later.

Answer the question about instructions
with a 'NO'. NOTE: Adventure looks for
upper case only, so push the CAPS LOCK
down.

You are standing at the end of a road
before a small brick building. Around
you is a forest. A small stream follows
out of the building and down a gully.

Try going inside and see what you can
find and remember the magic word XYZZY.

That's the end of my help gang, but I
will suggest that you feed the bear the
food and not yourself.

Adventure is a very addictive game, so
if you're short of time try a less
adventurous type game such as tic-tac-toe.

GK:

$REMark + Issue 16 + 1981

HUG Product List

Part

Number Description

Selling
Price

CASSETTE SOFTWARE

MISCELLANEOUS COLLECTIONS

885-1008 Volume I Documentation
885-1009 Tape I Cassette
885-1012 Tape II BASIC Cassette

885-1013 Volume II Documentation
885-1014 Tape II ASM Cassette H8 Only
885-1015 Volume III Documentation
885-1026 Tape III Cassette
885-1036 Tape IV Cassette
885-1037 Volume IV Documentation
885-1057 Tape V Cassette
885-1058 Volume V Documentation

UTILITIES

885-1034 Character Ed Cassette H8 Only
885-1035 ED/ASM/DEBUG Cassette H8 Only

PROGRAMMING LANGUAGES

885-1039 WISE on Cassette H8 Only
885-1040 PILOT on Cassette H8 Only
885-1045 FOCAL Cassette H8 Only
885-1085 PILOT Documentation
AMATEUR RADIO

885-1027 Morse8 Cassette H8 Only
885-1028 RTTY Cassette H8 Only

HDOS SOFTWARE

MISCELLANEQUS COLLECTIONS

885-1024 Disk I H8/H89
885-1032 Disk V H8/H89
885-1044 Disk VI H8/H89
885-1060 Disk VII HB8/H89
885-1062 Disk VIII H8/H89 (2 Disks)
885-1064 Disk IX H8/H89
885-1066 Disk X H8/H89

885-1069 Disk XIII
885-1083 Disk XVI

Misc HB/HB89
Misc H8/H89

GAMES

885-1010 Adventure Disk H8/H89
885-1029 Disk II Games 1 H8/H89
885-1030 Disk III Games 2 H8/H89
885-1031 Disk IV Music H8 Only
885-1067 Disk'XI H8/H19/H89 Games
885-1068 Disk XII MBASIC Graphic Games
885-1088 MBASIC Games Disk

885-1093 DND Game for HDOS

UTILITIES
885-1019 Device Drivers (HDOS 1.6)

885-1022 HUG Editor (ED) Disk H8/H89
885-1025 Runoff Disk HB8/H89

HREMark « Issue 16 « 1981

4 G 4 O B R O
—_

11.00
11.00

i

9.00
11.00
11.00

9.00

4 40 5

$ 14.00
$ 11.00

18.00
18.00
18.00
18.00
25.00
18.00
18.00
18.00
20.00

- R

10.00
18.00
18.00
23.00
18.00
18.00
20.00
20.00

4 8 o 4R e o R

10.00
15.00
35.00

4 R

885-1043 MODEM Heath to Heath H8/H89 $ 21.00
885-1050 M.C.S. Modem for HB8/H89 $ 18.00
885-1061 TMI Load H8 Only $ 18.00
885-1063 Floating Point Disk H8/H89 $ 18.00
885-1065 Fix Point Package H8/H89 Disk $ 18.00
885-1075 HDOS Support Package HB8/H89 $ 60.00
885-1077 TXTCON/BASCON H8/H89 Disk $ 18.00
885-1079 HDOS Page Editor $ 25.00
885-1080 EDITX H8/H19/H89 $ 20.00
885-1082 Programs for Printers H8/H89 $ 20.00
885-1092 RDT Debugging Tool H8/HB89 Disk $ 30.00
PROGRAMMING LANGUAGES
885-1038 WISE on Disk H8/H89 $ 18.00
885-1042 PILOT on Disk H8/H89 $ 19.00
885-1059 FOCAL-8 on Disk H8/H89 $ 25.00
885-1078 HDOS Z80 Assembler $ 25.00
885-1085 PILOT Documentation $ 9.00
885-1086 Tiny Pascal Disk $ 20.00
BUSINESS AND FINANCE ’
885-1047 Stocks HB/H89 Disk $ 18.00
885-1048 Personal Account HB8/H89 Disk $ 18.00
885-1049 Income Tax Records H8/H89 Disk ¢ 18.00
885-1051 Payroll H8/H89 Disk $ 50.00
885-1054 SmBusPkg II 3 Disks HB8/H19/H89 § 60.00
885-1055 MBASIC Inventory Disk H8/H89 $ 30.00
885-1056 MBASIC Mail List H8/H89 Disk $ 30.00
885-1070 Disk XIV Home Finance H8/H89 $ 18.00
885-1091 Grade and Score Keeping $ 30.00
AMATEUR RADIO
885-1023 RTTY Disk H8 Only $ 22.00
885-1052 Morse8 Disk H8 Only $ 18.00
H11 SOFTWARE
885-1008 Volume I Documentation $ 9.00
885-1033 HT-11 Disk I $ 19.00
CP/M SOFTWARE (version 1.43 -- ORG 4200H)
885-1201 CP/M (TM) Volumes H1 and H2 $ 21.00
885-1202 CP/M Volumes 4 and 21-C $ 21.00
885-1203 CP/M Volumes 21-A and B $ 21.00
885-1204 CP/M Volumes 26/27-A and B $ 21.00
885-1205 CP/M Volumes 26/27-C and D $ 21.00
885-1206 CP/M Games Disk $ 21.00
CP/M SOFTWARE (version 2.2 -- ORG 0)
885-1207 TERM and HBCOPY $ 20.00
MISCELLANEQUS
885-0017 H8 Poster $ 2.95
885-0018 HB9 Poster $ 2.95
885-0019 Color Graphics Poster $ 2.9
885-4 HUG Binder $ 5.75
CP/M 1is a registered trademark of

Digital Research Corp.

17

18

More on Home Control with the ET3400

Michael C. Frieders
9318 Clanbrook Ct.
Fairfax, VA 22031

Minor modifications to the hardware and software presented in REMark Issue 13 are
required if you have the ETA-3400 Accessory. The changes are summarized below:

1) The machine code program has been moved up one page (256 bytes), since the first
page is reserved by the accessory. A number of lines of code have changed due to
the fact that above the first page you can't take advantage of certain direct
addressing instructions. The new program is two bytes longer than the old program
described is Issue 13.

2) The command stack now starts at address 01A0 (HEX).

3) The delay between commands has been increased to one second. I have found that
the additional delay improves the reliability of the system.

4) An error (of no consequence) at address 017C (HEX) has been corrected.

5) The wire between IC 74LS30 Pin 8 and the RE connector block is no longer
necessary. In fact, IC 74LS30 is no longer necessary at all. This is due to the
method by which the ETA-3400 accesses the data lines in the ET-3400.

I have dumped the program to tape followed by a dump of my command stack beginning
at address 01A0 (HEX). This makes it very easy to regenerate the system by doing
two consecutive tape reads. Then all you have to do is set address 00F7 (HEX) to
3B (HEX), set the time, and you're back in business. I also have the program on
disk, and dump it from my H8 to the ETA-3400 using the CPS modem software offered
by Softstuff. Using tape and disk makes it easy to have a number of different
command stacks readily available for use on weekends, vacations, etc.

If you have trouble implementing this system, make sure that the BSR command console
is operating properly. After several months, my command console broke down. Sears
replaced it with a new one, and it has worked perfectly since. Also, be sure you
have a good battery in the cordless controller. If you have specific questions,
I can be reached at the above address, or you can leave a message via MicroNET (ID
No. 70140,371).

