Official magazine for users of Heath computer equipment.

=REMark

Issue 18 « June 1981

on the cover. . ..

Big Ben at high noon.

Photo by Gerry Kabelman

e B

L

N,

W

on the stack

=CAT

Know YOUur GroOUP .evweee swis o emmnsnesnve s 3
Using the Epson MX-80 Printer with the H89 3
HUG BUR ;a0 sosamsess s oisiimsisiaes paaes 3

A KISS for Assembly Language Programming 4

Screen Formatting on the H11c00n 7
Ed Judge

Extended Configuration Mod for HDOS 1.6 9

MBASICPOKE ...aNo-No?o, 10
Buggin’ HUGcc0vvvunvnnn PURIRCIR- o 14
Listings Available Shortly for HDOS 2.0 15
New HUG Softwaredcoiiviviinnnn, 16
HUG Product List .. .covvvivnvnmvmes anenoosns ans 17
Number Base Conversions in FORTH............. 19
The Versatile LPH24.DVDcoviiiunnnnnn 20
HUGBB Via MicroNET TRIR, -
BLIGBB Via “SOURUEE"TY v umwes swmmmmranswsmnes 23
Real-time Functions under HDOS MBASIC 24
Disk Catalogs from BASIC or Tiny Pascal 25

Luis E. Suarez

“REMark” is a HUG membership magazine pub-
lished ten times yearly. A subscription cannot be
purchased separately without membership. the
following rates apply.

U.S. Canada &
Domestic Mexico International

Initial $18 $20 US FUNDS $28
Renewal $15 $17 US FUNDS $22

Membership in England, France, Germany, Bel-
gium, Holland, Sweden and Switzerland is ac-
quired through the local distributor at the prevail-
ing rate.

Back issues are available at $2.50 plus 10% handl-
ing and shipping. Requests for magazines mailed
to foreign countries should specify mailing
method and add the appropriate cost.

Send payment to:

Heath Users' Group
Hilltop Road
St. Joseph, MI 49085

Although it is a policy to check material placed in
REMark for accuracy, HUG offers no warranty,
either expressed or implied, and is not responsible
for any losses due to the use of any material in this
magazine.

Articles submitted by users and published in RE-
Mark, which describe hardware modifications, are
not supported by Heathkit Electronic Centers or
Heath Technical Consultation.

HUG Manager and Editor Bob Ellerton
Assistant Editor and

Software Developer........... Patrick Swayne
HUG Secretary Nancy Strunk
Software Developer Gerry Kabelman
HUG BB ...co v smme s smmvms Terry Jensen

Copyright © 1981. Heath Users' Group

HUG is provided by Heath Company as a service to
its members for the purpose of fostering the ex-
change of ideas to enhance their usage of Heath
equipment. As such, little or no evaluation of the
programs in the software catalog, REMark or other
HUG publications is performed by Heath Com-
pany, in general and HUG in particular. The pros-
pective user is hereby put on notice that the prog-
rams may contain faults the consequences of
which Heath Company in general and HUG in

Comments on the FORTH Language 27 particular cannot be held responsible. The pros-
pective user is, by virtue of obtaining and using

A Caution from Q. A. i..icvvisvnssssnsssisseseses 29 these programs, assuming full risk for all consequ-
ences.

Using Double Sided Drives on the H17 30

Local HUG NeWS ..c.ouevnronese svemenesmsssssss 31) % REMark

o

SREMark + Issue 18 + 1981

Know Your Group

Many of the same questions arise from
old members and new in regard to what
the Heath Users' Group is and what the
policies are.

HUG can be viewed as an information
exchange area for software products,
articles, and ideas that are submitted
by you the member. As stated on page
one of the Handbook, "the Users' Group
is intended to provide services to users
at low cost and requires the cooperation
of its members to accomplish this task."

We receive letters and calls asking why
we don't print articles on certain topics
or special programs for a specific
computer. We only print what is submitted
or what we have "popular" requests for.
So...1if you have an article or program
you would like to share...send- them in!

Speaking of submittals, one
misunderstanding keeps popping up. Only
when your program is published as a
portion of a HUG product do you receive
a one year extension of your membership.
If you are not a member, then you receive
a one year free membership for your
efforts. When your program is received,
it is reviewed and you will then be
notified by letter., Please keep in mind
that your program may not be used
immediately. However, this does not mean
that it will not be used in the future.
Our software team may be on other projects
when your program is sent in. Again,
we publish what has been submitted based
on the majority of the interest level.