The following is a listing of the new program for the ETA-3400. Note that the
addresses start at 0100 (HEX). GOOD LUCK !

ADDRESS OPCODE MNEMONIC COMMENTS

kkkdkkkk ek ok ke Kk kkkkkkkk kkkkkhkhkkkkkhkkhkkhkrkkhkkhkk

0100 00 HOURS

0101 00 MINUTES

0102 00 SECONDS

0103 CE FF04 LDX #FF04 SET UP THE PIA

0106 FF 8002 STX #8002 WITH THE B SIDE OUT

0109 86 FF LDA #FF LOAD BSR NULL COMMAND

010B B7 8002 STAA #8002 SEND NULL COMMAND

010E FE 015F LDX #015F GET ADDRESS OF NEXT COMMAND

0111 B6 0100 LDAA 0100 LOAD HOUR FROM CLOCK

0114 Al 00 CMPA,X 00 COMPARE CLOCK HOUR WITH NEXT HOUR
0116 26 09 BNE 09 NO MATCH - CONTINUE CLOCK

0118 B6 0101 LDAA #0101 HOURS MATCH, LOAD MINUTES FROM CLOCK
011B Al 01 CMPA,X 01 COMPARE CLOCK MINUTE WITH NEXT MINUTE
011D 26 02 BNE 02 NO MATCH - CONTINUE CLOCK

011F 8D 40 BSR 40 TIMES MATCH! SEND COMMANDS

0121 CE 00FD LDX #00FD

HREMark « Issue 16 « 1981

0124
0126
0129
012A
012D
012F
0132
0134
0135
0137
0138
0139
013B
013D
013E
0140
0142
0144
0146
0148
014A
014B
014D
014F
0151
0153
0155
0157
0159
015B
01s5C
015E
015F
0161
0163
0165
0167
0169
0l6B
0l6E
0170
0171
0174
0175
0177
0179
017B
017D
017E
017F
0180
0182
0185
o188
0189
olsc
018E
018F
0191
0192
0193
0195

00F7
01A0

A6
BD
08
8C
26
BD
Ccé
SA
27
0E
3E
20
8B
19
A7
81
26
8D
81
26
09
8D
81
26
6F
20
6F
A6
8B
19
A7
39

03
FE20

0100
F5
FCBC
3D

01A0

Ab
27
8D
86
8D
B6
8B
19
B7
08
20
A6
8l
27
08
08
08
20

CE
FF
39

B7

cé

SA
27

OE
3E
20

39

3B

>BEGIN COMMAND

03
01A0
015F

8002
3D

04

F9

$REMark « Issue 16 + 1981

LDAA,X 03
JSR #FE20
INX

CPX #0100
BNE F5
JSR #FCBC
LDAB #3D
DECB

BEQ 04
CLI

WAI

BRA F9
ADDA #01
DAA
STAA,X 02
CMPA #60
BNE DD
BSR OF
CMPA #60
BNE C4
DEX

BSR 08
CMPA #24
BNE 02
CLR,X 01
BRA B9
CLR,X 02
LDAA,X 01
ADDA #01
DAA
STAA,X 01
RTS

LDAA,X 02
BEQ 12
BSR 22
LDAA #FF
BSR 1E
LDAA #0102
ADDA #02
DAA

STAA 0102
INX

BRA EA
LDAA,X 03
CMPA %99
BEQ 05
INX

INX

INX

BRA 03
LDX #01l0A
STX #015F
RTS

STAA #8002
LDAB #3D
DECB

BEQ 04
CLI

WAI

BRA F9
RTS

RTI

STACK HERE<

LOAD AND DISPLAY
HOURS ,MINUTES
AND SECONDS

RESET DISPLAY COUNTERS

ONE SECOND DELAY ROUTINE
("LINE" MUST BE CONNECTED TO "IRQ")

INCREMENT SECONDS

DECIMAL ADJUST SECONDS

STORE SECONDS

60 SECONDS YET?

IF NOT, GO BACK FOR NEXT SECOND
ELSE CLEAR SECONDS AND UPDATE MINUTES
60 MINUTES YET?

IF NOT, GO BACK AND CHECK NEXT TIME
ELSE CLEAR MINUTES

- AND UPDATE HOURS

24 HOURS YET?

IF NOT, DON'T CLEAR HOURS YET

ELSE CLEAR HOURS

GO BACK AND CHECK TIME

CLEAR SECONDS OR MINUTES

LOAD MINUTES OR HOURS LOAD
INCREMENT MINUTES OR HOURS AND
DECIMAL ADJUST UPDATE
STORE MINUTES OR HOURS ROUTINE
RETURN

ADDRESS OF NEXT TIME; SCRATCH AREA
LOAD NEXT COMMAND TO BE SENT

IF END OF STRING SET UP FOR NEXT TIME
ELSE GOTO SEND-AND-DELAY ROUTINE
LOAD BSR NULL COMMAND

GOTO SEND-AND-DELAY ROUTINE

UPDATE SECONDS TO

COMPENSATE FOR

SENDING COMMANDS,

AND

SET INDEX REGISTER FOR NEXT COMMAND
GO BACK AND REPEAT FOR NEXT COMMAND
LOAD HOUR FOR NEXT TIME

IS THIS THE END OF -

THE COMMAND STACK?

IF NOT, SET THE INDEX REGISTER
FOR THE NEXT TIME

ELSE RESET TO THE TOP OF COMMAND STACK
STORE ADDRESS OF NEXT TIME

RETURN TO CLOCK
SEND COMMAND TO PIA

ONE-SECOND DELAY

RETURN TO COMMAND PROCFSSOR

RETURN FROM INTERRUPT

19

What's a FOCAL?

Those of you who read the "New HUG
Products" section of REMark #13 know that
HUG is selling a FOCAL interpreter
(885-1059) that I wrote for Heath
computers (HDOS system). If you "grew
up" on PDP-8's, or used the Hl1ll back in
the paper tape days, you may be familiar
with FOCAL, but most of you probably don't
have the foggiest notion of what it is
all about.

The purpose of this article is to
introduce you to FOCAL-8 (HUG FOCAL),
not so that you will all be converted
to it, but to let you know that there
are other ways of doing things besides
BASIC. Back in High School, I took Latin,
and it helped me understand English
better. In the same way, an exposure
to FOCAL or another language will help
you understand BASIC better. So let's
take a look at FOCAL and see what it is
like, and how it compares to BASIC.

In the introductory material in Heath's
software for BASIC, it says that BASIC
is a conversional programming language.
This means that BASIC can interact with
the user, allowing him or her to type
in problems and get answers right away.
BASIC is also a general purpose language,
which means that it can be used for
business programs, engineering programs,
games, etc. You may have heard the
expression "structured language". BASIC
is not a structured language. You can
arrange the parts of a program in just
about any order as long as you GOTO the
right place at the right time.

Most of these attributes apply to FOCAL
as well as to BASIC. FOCAL is
conversational like BASIC. It is not
a structured language, but the way it
works causes you to arrange your programs
into a main body and subroutines more
than you might do in BASIC. FOCAL differs
from BASIC mainly in that it is not a
general purpose language. It was designed
primarily as a "number cruncher", for
scientific and engineering use. While
most BASIC's allow three data types
(numeric, logic, and string), FOCAL allows
only numeric data. The name FOCAL
suggests its intended use: it means
FOrmula CALculator.

Now, let's make some direct comparisons
between FOCAL-8 and BASIC. In both
languages, there is a command mode and
a program mode. That is, you can type
in a one line problem, hit RETURN, and
it will execute immediately (command
mode). Or, you can enter a number of
lines preceded by line numbers (a

20

program), and then RUN the program. The
line numbers in FOCAL are a little
different from those in BASIC. They
consist of a one or two digit number,
a period, and another one or two digit
number. A typical line number would be
10.45, and it might be followed by 10.50
(which you could enter as 10.5). The
whole number is called the line number,
as in BASIC, but the first part is called
the group number. Every line number
that started with 10 would be in group
10, The reason for this is that some
of the commands in FOCAL can operate on
either a single line or a whole group.
For example, the WRITE command, which
is like LIST in BASIC, can be used to
list line number 10.45 on your terminal,
or it can be used to list all of group
10. But it doesn't stop with simple
commands like that. The DO command, which
is the FOCAL version of GOSUB, can be
used to call line 10.45 as a subroutine
in one part of a program, then call all
of group 10 as a subroutine an another
part.

As you can see, the commands in FOCAL
have different names from their BASIC
counterparts. This was not intentionally
done to confuse you, but is the result
of a restriction placed on FOCAL commands
that does not exist in BASIC. Each
command in FOCAL can be abbreviated by
its first letter, so each command must
start with a unique first letter. There
is a GOTO command in FOCAL, so there
cannot be a GOSUB command. Writing a
program is faster when all you have to
type is the first letter of each command.
You might think you would be restricted
to 26 commands, but it is possible to
have subcommands under a command. In
FOCAL-8, the LIBRARY command, which is
used for disk I/0, has 6 subcommands,
all of which start with letters used by
other main commands.

Figure 2 (at the end of this article)
is a sample program in FOCAL-8
("Electronic Checkbook"). This program
is not only an example of the language,
but it demonstrates how I overcame some
limitations of the language. More on
that later. Here is a list of the
commands used in that program and their
BASIC equivalents.

FOCAL BASIC USE

ASK INPUT Interractive input
COMMENT REM Remarks

DO GOSUB Subroutine call
ERASE CLEAR Clear variables
FOR FOR Loops

SREMark « Issue 16 - 1981

GOTO GOTO Control transfer
HARDCOPY various Toggle printer

IF IF Conditional control
JUMP ON GOTO Computed transfer
LIBRARY various Disk I/0

POKE POKE Change memory
RETURN RETURN Subroutine exit
SET LET Assignment

TYPE PRINT Print values, etc.
X DEF USR Set user address

In addition to these commands, FOCAL-8
has several pre-defined functions. For
the most part, they are like their BASIC
counterparts, except that the name starts
with a capital F. For example, the BASIC
ABS function is FABS in FOCAL.

Some of the commands differ more from
BASIC than the command list would
indicate. The IF command, for instance,
evaluates an expression following it in
parentheses, and jumps to one of three
following line numbers (see line no. 03.64
in the program). It jumps to the first
number if the expression is negative,
to the second if it is zero, and to the
third if it is positive. FORTRAN
programmers will be familiar with this
technique. There are no comparison
operators in FOCAL, so comparison is done
with subtraction (see line no. 05.12).
Note that you can leave off one or two
of the line numbers and add an executable
statement instead.

The HARDCOPY command takes as its argument
ON or OFF (or OF). When HARCOPY is ON,
everything that goes to the screen also
goes to the printer. When you turn
HARDCOPY OFF, printer operations stop.
This makes it easy to send program output
to a printer without having to worry about
opening files, closing files, PRINT #n,
etc.

The six subcommands under the LIBRARY
command are LOAD, RUN, SAVE, DELETE, PUT,
and GET. LOAD, RUN, and SAVE are like
the same commands in MBASIC, and DELETE
is 1like KILL. PUT saves all of a
program's variables in a file, and GET
loads variables from a file. Line 01.30
in the Electronic Checkbook program saves
your checkbook in a file called CHECK.FD
(.FD is the default extension for FOCAL
Data) on SYl:, and line 03.14 loads it
back in the next time you use it. As
with HARDCOPY, the programmer is freed
from concern with opening and closing
files, etc. Sometimes you need the file
flexability afforded by BASIC, but when
all you want to do is save the data you
have entered into a program on disk, the
FOCAL-8 approach is adequate.

It is not my intention to present a
complete FOCAL manual in this article,
but there is one more thing I should
mention before I discuss some the tricks

HREMark « Issue 16 « 1981

I used in the checkbook program. In
FOCAL, arrays (dimensioned variables)
are handled differently than in BASIC.
Let's say that you have written a program
with an array that could have as many
as 1000 elements in it. If the program
is in BASIC, you would have a statement
near the beginning like this:

10 DIM A(1000)

You have reserved some memory in your
computer for the array with the above
statement. Let's say that each time you
actually run the program, you use
different elements in the array, but not
all of them. For example, one time you
run it you would use A(9), A(55), and
A(998), and the next time you use A(44),
A(322), A(444), and A(1000). The first
time you used 3 elements, and the second
time you used 4 elements, and all of the
other elements you reserved were wasted
space in the computer's memory. In
FOCAL-8, there would be no wasted space.
You do not have to reserve space for
arrays (there is no DIM statement) because
FOCAL-8 only uses space as it is needed.
In the above example, if you needed
A(2000), the program in BASIC would have
to be re-written to allow the larger
array. In FOCAL-8, no re-writing would
be necessary. Some FOCAL interpreters
allow only single dimensioned arrays,
but FOCAL-8 allows two dimensioned arrays
also. In theory, a single dimensioned
array can have 65535 elements, and a two
dimensioned array can be 255 by 255.
The actual limit is the amount of memory
in the computer.

Now we will look at the "Electronic
Checkbook" program. Figure 1 is a partial
sample run. As you can see, there is
a description of each item in the
checkbook. How did we do this in a
language that does not have strings?
It was done by using POKE to put in a
little machine language program to get
a character from the conscle (see lines
01.04, 01.06, and 01.08). This routine
is listed below:

.SCIN EQU 1
.SCOUT EQU 2
SCALL .SCIN
JC *=2
CPI 177Q DELETE KEY?
JNZ NOT
MVI A,8 REPLACE WITH BS
NOT SCALL . SCouTt
MVI B,0
MOV C,A
RET

The subroutine at group 8 determines where
to put this little program. FOCAL-8 loads
in the HDOS overlays when it starts up
and stores the highest user address under
them at locations 8835 and 8835 decimal

21

(low byte first). The program gets the
high byte, multiplies it by 256 to make
it an even page address, then subtracts
lk (1024) to get an address for the
machine code routine. Group 30 calls
the routine to get characters from the
keyboard and put them in an array N, with
the number of the character within the
string as one dimension, and the entry
number in the checkbook as the other.
This is not a very memory efficient way
of storing strings, but it works.

Group 40 is called when the checkbook
entries are printed. It retrieves the
characters from array N and prints them,
and fills in with spaces if there are
less than the maximum number of characters
allowed, which is 15.

In the right column of numbers in the
sample run you will notice right justified
numbers in dollars and cents format.
The routine that does this trick is group
50. I included several comments to help
you figure it out. The $27's in this

BASIC, which is the code for ESCAPE.
The purpose is to cause the terminal (H19)
or printer to ignore the next character
being printed, which is the leading space
that FOCAL-8 (or BASIC, for that matter)
prints before a number. It will work
on any printer or terminal that is looking
for escape sequences. If the character
following the escape is not part of the
printer or terminal's codes, (for example
a space) it is ignored. 1If you have a
printer that does not use escape
sequences, but does allow backspacing,
replace $27 with $8.

It should be obvious by now that FOCAL
is definitely not a business language.