One big gquestion is product orders. We
accept CASH WITH ORDER ONLY! Heath
and HUG orders should be kept separate
as this will speed the process
considerably. Orders should be on the
green HUG Order Forms. Be sure to let
us know if you should need some. Removing
the label from your REMark to place on
the order form is unnecessary also.
However, don't forget to write in your
ID number.

ID cards for new and renewed memberships
have been a problem as many of you well
know. Membership cards, until now, have
been printed once a month. They will
be printed twice a month shortly. Anyone
who has not received their card should
contact us.

All in all, your group has been through
a lot of changes in the last six months
or so and we are working hard to "debug"
our system. We thank you for your
continued support and cooperation.

NS:

S REMark » Issue 18 = 1981

Using the Epson MX-80

When connecting an EPSON MX-80 printer
to the Heath H-89 via the HB8-3 serial
board, the following jumper and switch
settings on the EPSON RS-232 board should
be observed:

JUMPERS DIP SWITCH
JSR ON PIN 2 OFF
JC OFF PIN 5 N/A
JNOR OFF PIN 6 OFF
JREV ON

In addition, the interface cable should
have PIN 11 on the printer connected to
PIN 4 on the H-BO.

This info was supplied by:

Thomas E. Sullivan
5900 Lockton Lane
Fairway, KS 66205

HUG Bug —‘;__“‘2——
ey el

Joe Mullins of Worthington, OH found a
BUG in the SORTER program on HUG disk
part number 885-1044. The error causes
the program to self destruct if the input
file happens to contain a number of bytes
evenly divisible by 256. The patch for
this situation is as follows:

ADDRESS DATA

043.042 303 132 046

045.152 130 040 055 040 061 057 061
045.161 066 057 070 061 212

046.132 302 115 043 066 000 311

Use the HDOS PATCH program to make these
changes, hitting CONTROL-D after each
of the four series of changes is made,
and a second CONTROL-D after the last
of the four.

Making the correction in Assembly Language
is much easier:

INSEET THE LINE POP H
BEFORE DONE STC

Joe's "BUG" was corrected by the original
author:

William W. Moss, M.D.
1507 Riverview Lane
Bradenton, FL 33529

A KISS for Assembly Language Programming

THE LONE CASSETTE RANGER

By popular demand HUG will present here
a summary of the steps necessary to
perform the "BEEP" program outlined in
Issues 15, 16, and 17 of REMark for the
CASSETTE user. For the most part, it
should be explained that the program used
in those issues will operate in the same
manner when completed using TED-8 and
HASL-8. Further, the commands for TED-8
are very similar to the commands used
by EDIT under the disk operating system.

For those of you that are completely new
to Assembly Language Programming, please
review the articles presented in Issue
15, 16 and 17 of REMark. The information
contained in these articles will be used
here and only altered slighty for you
people with cassette equipment only.
For those of you with disks, please note
the differences in the program presented
here as it will operate differently (does
not return to HDOS) than the earlier
version. Disk users' may choose to
assemble this program for a little
practice with the EDITor and ASM.

If you are confused already, let's see
if I can give a few more details on TED-8
and HASL-8. TED-8 is the Text EDitor
used for entering our .ASM file with a
CASSETTE DEVICE as described in Issue
16 of REMark. It would follow then, that
the HASL-8 or Heath ASsembLer would be
used to "put our .ASM file together" into
the .ABS file described in Issue 17 of

REMark. With few exceptions, TED-8 is
identical to the HDQOS EDIT. EDIT, in
fact, was "built" from TED-8. We will

discuss these differences as we go to
ensure that our "tape" version of "BEEP"
will work. The HASL-8 Assembler is
another story, however. When we get to
the point of "building" the finished
program, we will discuss the HASL-8 format
in detail by referring to the software
documentation to determine the particular
system configuration that you require.