The sample program that comes with
FOCAL-8, which plots data to a curve and
draws a graph, is more indicative of what
FOCAL can do. But, we have demonstrated
that the deficiencies of a language can
be overcome to some extent if a little
effort is applied.

routine are equivalent to CHR$(27) in PS:

Figure 1. "Electronic Checkbook” Sample Run

ELECTRONIC CHECKBOOK

Functions available:

1. Start a new checkbook

2. Update an existing checkbook

3. Print last N entries on screen

4. Print last N entries on printer

5. Save data on disk

6. Exit to operating system

Enter your option: 3

How many entries do you wish to list? 8

Entry no. Check no. Date Description Amount Balance
24 206 February 18 1981 J C WHITNEY 2.21 258.99
25 207 February 18 1981 BOOKS 20.85 238.14
26 208 Void February 18 1981 0.00 238.14
27 209 February 18 1981 I AND M 59.85 178.29
28 210 February 18 1981 W W MAG 8.95 169.34
29 211 February 18 1981 MERVYN'S 50.00 119.34
30 212 February 18 1981 PHONE 38.86 80.48
31 213 February 18 1981 J C PENNY 65.00 15.48
Figure 2. "Electronic Checkbook™ Program in FOCAL-8

01.02 C Main Menu and machine code setup

01.04 D 8;P X,255;P X+1,1;P X+2,218;P X+3,0;P X+4,X1;P X+5,254

01.06 P X+6,127;P X+7,194;P X+8,12;P X+9,X1;P X+10,62;P X+11,8;P X+12,255

01.08 P X+13,2;P X+14,79;P X+15,6;P X+16,0;P X+17,201;X X

01.10 T "ELECTRONIC CHECKBOOK

01.12 T l!I"Functions available:

22

$eREMark « Issue 16 = 1981

01.14
0l.16
01.18
01.20
01.22
0l1.24
01.26
01.28
01.30
01.32
01.34
01.36

02.02
02.10
02.12
02.14
02.16
02.18

03.02
03.10
03.12
03.14
03.16
03.18
03.20
03.22
03.24
03.26
03.28
03.30
03.32
03.34
03.40
03.42
NEY

03.44
03.60
03.62
03.64
03.66
03.68
03.70
03.72
03.80
03.82
03.84
03.86
03.88
03.90
03.92
03.94
03.96
03.98

04.02
04.10
04,12
04.14
04.16

nce"!!

04.18
04.20

05.02
05.10
05.12
05.14
05.16

11"1l, Start a new checkbook

I"2. Update an existing checkbook
1"3, Print last N entries on screen
1"4. Print last N entries on printer
I1"5, Save data on disk

I"6. Exit to operating system
1!"Enter your option: ",A,!
(AY2.1,3.1,4.%,5.1,1.3,1.32:6 1.12

P SY1:CHECK;G 1.12

8256;S Y=1:N=2;A !!"Are you sure? (Y/N) <N>",A,!
(A)1.36,1.12;G 1.12

A=FUSR(A) ;C Exit to HDOS

Start a new checkbook
A 11"Enter the year for this checkbook: ",YEAR,!
(YEAR-1900)2.14;G 2.16
YEAR=YEAR+1900
1"Enter the number of the first check in your checkbook: ",CKNUM, |
I"Enter your current balance: ",BALANCE,!;S ENTRY=1;G 3.22

Second Menu -- Deposits and withdrawals
Y=1:N=2;A !!"Want to get data from disk? (¥Y/N) <Y¥>"A,l
(A)3.14,3.16;:;G 3.14
G SY1:CHECK;C Get data from disk
1"The last check written was number",%2,CKNUM-1," dated "
M1=M2 (CKNUM-1) ;D 20;T %2,D2(CKNUM-1),!
11"Your current balance is $";S NUM=BALANCE;D 50
I!"Transactions available:
[1"1. Make a deposit
I"2, Write a check
I"3, Make a withdrawal (no check used)
I"4., Change the amount on a previous item
I"5. Return to main menu
!11"Enter your choice: ",A,!;J (A)3.4,3.6,3.8,3.88,1.12;G 3.22
!1"Enter the month (1-12)",MONTH(ENTRY)," The day (1-31)",DAY(ENTRY)
" Amount of deposit: ",MONEY,!;D 30;S BALANCE=BALANCE+MONEY : TRANS (ENTRY) =MO

OLDBAL (ENTRY) =BALANCE :CH(ENTRY) =1 : ENTRY=ENTRY+1;G 3.2

11"Enter the month (1-12)",MONTH(ENTRY)," The day (1-31)",DAY(ENTRY), !
%2, |"Enter amount for check no.",CKNUM;A " (0 to void, -1 to exit)",MONEY
(MONEY) 3.2,3.66,3.66

30;S5 CH(ENTRY) =CKNUM :BALANCE=BALANCE-MONEY : OLDBAL (ENTRY) =BALANCE

TRANS (ENTRY) =MONEY : ENTRY=ENTRY+1 : MONTH (ENTRY) =MONTH (ENTRY-1)

DAY (ENTRY) =DAY (ENTRY-1) :M2 (CKNUM) =MONTH (ENTRY-1) : D2 (CKNUM) =DAY (ENTRY-1)
CKNUM=CKNUM+1 ;G 3.62

!!"Enter the month (1-12)",MONTH(ENTRY)," The day (1-13)",DAY(ENTRY)

" Amount of withdrawal: ",MONEY,!;S MONEY=FABS (MONEY) ;D 30
BALANCE=BALANCE-MONEY : TRANS (ENTRY) =MONEY : CH(ENTRY) =2

OLDBAL (ENTRY) =BALANCE : ENTRY=ENTRY+1;G 3.2

1!"Enter item no. to change: ",ITEM," Enter new amount: ",MONEY, !
DIFF=TRANS(ITEM) -MONEY : TRANS (ITEM) =MONEY

(CH(ITEM))3.96;F I=ITEM,ENTRY-1;S OLDBAL(I)=0OLDBAL(I)+DIFF
BALANCE=BALANCE+DIFF;G 3.2

I=ITEM, ENTRY-1;S OLDBAL(I)=OLDBAL(I)-DIFF

BALANCE=BALANCE-DIFF;G 3.2

List checkbook on screen
!!"How many entries do you wish to 1list? ",A,!
(ENTRY-A)4.14,4.14;S A=ENTRY-A;G 4.16
A=1
11" Entry no. Check no. Date Description Amount Bala

HnHP»O OHLOUGOPPODOPPONOOOHA»®N PPrPAad9A98850E800Q0O0 PPrOoHBEO ODUXPGPAEAAESEEA

1
I=A,ENTRY-1;D 10
I"Hit RETURN to continue",A,!;G 1.12

List checkbook on printer
!1"How many entries do you wish to list? ",A,!
(ENTRY-A)5.14,5.14;S A=ENTRY-A;G 5.16
A=1
H ON;T I" Entry no. Check no. Date Description Amount

R0 M

Balance™!|

HREMark « ssue 16 « 1981 23

05.18 F I=A,ENTRY-1;D 10

05.20 H OF;G 1.12

08.02 C Subroutine to locate machine program

08.10 S X=FPEK(8836) *256-1024:X1=FINT(X/256)

10.02 C Subroutine to make checkbook listing

10.10 T %10,I;J (CH(I))10.12,10.14;G 10.16

10.12 T " Deposit ":G 10.2

10.14 T "™ Withdrawal ";G 10.2

10.16 I (TRANS(I)) 10.18,10.18;T %12,CH(I);G 10.2

10.18 T %6,CH(I),"Void "

10.20 S M1=MONTH(I);D 20;T %3,DAY(I);T %7,YEAR

10,22 D 40;S NUM=TRANS(I);D 50;T " ";S NUM=OLDBAL(I);D 50;T !

20.02 C Subroutine to print month name from number

20,10 J (M1)20.12,20.14,20.16,20.18,20.2,20.22,20.24,20.26,20.28,20.3,20.32,20.34
20.12 T "January ";R

20.14 T "February ";R

20.16 T "March ":R

20.18 T "April ":R

20.20 T "May ":R

20,22 T "June ":R

20.24 T "July ":R

20.26 T "August ":R

20.28 T "September";R

20.30 T "October ";R

20.32 T "November ";R

20.34 T "December ";R

30.02 C Subroutine to put string characters in array N

30.10 T !"Enter description of item: (15 characters max)"

30.12 T ™ ";F X=1,15;5 N(X,EN)=FUSR(X);I (N(X,EN)-13)30.16

30.14 5 X=15;R

30.16 I (N(X,EN)-8)30.14,30.18,30.14

30.18 I (X-2)30.1l2;T ™ ",$8;5 X=X-2

40.02 C Subroutine to print string characters from array N

40.10 F X=1,15;1 (N(X,I)-13)40.12;T S$N(X,I)

40.12 S X1=X:X=15

40.14 F X=X1,l6;T " "

40.16 R

50.01 C Subroutine to print right justified dollars and cents

50.02 I (NUM) 50.04;S MIN=32;G 50.06;C Test if number is negative
50.04 S5 MIN=45;C "MIN" = ASCII minus if so
50.06 S NUM=FABS(NUM) ;C Get absolute value of number
50.08 I (NUM-10)50.24;C Test number for number of digits
50.10 I (NUM-100)50.26

50.12 I (NUM-1000)50.28

50.14 I (NUM-10000)50.3

50.16 T %2,MIN,S27,FINT(NUM),".",$27;C Print dollars and decimal
50.18 S CENTS=FINT(NUM-FINT (NUM) *100+.5) ;C Isolate cents

50.20 I (CENTS-10)50.22;T %2,CENTS;R;C If cents >= 10 then print as is
50.22 T %2," 0",$27,CENTS;R;C If cents < 10 then add leading 0
50.24 T " ":G 50.16;C Print spaces for right
50.26 T " ":G 50.16;C justification

50.28 T " ";G 50.16

50.30 T " ";G 50.16

. EOF

The RDT debugging tool
introduced in REMark issue #14 will not
work with the DG-FP8 monitor sold by DG
Electronics for their 280 CPU board.
The reasons were mentioned in BUSS Issue
$28, which stated that DBUG also would
not work under that monitor. The first
reason is that the DG-FP8 monitor saves
the 280 IX and IY registers on the stack

NON-HUG BUG:

24

in addition to the B080 registers when
a RST 2 is executed. (RST 2 is used for
breakpoints). The second reason is that
the single step interrupt must be armed
immediately prior to jumping to a user
program with DG-FP8. Both DBUG and RDT
arm the interrupt several instructions
prior to the jump.

PS:

H-REMark » Issue 16 = 1981

RS-232 to 20 mA Current Loop Converter
for the H19 or H89

William A.

Deutschman

and
Tim V. Schwibbe
Rose-Hulman Institute of Technology

Terre Haute,

Many time-sharing computer systems use
a 20 milliampere current loops to transmit
data between the computer and the
terminal; hence it is necessary to convert
the RS-232 from the H-89 serial interface
card to 20 ma current signals. The
circuit shown below is a simple,
inexpensive circuit to do the conversion
without changing any of the existing
functions of the computer.

4N35 2.2K
+12 Volt

Pin 10 1 .6

20 mA in i }

Pin 11 239 5_1ePin 25 RS232-OUT
s Pl

. 4 4-12 VOLT

500 4N35
Pin 24._.va._..l .6
RS232 IN }
Pin 234 2 5 Pin 12
a [: 20 mA OUT
3. 4 PIN 13

The circuit is wired on a 2-inch square
of perf-board. Use a single 16-pin socket
and place one opto-isolater in the top
six pins and the other in the bottom six.
D1 and D2 are general purpose diodes.
Mount the board in the upper right corner
of the terminal board using the two tapped
holes in the heat sink. Be sure to insert
a sufficient number of washers and a sheet
of insulating material to prevent the
circuit from touching the conductors on
the terminal board. Failure to do this
may severely damage your computer if the
converter touches the computer terminal
board.

The power for the circuit is obtained
by soldering wires to the foil side of
the terminal circuit board. Connect the
+12 volts to U403 (make the connection
between U403 and C406) and the -12 volts
to U405 (between U405, U404 and C4081.
Check the diagram for the terminal logic
board on page 19 of the illustration
booklet to make certain that you have
the correct connection points. You may
also wish to measure the voltages to
insure that you have not made a mistake.

The signal leads are connected to plug,

Pl, on the back mounting plate pf the
computer. You will have to insert

HREMark « Issue 16 = 1981

Indiana 47805

additional pins in the plug or replace
the existing plug. 1In either case you
should not change the existing connections
to pins 1 through 8 and pin 20. Connect
the converter to pins 10 through 13 and
23 through 25 as shown on the circuit
diagram. The modifications to your
computer /terminal are now complete.

The final step is to make an adapter plug
to connect the H-89 to the 20 ma computer
loop. Connect pins 10 & 11 to the current
loop sending data from the H-89 to the
external device (pin 10 to the +20 ma; pin
1l to the -20 ma). Connect pins 12 &
13 to the loop receiving data from the
external source (pin 12 to the +20 ma; pin
13 to the -20 ma). Finally connect pin
3 to pin 25, pin 7 to pin 24 and pin 2
to pin 23 within the plug.

The advantage of this connection is that
P2 retains its original function if a
standard RS-232 plug is connected to the
terminal. When the adapter plug is
connected the RS-232 signals are sent
to the converter and 20 ma signals to
the external device. Note however that
this converter does not contain a current
source, hence the external device must
supply the current and MUST LIMIT IT TO
20 MILLIAMPERES as the converter does
not contain a current limiter. &

EOF

(vectored from page 9)

%0030 Is a catch-all in that if there
1s an error for some unknown reason the
error number (ERR) and the line (ERL)
that the error occurred in will be
displayed on the screen for easier trouble
shooting.

STARTUP NOTES:

Before attempting to type in the SAMPLE
program and while you are still in HDOS
(Heath Disk Operating System) be sure
to load your printer device driver.

Example: >LOAD LP:

Load in Microsoft BASIC and have fun
typing the SAMPLE program. GK:

25

BUGGIN’
HUG

Dear HUG,

I would like to share this idea with other
members who use HDOS MICROSOFT BASIC.
When I received my MICROSOFT early in
1980, and worked through the software
manual, I discovered that there was no
multi-statement (line) command. Each
time you needed a new line similiar to
a line you had just entered, you were
required to type that new line with a
new line number. One day, when I read
and worked through chapter 4,4 (EDIT
COMMANDS), I worked especially with the
command CTRL/A and discovered what I
needed:

User types: LIST 100

Computer prints: REM FOR I=1 TO N

User types: CTRL/A (A AND CTRL KEYS)
Computer prints: !

User types: I(for insert) 1500 (RETURN)
User types: LIST 1500

Computer prints: REM FOR I=1 TO N

You still have the old line number and
you can proceed with the multi-statement
because the last number is always in the
memory buffer. (Just use the CTRL/A and
I(nsert) before the new line you wish
to create.

Knud Hinrichsen
Oernevang 54
3450 Alleroed
DK Denmark

Dear HUG,

I just spent hours looking through back
issues of REMark to find a way of getting
at the date one puts in at boot-up. Well,
I couldn't find anything. So, I thought
up a little one-liner in Microsoft BASIC
which may not be anything new to the old
hands, but may help some of the others.

10 DAS="":FOR J%=8383 TO 8391:
DAS$S=DAS$S+CHRS (PEEK (J%)) :NEXT J%:END

26

The Variable DA$ now contains the boot-up
date>

Best regards

Lex Reinkeluers
RR 5 London, Ontario
Canada N6A 4BY9

NOTE: a similiar technique was used in
the Screen Format article presented in
Issue 12 of REMark. You may wish to
examine this program to see how the "date"
function was implemented.