To simplify the "task" of making an .ASM
file and the .ABS file on cassette, you
may wish to configure the tapes at this
time. Follow the instructions found in
your software documentation manuals.
Further, it is suggested that you place
the TED-8 Editor and the HASL-8 Assembler
on one tape cassette with TED-8 first
and HASL-8 second as this is the order
of usage. Use another cassette for

storage of the .ASM file and yet another
cassette for the .ABS file. Clearly mark
each of the cassettes in the following
manner to ensure you have placed the
correct tape in cassette player when
asked:

TAPE #)eiwoe s TED-8 & HASL-8
TAPE #2.......TED-8 .ASM FILES
TAPE #3.......HASL-8 FINISHED PROGRAM

The order of the above tapes is roughly
the order of usage. Later we will:

1. LOAD TED-8 (TAPE #1)

2. SAVE BEEP.ASM (TAPE #2)

3. LOAD HASL-8 (TAPE #l..program #2)
4. LOAD BEEP.ASM (TAPE #2)

5. SAVE BEEP.ABS (TAPE #3)

These five important steps should be kept
in mind as you read the additional
information contained in this article.

As was described earlier, we will now
enter TED-8 using the normal "tape-load"
procedure you have been acquainted with.
TED-8 is loaded the same way that BASIC
is loaded. Once you have loaded the TED-8
into your machine and pressed "GO" the
response will be similiar to the HDOS
EDIT. TED-8 will return the prompt:

In HDOS the prompt indicated that we were
ready to <I>nsert text or begin typing
our program. In TED-8, however, we must
first set the TAB's for the four columns
(i.e. LABEL field, MNEMONIC field,
ARGUMENT field, and the COMMENT field)
before beginning the typing process.
This little procedure is accomplished
by typing:

--TAB,9,17,25,33 (RETURN)
Actually, you may pick the tab spacing
to be any value. I have used the normal
convention used by HDOS so that the
program you type will appear as described
in Issue 16.

ready to begin the text
At the prompt (-=)

Now we are
<I>nsert process.
type:

-—<I>nsert (RETURN)

S REMark « Issue 18 = 1981

You are now in the <I>nsert mode. Type
the program as described in Issue 16 page
4 fig. A of REMark. The same commands
that were used in Issue 16 will also work
under TED-8 up to the point of saving
the program. If you have problems, refer
to Issue 16 until you have completed
typing in the program. OH! By the way,
since there is no disk system to mess
with, one line of text can be eliminated
and one must be re-written. The following
line should to changed as shown:

JMP HDOSP should now read:

HLT (this means HaLT or stop)
The line that now reads:

HDOSP EQU 040100A

should be eliminated

Continue typing the text exactly as shown
with the exception of the two lines
mentioned above. If you make a mistake,
correct the line as described in Issue
16 with the variety of commands used by
the TED-8 Editor keeping in mind that
both EDIT and TED-8 are similiar.

SAVING THE TEXT FILE.....

As was accomplished with HDOS and EDIT,
we must save our file on an output
device. In this case, we will use the
commands of TED-8 to place our file on
a cassette player as the storage area.
FIRST, review your text for any errors
using the normal <P>rint commands outlined
in Issue 16. Correct any errors using
the commands described in the same issue.
Once you are sure that the text is
complete and accurate, set your cassette
for the record mode as if you were making
a BASIC "save". Then type:
--NEWOUT"BEEP.ASM" (RETURN)

This process places the name of the
"record" on your tape player. When you
"hit" RETURN the cassette should have
started to record. Shortly it will stop
under the command of the computer. You
now type:
—--$SAVE (RETURN)

Again the tape will begin to record.
This time however, the actual text is
being placed on the cassette. After the
cassette player has stopped, one further
command is required to complete the file.

Type:
--STOP OUTPUT (RETURN)
This last command places the "stop" output

signal on the tape telling the computer
that it has reached the End Of File (EOF).

$REMark - Issue 18 = 1981

NOTE: It would be a good idea to repeat
the procedure outlined previously to
ensure a valid copy has been made on the
cassette. When making additional copies
be sure to leave plenty of room on the
tape "between" copies. (The advantages
of this procedure will be discussed
later.)

CHECKING THE FILE.....

The best way to ensure that we have done
things right is to shut down the computer
(erase the works!) then try "loading"
our new program. To accomplish this task
we first load TED-8 and set the TAB's
as described. At the prompt, type:

--NEWIN"BEEP.ASM" (RETURN)

The computer will then locate the correct
record on your cassette tape before
stopping. We then type:

--FILL (RETURN)

This procedure "pulls" in the remainder
of the file that was typed previously.
If you now use the technique for printing
the text (i.e. =- PRINT) you should now
see your work restored in memory.