Dear HUG,

The "MOUNTALL" program described in Issue
12 of REMark will no longer function under
HDOS 2.0. The following corrections will
allow proper operation using the newest
version.

A. In the definitions the
should now be 057Q.

. ERROR EQU

B. After the line 042.237 with the
instruction STA DNUM you should insert
an additional instruction - STA DNUM2

Cs Line 042,255, with the instruction
LXI H,DRIVE, should be changed to
indicate LXI H,DRIVE2.

D. After line 043.003, the following
lines should be inserted:

DRIVE2 DB 'SY'
DNUM2 DB 'X:',0

The reason the program failed under
version 2.0 was the end message character
at line 043.003. When HDOS was rewritten,
this character caused the Mount Scal to
exit presumably under an undefined file
error.

Yours truly,

Clifford C. Lundberg
310 King Avenue

Elk River, Minn. 55330

8k Memory Blues

ARCKLE, SPARKLE, LITTLE SNAP
HOW I WONDER WHAT WENT ZAP?

UP ABOVE MEMORY HIGH

I PLUG YOU IN AND NOW I CRY.

IT MUST HAVE BEEN THOSE CHIPS THEY TUBED
NOW THEY'RE GONE, ZERO TO "F" CUBED.
WHY'D YOU DO THIS THING TO US?

WHOOPS! LOOK OUT! THERE GOES THE BUS!

Kurt Schultz

115-1 Roxanne Ct.
Walnut Creek, CA 94596

YREMark « Issue 16 » 1981

HUGBB on MicroNET

Wow, the response and activity of the HUG Bulletin Board is fantastic. I have been
adding at least two or three users to the list of HUGBB members every two days.
With each new member comes more monitoring and maintenance to be done by yours
truly. Even with all this new, additional work load the HUGBB has been running
great.

The credit for the smooth running Bulletin Board goes to Richard Taylor, the
original creator of the BB, and Russel Renshaw of MicroNET. Gentlemen, we thank
you for your support over the past weeks when we needed your help and expertise.

All this "smooth sailing" is just in time for a new rumor . . . the HUGBB may be
moving. Russel Renshaw (the MNET Wizard) is writing a new Bulletin Board system
that we may move to. From the outline he submitted the projected BB looks really
nice . . . much more user oriented.

At this time however, we cannot project that we will or will not change to the new
BB system. Therefore, it makes it extremely difficult to write an article about
the HUGBB when by the time this REMark magazine "hits" the street what we print
may not be pertinent.

Also of importance, and which we have discovered is a most discouraging and
disheartening fact . . . that is that MicroNET as of around the first of February
has been selling and promoting their membership through one of our "friendly
ne ighborhood" competitors of which will remain nameless at this time.

MicroNET and our competitor have signed a contract that limits all other hardware
manufacturers if they choose to sell MicroNET memberships. MicroNET did indicate
to us that they will honor all mailed membership forms but did not indicate any
turn-around time. So for the time being if you plan on becoming a member of the
MicroNET system and the HUG Bulletin Board you might have to visit our competitor
to "sign on".

As operators of the finest microprocessors available on the market today and as
a Users' Group second to none, I do not like to sit and have our BB on a system
that caters to another group. (That was a little pride showing through . . . I
hope they take the "hint"!!) Meanwhile, we must sit tight and wait to see what
developes in the near future.

Related to this is my next thought . . QUESTION . . . How many of you HUGBB users
are familiar with "SOURCE"? We just want to put out some "feelers" and see
what kind of response you give. The SOURCE people stopped by to pay us a visit
again . . I guess in the past there were pretty bad feelings about SOURCE. At the
present time they have much improved there services as I understand. This was my
first introduction to SOURCE and I was impressed to say the least.

Bob_will be writing an article for REMark 17 which will explain SOURCE and their
revisit here to HUG. So until we have a chance to view SOURCE, we will "stay low"
so as not to cause any "uproar" . . whatever that may include.

ngl, there you have it . . . good news, bad news, and informative news all in one
nice "swoop". Until we know more, that is the extent that we can cover in detail
about the MicroNET system and the HUG Bulletin Board.

For your reference I am including an outline of tenative facilities of the new
bulletin board that MNET is designing for the HUG Bulletin Board and other Special
Interest Groups (SIGs). (The numbers in parentheses are relative priorities in
implementation.)

NOTE: This outline is dated the 10th of February 1981 with a transistion completion
date of after March lst. (This is why we may be into a new Bulletin Board before
you get this issue.)

MNET-80 type of message system
(1) a. Public messages
(1) b. Member Only (MO) messages

Y REMark « Issue 16 = 1981 27

i. For everyone
. ii. For specific member
(1) Variable line length output, keyed to user's terminal
parameters
(2) Direct feedback to SYSOP
MO and Public Databases
(1) a. Direct typeout
(2) b. FILTRN access for downloading
(3) c. Send to user's filespace
(3) Host-resident Program Library
For example, programs which exploit specific features
of manufacturer's equipment, such as sound or special
graphics.
(1) Choice of Menu or Command mode
(2) Real-time Facilities
a. USTAT - show other current users of the SIG (BB)
b. "CB-like" communication with:
i. Public channel
ii. Member Only channel
c. "TALK" for private user-to-user communication
SYSOP functions (keyed on SYSOP's User 1ID)
(1) a. Edit MO access list
(1) b. Edit databases
(3) c¢. Edit program library
(1) d. Delete any public or MO message
(2) e. Read/delete SYSOP feedback

This will give you a general picture of what the new HUGBB could conceivably consist

ofl. . . We may or may not be on the new Bulletin Board at the time of this issues’
release.

The following messages have been left on the HUG Bulletin Board and I thought you
might f£ind them informative . . .

Msg#- 3805

Date- FEB. 5, 1981 23:38
From- Tom Jorgenson 70120,153
To- JERRY ZUCKERMAN

Subject- HDOS/CPM

JERRY - NEVER WOULD'VE BELIEVED THAT SUCH A CONTROVERSY COULD
ARISE OVER SUCH THINGS AS THESE TWO OPERATING SYSTEMS.

AS WITH ANYTHING ELSE, NEITHER SYSTEM IS ACTUALLY 'BETTER' OR
MORE PROFESSIONAL THAN THE OTHER! (BESIDES, HAVING WORKED ON
'PROFESSIONAL MINIS AND LARGE-FRAMES FOR THE LAST DECADE' I

CAN TELL YOU THAT BOTH ARE SUPERIOR TO MANY OF THE PROS).