There is another technique used to check
your finished file. As is common practice
in BASIC, you may use the "VERIFY" command
of TED-8 to check a finished file. I
chose to use the loading technique to
give practice with TED-8 as you will find
a good understanding of "NEWIN" and "FILL"
helpful for corrections or modifications
to existing .ASM files on your cassette
tapes.

USING THE ASSEMBLER (HASL-8)

Once we have completed the .ASM file that
was called "BEEP.ASM" and saved it to
tape, we are ready to assemble our
finished program. HASL-8 the tape version
of ASM the HDOS Assembler is loaded into
the machine for this purpose. Remembering
that HASL-8 is the second program on TAPE
#1, install and load the Assembler as
you have done in the past with BASIC and
now TED-8. The tape version of the
Assembler will begin prompting you with
several questions that must be answered
in order to "get ready" for the actual
process.

In an effort to make our task as simple
as possible, we will review only those
questions and answers that will get the
job done easily. For additional
information on each of the questions and
the various answers refer to "USING THE
ASSEMBLER" in the HASL-8 documentation
section of the Software Reference Manual
for your tape system.

After the "load" for the HASL-8 Assembler

is complete, type "GO" as was done for
BASIC and TED-8. HASL-8 will respond
with:

. (indicating the Assembler is ready.)

Hit return. The assembler will then ask:

LISTING TO PRINTER (Y/N)? <N>

The brackets (<N>) around the "N"
indicate that a "RETURN" without typing
anything will be the "default" to "N"
Or no. For the guestion above and
remaining questions type return unless
specified otherwise. (The return here
would place the listing on your terminal
instead of a printer.)

Next, HASL-8 will ask:

BINARY (Y/N)? Y (RETURN)

Answering "YES" to the above question
will place the generated "binary" into
your machines memory when the actual
assembly begins. The next question will
apply if you have two cassettes in your
system and you wish to save our program
on tape directly. However, for this "run"
we will answer "NO" and save this area
of the Assembler for later discussion.

BINARY TAPE (Y/N)? type: N

By answering "NO" to this question, the
Assembler will place the finished program
in our machine's memory. After we have
run the program, you may wish to repeat
the procedure. On the second attempt,
answer "YES" if you wish to save the
program on TAPE #3.

Next HASL-8 will respond with:
INPUT?

You now place TAPE #2 in the cassette
for "loading"™ of "BEEP.ASM" and type the
following information:

INPUT?BEEP.ASM

If you have pushed the "play" putton on
the cassette, the cassette will bgg1n
looking for our program. Once it finds
the program a response will appear as:

FOUND BEEP.ASM

The cassette will continue until a new
message appears:

REWIND SOURCE TAPE TYPE CR WHEN DONE.

"CR" is the RETURN key. One little trick
can fool the machine into thinking you
have rewound the cassette. If you made

more than one recording of the program
as suggested earlier, hit the RETURN key
as quickly as possible after the message
"REWIND SOURCE TAPE...". The Assembler
will read the next copy as if you had
actually rewound the tape!

As the cassette continues, yet another
message will be printed as:

FOUND BEEP.ASM
POSITION PAPER. TYPE CR:

Since we have not used the printer, just
type RETURN to continue the actual
assembly. You will begin to see the
results of our efforts at this time.
And, if all of our steps were correct,
you will get the final message like this:

STATEMENTS = XXXXX
FREE BYTES - XXXXX
NO ERRORS DETECTED.

You have now finished your first Assembly

MAKING THE PROGRAM RUN......

Since there are H-88 owners and H-8 owners
out there, two methods are described below
to get "BEEP" running.

H-8

To make "BEEP" run use the following

steps:

1. reset the H-8

2. push the "REG" key then the "P" key
3. push the "ALTER" key
4, enter the following:
5. push the "ALTER" key
6. push the "GO" key

The H-8 should now respond by running
the program "BEEP" as described in Issue
17 of REMark.

100000

1H-88

“"BEEP" run use the following

To make
steps:

1. push the "RESET" and "SHIFT" keys

2. at the H: push the "P" key (The H-88
will respond: Program Counter)

3. directly after "Program Counter" type
100000

4, push the "RETURN" key

5. push the "G" key (The H-88 will respond
with: Go)

6. push the "RETURN" key

The H-88 should now respond by running
the program "BEEP" as described in Issue

7 of REMark.
1o ar VECTORED TO PAGE 13

SrREMark = Issue 18 » 1981

Screen Formatting on the H11

In writing programs for my H-11, I have developed a few technigues for screen
formatting and input data checking and processing that might be of some interest
to other readers.

These techniques can be used easily in BASIC, FORTRAN, or PASCAL, however I will
use BASIC as the example Language since the string handling abilities are the most
straight forward. The techniques make writing screen- oriented programs easier,
and they impart a professional look to the finished product.

The use of user defined functions (UDF) takes the place of subroutine calls by name
in BASIC. For instance, if an input is to be checked, many people use a line to
check for each possible input. This is a lot of work, and it can be avoided by
using the following techniques.

To begin:

DEF FNI(I$)=POS("YES yes NO no ",I$,1)

XXX PRINT FNCS$(<LINE #>,<PROMPT>); \ INPUT IS
IF FNI(I$)=0 THEN PRINT <ERROR MSG> \ GOTO XXX
IF FNI(I$)<= 7 THEN <YES ACTION>
GOTO <NO ACTION>

This is a simple and compact method that only allows certain input to be accepted.
Note that both "Y" and "YES" are accepted in upper and lower case. The comparison
string in the UDF can be any expected input, and if the comparison must be exact,
an obvious modification -- the simple addition of a length check -- can further
restrict the input. The FNC(#,$) will be explained later, but all it does is center
string $§ on line #.

On the printing of formatted screens, I use other simple UDF's to make life a lot
easier. First I set up an array, usually C$(20), to hold the control codes for
my CRT (in my case, both an H-19 and a VT100). I make this array COMMON so that
it can be CHAINed to other modules of the program and not have to be redefined.
Now I define the functions I use most often.

To print a string S$ at line L, column C:
DEF FNB$ (L,C,S$)=<X-Y CCONTROL 3TRING>+5$

To blank out string S$ at L,C:
DEF FNB$(L,C,S$)=FNAS(L,C,SEG$(BS$,1,LEN(SS$)))
Bs=" <ALL BLANK> "

To clear and center a string S$ on line L:
DEF FNC$(L,S$)=FNA$ (L, INT((80-LEN(S$)) /2) ,<CLEARLINE STRING>+S$)

The above makes headings very neat looking. The fact that the line is cleared
before the string is printed is very useful in this and other UDF's. Also, putting

the cursor HOME (0,0) is useful in preventing spurious <CR>s from shifting screen
up and out of register.

To clear line L:
DEF FNDS$ (L)=FMAS$(l,1,<CLEARLINE STRING>)

To center an error msg E$ on line E in Reverse Video:
DEF FNES$(E,E$) =<RVID STRING>+FNCS$(E,E$) +<NRMVID STRING> (+<BEL>)

The bell is optional.

seREMark « Issue 18 » 1981

If you use A=SY¥S(l) for immediate response, the following is useful in
the same manner as the first example:
DEF FNJ(A)=INT((POS("YyNn...",A,1l)/2)+.5)

XXX PRINT <PROMPT>; \ A=SYS(l)

IF FNJ(J)=0 THEN PRINT <ERROR MSG> \ GO TO XXX

ON FNJ(J) GOTO <YES ACTION> , <NO ACTION>
This looks very snazzy with a nice screen. The string
may be extended with a little care. <CR>'s give a little
problem, but is easy to solve. I use the 25th line for
<ERROR MSG> on my H-19, and I set top & bottom to define
a scrolling area that only changes the active area on
my VT100.

A subroutine for checking to see if the input is all numbers:
FOR Ll1=1 TO LEN(I$) \ L$=SEG$(I$,L1l,L1l) \ A=ASC(LS)
IF FNN(I$)=0 THEN XXX
M=-1 \ RETURN
XXX NEXT L1 \ M=0 \ RETURN

where DEF FNN(N$)=POS("0123456789",N$,1)
Test for M=0, then use "ON M+l GOTO"

A subroutine for checking to see if the input is all letters:
FOR Ll=1 TO LEN(I$) \ L$=SEGS$(IS$,Ll,Ll) \ A=ASC(LS)
IF FNL(L$)=0 THEN ‘XXX
=-1 \ RETURN
XXX NEXT L1 \ M=0 \ RETURN

where DEL FNL$ (I$)=POS("ABCD...XYZabcd...xyz",I$,1)

The same comment applies. This routine can be easily
modified to test for just upper or lower case.