CP/M IS A NON-PROTECTIVE SYSTEM INTENTIONALLY, IT'S INTENDED
MAINLY FOR THE ASSEMBLY PROGRAMMER (WHO GETS PERTURBED WHENEVER
THE SYSTEM FIGHTS HIM WITH NON-RETRIEVABLE ERRORS). HDOS IS
INTENDED FOR MAXIMUM PROTECTION OF THE SYSTEM FROM THE USER,

AND TO BE EASY TO LEARN (WHICH CP/M ISN'T). BOTH SYSTEMS HAVE
BOTH FLIGHTS OF GENIUS AND STRAINS OF FOOLISHNESS IN THEM (WHICH
THEY KNOW AND ARE STUCK WITH)...SO, WHAT THE HEY! I USE BOTH AS
EACH IS INTENDED...BUT I SURE HATE TO SEE EITHER OF THEM KNOCKED!!
BEST REGARDS AND ALL!! TOM JORGENSON

Msg#- 3891

Date- FEB. 8, 1981 18:14
From- ROB RALSTON 70040,767
Subject- MICRONET COMMUNICATIONS

JIM, I HAD ANOTHER PROBLEM WHEN GETTING ACQUAINTED WITH MICRONET THAT MAY

BE USEFUL TO PASS ON TO OTHER HUG MEMBERS WHO HAVEN'T BECOME USERS OF THE
MICRONET SYSTEM YET. WHEN I FIRST TRIED TO LOG-ON, I GOT A REQUEST FOR

"U3%2 ID :". AT FIRST I THOUGHT THERE WAS A NOISE PROBLEM ON THE LINE, BUT
NO MATTER HOW MANY TIMES I HIT CTL-C I GOT THE SAME MESSAGE. I KNEW THEN THAT
IT WASN'T WITH THE SYSTEM BUT WAS PROBABLY SOMETHING 'SIMPLE' ON MY END.
WELL, A COUPLE OF PHONE CALLS LATER I WAS TALKING TO MR. JIM DAVENPORT AT
COMPUSERVE. WHEN I EXPLAINED MY PROBLEM HE SAID, "YOU MUST HAVE A HEATHKIT

28 $REMark « Issue 16 « 1981

TERMINAL". I KNEW THEN THAT I WAS SAVED. WELL, AS I THOUGHT, IT WAS SIMPLE.
I WAS RECEIVING LOWER CASE ASCII WHICH MY H9 COULDN'T SWALLOW. HE INFORMED
ME THAT I COULD TEMPORARILY RECONFIGURE OUTPUT TO MY TERMINAL BY TYPING:
"MIC<RETURN>" THEN:"TER VTD 232<RETURN>". NOW I WAS RECEIVING ALL UPPER
CASE ASCII AND COULD RUN THE 'R DEFALT' PROGRAM TO PERMANENTLY RECONFIGURE
OUTPUT TO MY TERMINAL. OF COURSE, AT LOGIN I STILL RECEIVE THE GARBLED INFO
UNTIL IT RECOGNIZES ME AFTER MY PASSWORD.

Msg#- 3890

Date- FEB. 8, 1981 18:14
From- ROB RALSTON 70040,767
To- JIM BLAKE

Subject- UDS MODEM

JIM, I WOULD LIKE TO PASS ON SOME INFORMATION FOR POSSIBLE PUBLICATION IN A
FUTURE ISSUE OF REMARK. I RECENTLY PURCHASED THE 'UDS' DIRECT CONNECT MODEM
THRU HEATH. THE UNIT APPEARED NOT TO FUNCTION WHEN CONNECTED UP TO MY H9
TERMINAL. UPON INVESTIGATING WITH A SCOPE, I FOUND THAT AFTER ISSUING THE
INITIAL CTL-C TO ACCESS THE SYSTEM, I WAS INDEED GETTING A RESPONSE BUT MY
TERMINAL WASN'T PRINTING ANYTHING. THE MODEM WAS APPARENTLY NOT DRIVING THE
EIA INPUT HARD ENOUGH, AS THE VOLTAGE LEVELS WERE BORDERLINE. WITH A RESISTANCE
SUBSTITUTION BOX I FOUND THAT ADDING 10K ACCROSS R618 ON THE I1/0 BOARD MADE
EVERYTHING WORK JUST FINE. I CERTAINLY DON'T KNOW IF THIS IS UNIQUE TO MY
H9, OR POSSIBLY DUE TO LOW VOLTAGE LEVELS ON MY PHONE LINES, BUT IT WORKED
AND I HOPE THAT PASSING THIS ON MAY HELP SOMEONE ELSE.

Msg#- 4141

Date- FEB. 17, 1981 20:43
From- Mike Cogswell 70140,363
To—- SYSOP: 70000,21 (X)
Subject- GENDW.DW

There is a copy of 'GENDW.DW' available on my directory for your use,
(or anyone else's). The program can be downloaded from MNET and assembled
using the standard HDOS 'ASM.ABS' assembler. Once assembled, GENDW will
take any '.ABS' program as an input file and use it to create a source
code that consists of nothing but an 'ORG' and a lot of 'DW' statements.
The resulting '.DW' file can then be uploaded to MNET and made available
for others to use since the "source" is in ASCII. These '.DW' files can
be downloaded and reassembled using the Heath assembler back into the
original '.ABS' program. A slick way of transferring '.ABS' files over
the phone using programs that will not transmit an absolute file. There
is one small catch however, the 'GENDW.DW' program WILL NOT WORK with a
relocatable program (i.e., one originally assembled using the CODE PIC

psuedo-op). In other words, it won't work with the system overlays or any
of the Device Drivers. Other than that, it's great!
Hope you find this helpful -Mike

P.S. Please delete message #4118 for me. TNX

Tom Jorgenson, I hope you don't mind me printing your expose' of HDOS verses CP/M.
There was a big "discussion” going on over the Bulletin Board that weekend and I
felt that Tom summed up the most objective view . . . and may I say, I agree whole
heartedly with him.

Well, that about "raps it up” for the "HUGBB on MicroNET" for this issue of REMark.
I thank all of you HUGBB members who have been so very encouraging during the "ups
and downs" of the Bulletin Board. You are the "gang" that makes the HUGBB an
interesting and informative Board . . . Keep up the excellent input and "good work".

SYSOP <TLJ>

SREMark « Issue 16 « 1981

29

(vectored from page 5)

--NEWOUT/BEEP .ASM/
-=-BYE

When we typed "BY" the EDITor completed
its' task and returned us to the HDOS
Prompt (>). Under HDOS, we can now
produce a "hardcopy" if a printer is
available (optional) by typing the
following:

>COPY LP:=BEEP.ASM (RETURN)

You should now have a listing which looks
exactly like fig. A, Further, if you
catalog your disk you will find the file
named BEEP.ASM under the directory.

WHAT NEXT?

We have now DESIGNED a program. We have
examined the FLOW. We have (hopefully)
used the HDOS EDIT to enter the program.
We have discussed FIELDS used by the
Assembler, Next, we will use the ASM
(Assembler) to obtain a listing and a
"runnable" program. But, right now it's
time for my coffee-break and you'll have
to wait 'till the next issue of REMark
to complete this thing.

Local HUG News

NOHUG (New Orleans Heath Users' Group)
is currently meeting the first Wednesday
of every month at 7:30 pm. This group
meets at the Kenner Heath Electronics
Center located at 1900 Veterans Memorial
Highway; Kenner, LA 70062. For additional
information, contact the Heath Center
by calling (504) 467-6321.

Richard Senecal is interested in forming
a new club for Heath users' in his area.
Richard can be contacted at his home by
writing him at RFD#3 Box 283 A.; Columbia,
SC 29206 or by calling (803) 736-0510
after 6:00 pm. Rich says he's a little
remote and hopes there are other users
in his area to help out!

H-11 OWNERS.....

A Special Interest Group (SIG) for H-11
users is forming within the Capital Heath
Users' Group known as CHUG in the
Washington, DC area. For specific
information, contact J. Bramlage c/o
CHUG; P.O. Box 341; Fairfax, VA 22030.

WANTING TO START NEW GROUP
Mr. Robert Sloat of Tice Florida is
interested in contacting owners of Heath

equipment with hopes of forming a local
HUG. Bob teaches novice classes sponsored

30

by the Fort Myers Amateur Radio Club.
He informs us that he is equipped with
an H89 along with an H8 and H9. Bob can
be contacted by writing to P.O. Box
05-37; Tice, FL 33905.

From Canada...The Greater Vancouver Heath
Users' Group meets on the final Wednesday
of each month at their local Heath
Electronics Center located at 3058
Kingsway, Vancouver B.C. at 7:30 pm.

The Pomona Heath Users' Group has been
formed in Pomona, California. Meetings
are scheduled for the first and third
Saturday of each month at 3:30 pm. They
will be held at the Heath Electronics
Center located on 1555 North Orange Grove

Ave.; Pomona, CA 91767. Contact Doug
at (714) 623-3543 for additional
information.

DENHUG INCORPORATES
AS A NON-PROFIT ORGANIZATION

The Denver Heath Users' Group general
membership meetings are held on the second
Monday of each month at the local Heath
Electronics Center located on 5940 West
38th Ave.; Denver, CO 80212. Further
Details can be obtained from Alfred K.
Carr, Treasure and Registered Agent for
DENHUG by writing P.O. Box 20422; Denver,
CO 80220; or calling (303) 320-7552 (voice
and modem). Al informs us that their
group is currently exchanging newsletters
with CHUG (Capital Heath Users' Group)
to increase the exchange of information
for all members of both groups!

NEW GROUP IN LITTLEROCK

Richard Allen is interested in forming
a local HUG in or around Little Rock.
If you wish to contact Dick you may write
him at 4300 East 43rd Street; North
Little Rock AR 72117.

Jack Leach and Richard Crawford are
attempting to contact local users in the
Portland area in an effort to form a new
HUG group. If you are interested in
joining their campaign, you can contact
them at the following addresses:

Jack Leach (206) 693-2485
5008 N.E. 18th Ave.
Vancouver, Wash 98663

Richard Crawford
3220 S.W. 173rd
Aloha, OR 97006

(503) 642-9307

CLUB HAPPENINGS

Remember, if you're interested in forming
a new Heath Users' Group in your area
or if your club is planning special
activities, PLEASE let us know as quickly
as possible so that we can pass on this
valuable information to others!

HREMark = Issue 16 + 1981

These patches, when combined with an
appropriate PROLOGUE.SYS and the proper
switch settings on an H89 with the new
ROMs or an H8 with the extended
configuration option, can give you true

(vectored from page 15)

expression "No-Date" in the date column turn-key operation. You can turn the
of your directory for all files created power on, insert your disk(s), and be
under NO-DATE. In my opinion, having in a user program with no further
a date looks nicer, even if it is an old operations necessary.
one.

PS:

TRACK 2 SECTOR 0

HUG BUG: The part number for the CP/M

LOCATION OLD VALUE NEW VALUE programs TERM and HBCOPY was listed

53 20 3A incorrectly in the REMARK #15 HUG Products
54 AB A0 List (page 17) as 885-1027. The correct
————— part number is 885-1207.

76 29 20

77 3F 20

= s = Hole to Fill

3. Remove "BOOT" Your Heath Users' Group team has been

working at "break-neck"™ speed to bring

; . oo la REMark back on schedule! I am happy to
mp t for

E::.-S fpf:;l; lpsa Cen ™t eliminates the [ePOrt that we are almost there. 1In the

printing of the word "BOOT" by HDOS, which future we hope to bring you some

: . : interesting and "powerful" data base
;ts‘ofgthllilt iznsosf;:eze;he £ixat: pakch ‘gven systems submitted by your fellow users.

Things are beginning to shape up rapidly

with many new and exciting programs for
IBACE O SECTOR.2 all of us to look at. We're still knee
deep in work and hope that each of you
will offer the continued support that
has been noted in the last couple of

LOCATION OLD VALUE NEW VALUE

C6 42 20

c7 4F 20 months. THANX TO ALL.

Cc8 4F 20 i\
c9 54 20 R

P.S. This is all the room the "gang" would
give me for comments!!!

Changing your address? Be sure and let us know since the software catalog and
REMark are mailed bulk rate and it is not forwarded or returned.

HUG MEMBERSHIP RENEWAL FORM

REMEMBER — ENCLOSE CHECK OR MONEY ORDER
When was the last time you renewed?

CHECK THE APPROPRIATE BOX AND RETURN TO HUG
Check your ID card for your expiration date.

NEW MEMBERSHIP

IS THE INFORMATION ON THE REVERSE SIDE CORRECT? FEE IS:
IF NOT FILL IN BELOW.

RENEWAL RATES
Name US DOMESTIC $15 7 $18 [

CANADA $17 [J US FUNDS $20[7
Address INTERNAT’L* $22 [J US FUNDS $28
City-State * Membership in England, France, Germany, Belgium,

Holland, Sweden and Switzerland is aquired through the

Zip local distributor at the prevailing rate.

HREMark « Issue 16 + 1981 31

- . NOTE: A version of this program for RT-11
H11/H19 Vldeo Edltor Version 4 and TECO Version 36 is
available. This will not run on older
?ersions of TECO or HT-11l. The price
The H-19 Video Editor is a powerful screen is the same. Specify VIDEO EDITOR FOR
oriented editor which uses the features TECO 36 when ordering.
of the H-19 terminal to allow the H-19
screen to serve as a "window" on the Text
Buffer. All changes to the Text Buffer

are displayed immediately making the

editing process very accuraté. The cursor. That FOOtba”
is used as the Text Pointer thus keeping

you informed of the current buffer . .

position, N Tlny BASIC

The main editor of the H-19 Video Editor
is the DEC editor TECO Version 28. TECO
is an extremely powerful and complicated

editor. Over 40 TECO commands have been 1¢ LET W=-5
implemented on the H-19 keypad and Special 20 LET A=-5
Function keys so that most editing tasks 3@ LET B=A*A
may be completed without ever typing an 49 LET C=0
editor command sequence. For example, 5¢ IF B=C THEN PRINT "*";
'HOME' takes the text pointer to the start 6@ IF. B>C THEN PRINT " ";
of the Text Buffer and the 'ERASE' deletes 7@ LET C=C+1
text from the Text Pointer position to 8@ IF C<¢<=B THEN GOTO 5@
the end of the buffer. 9@ LET A=A+l
188 LET X=W*W
ORDERING INFORMATION 118 LET Y=58-X
120 LET Z=C
The H-19 Video Editor is available on 139 IF Y=Z THEN PRINT "*"
an B" floppy disk with user manual for 149 IF Y>Z THEN PRINT " ";
$75.00 from: 158 LET Z=Z+1
16@ IF Y>=Z THEN 130
David L. O'Conner 17¢ LET W=W+1
370 Eden Street 180 IF W<>6 THEN 30
Buffalo, NY 14220 19@ END

BULK RATE
U.S. Postage
amm Heath L
UserS Heath Users' Group

Croup
Hilltop Road
St. Joseph Ml 49085

POSTMASTER: If undeliverable,
please do not return.

885-2016

	REMark_issue16_1981_Page_01
	REMark_issue16_1981_Page_02
	REMark_issue16_1981_Page_03
	REMark_issue16_1981_Page_04
	REMark_issue16_1981_Page_05
	REMark_issue16_1981_Page_06
	REMark_issue16_1981_Page_07
	REMark_issue16_1981_Page_08
	REMark_issue16_1981_Page_09
	REMark_issue16_1981_Page_10
	REMark_issue16_1981_Page_11
	REMark_issue16_1981_Page_12
	REMark_issue16_1981_Page_13
	REMark_issue16_1981_Page_14
	REMark_issue16_1981_Page_15
	REMark_issue16_1981_Page_16
	REMark_issue16_1981_Page_17
	REMark_issue16_1981_Page_18
	REMark_issue16_1981_Page_19
	REMark_issue16_1981_Page_20
	REMark_issue16_1981_Page_21
	REMark_issue16_1981_Page_22
	REMark_issue16_1981_Page_23
	REMark_issue16_1981_Page_24
	REMark_issue16_1981_Page_25
	REMark_issue16_1981_Page_26
	REMark_issue16_1981_Page_27
	REMark_issue16_1981_Page_28
	REMark_issue16_1981_Page_29
	REMark_issue16_1981_Page_30
	REMark_issue16_1981_Page_31
	REMark_issue16_1981_Page_32