To just check for one letter of either case of letter L$ in the first
letter of the string IS.
DEF FNK(L$, I$)=POS(L$+CHRS$ (ASC(L$)+32),SEGS$(I$,1),1)

Some other UDF's out of any context, but useful:

If your BASIC does not have PRINT USING, some functions can be
imitated:

DEF FNF$(Z,2$)=SEGS$("00...00",1,Z-LEN(Z$))+2$ will pad a string with
the leading zeros or (asterisks), and leading spaces or a dollar sign can
be easily added.

DEF FNG$(C,S$)=((C-POS(S$,".",1))<CURFWD>+S$) will align the
decimal point on colume C. Again, spaces or dollar signs are
easily added.

Other subroutines are easily constructed to accomplish specific
tasks by using three basic procedures.

One final technique to relate is how to easily print a CRT screen. I use the
following method.

First, declare in data statements, the number of fields and the L,C, and
S$ for each field. Other data may be added as needed.

DATA <NO. OF FIELDS>

DATA 10,12,"FIRST NAME : "

DATA 11,13,"LAST NAME : "
Then read them into an array:

READ Z <NO. OF FIELDS>
FOR N=1 TO Z \ READ X(N),Y(N),2$(N) \ NEXT N

HREMark « Issue 18 « 1981

Then clear the screen:

DEF FN2$ (L)=FNAS$(0,L,<CLEAR TO END OF SCR>)

L to the end of the screen.

Then print the screen:

clears from the line

FOR N=1 TO Z \ PRINT FNAS(X(N),Y(N),2$(N); NEXT N

If the string to be constructed and printed is complicated, use another UDF to

construct it.

The control of carriage returns is a problem, so avoid using any line below 22 until

you get a little experience, as spurious <CR>'s can be very frustrating.

They can

be controlled with a little thought and experiment.

When a choice is made, you can print the chosen field in RVIDEO for ease of viewing

and avoidance of operator error.
confirmation .

In my programs, the operator is then qsked fpr
If a <CR> is then entered, the RVID field is then reprinted in

NORMVID and another response will be accepted.

Once you get into the swing of using UDF's you can really spruce up your programs,

making them more convenient and less prone to errors.

The related methodology

opened by these techniques is too enormous to convey in a small article, but
developing your own pet methods is most of the fun>

Ed Judge
30 Autumn Drive RFD
Northampton, MA 01060

Extended Configuration Mod for HDOS 1.6

HDOS Version 1.6 will not allow the top
8K of memory to be enabled after the
installation of the Extended Configuration
Option. Thus, if you intend to run large
programs requiring the entire 56K of
memory (such as HUG's DND) the following
patch is required to properly "size"
memory when using the ECO and Version
1.6.

BYTE FROM TO

89 21 21 LXI H,oFFH
8A 97 FF

8B 27 00

8C 2E 25 DCR H

8D 00 7E MOV A,M
8E 24 34 INR M

8F 7E BE CMP M

90 34 77 MOV M,A
91 BE CA JzZ 278CH
92 77 8c

93 c2 27

94 8E 00 NOP

95 27 00 NOP

96 2B 00 NOP

SREMark « Issue 18 « 1981

The above patch to the first sector (track
l/sector 3 using SUPERDUMP or track
l/sector 2 using DUMP) of HDOS.SYS will
correct for the following situation:

When HDOS is booted up, it sizes memory
by trying to modify the first byte for
each page. Since the test looks for the
first byte that it cannot change as the
delimiter for memory size, and the machine
contains RAM for the entire 64K with the
ECO, the test will continue forever!
The patch enables HDOS to begin at the
top of memory and work down. Therefore,
the test is looking for the first usuable
address of RAM as "high memory". It would
follow then, that if the first memory
address is the highest byte, 64K is the
"definition" of memory and the test
ceases.

Thanks to:
William W. Moss, M.D.

1507 Riverview Lane
Bradenton, FL 33529

MBASIC POKE ... a No-No?

How many of you have been told not to
use the POKE function of Microsoft BASIC?
I have been told that and I have also
told others that . . because it is unsafe
and you may POKE some address you are
not supposed to. Well, this is indeed
true, but maybe we don't really understand
how POKE works. Why not take a look at
 POKE and find out what address we can
POKE and what nifty neat things we can
do with the POKE command? That is what
Bob and I set out to do these last couple
of weeks; to understand the POKE command
of MBASIC!

To understand where we CAN POKE, we better
first know where we CANNOT POKE! So,
how can we do this? Well, we must know
what is in memory at the time we are
running MBASIC, that way we can determine
what is not to be changed by POKEing
around.

We will use the assembly language program,
BEEP, which Bob has spent Issues 15, 16,
and 17 of REMark explaining to our
beginner assembly programmers (including
me). Before we jump right into using
POKE, we must first look carefully at
HDOS and MBASIC. Fortunately, HDOS 2.0
makes part of our job easy.

First, I better stop and set some
parameters so that this will not get too
complicated. We will assume a 48K of
RAM machine with HDOS 2.0 as the operating
system. Our example program will operate
on an H8 or H89 with normal HDOS
configuration running MBASIC version 4.82.

As most of you know already, a 48K machine
actually has approximately 56K of memory.
The first BK (approximately) is the ROM
(READ ONLY MEMORY) . This is where PAM-8
for the H8 or MTR-88 for the H89 and part
of the HDOS memory allocations are
stored. (PAM-8 or MTR-88 being the
operations that tell your machine what
it is to do at powerup time. The HDOS
stored in this area is part of the system
features e.g. the number of READ/WRITE
errors, and the system date, etc.) It
is in this area that we NEVER want to
POKE for any reason. The actual addresses
begin at obviously zero (0) address and
uses up to 8832 (decimal) or 042200
split-octal. (Note chart.) That takes
care of the 8K of ROM. Now what about
the remaining 48K of RAM (RANDOM ACCESS
MEMORY) ?

10

Just because we have approximately 48000
bytes of READ/WRITE memory does not mean
that we are able to POKE anywhere we
choose. The 48K of RAM is used by more
than user programs. 1In fact the remaining
HDOS is loaded into HIGH memory at
bootup. Well, should I say most of it.

For the purpose of explaining HDOS as
it relates to RUNTIME MEMORY ALLOCATION,
we will divide HDOS into 5 parts. The
first part of HDOS we explained above,
that which is stored in LOW memory along
with PAM-8 or MTR-88. ©Now the last four
parts are loaded into HIGH memory
beginning at the very top of physical
memory. Please note the chart. . . The
permanently resident HDOS, the device
drivers, ard the two HDOS overlays make

up the four parts of HIGH memory resident
HDOS.

Now it would be nice to know what is thea
address of the top of physical memory.
What address is it exactly? How much
of HIGH memory does HDOS actually use
up? Well, here is where HDOS 2.0 comes
in very handy! The STAT command in HDOS
2.0 shows the memory usage of HDOS, the
first part of which is as follows:

Memory Usage

Physical Memory Limit: 337377
HDOS Lower Bound: 314154
Maximum Overlay Size: 013315

From these three split-octal numbers we
are able to determine the exact First
Word Address (FA) of HDOS. This process
is much more difficult to determine with
HDOS 1.6 but in either case we will leave
a safety factor so as not to accidently
POKE into an address where an overlay
might be called into memory. This
probably needs some explanation.

Just briefly, an HDOS overlay is part
of the operating system that is not needed
to do the minimun operations of the
system. The overlays are called into
memory from the disk as they are needed.
Therefore, even though the overlays are
not in permanent resident HDOS, they may
indeed be called into use sometime from
the system disk.

One more part of HDOS to keep in mind
are the device drivers! These are not

SREMark = Issue 18 = 1981

e S —— e — — — — — — — — -

Permanently Resident
HDOS

Maximum Overlay Size
(HDOSOVLO,_EDOSOVLI)

———— —

Transient Area

e ————— — — — —— — — —

e ———— e — — e — — p— -

Program Text

s — — — — —— —— — — —

MBASIC Interpreter
(T20k)

s ——— —— — ——— — — — -

PAM-8 or MTR-88
ROM

e — e — ——— ——— — —

NIV

|

337377 Top of Physical Memory
314154

LP: Device Driver

~312066

~276151 FWA of Resident HDOS
(LWA of User Memory)

200030 Ending address of BEEP
User Routine (BEEP)

200000 Beginning Address of BEEP
~171200

~162200 Top of MBASIC

042200 USERFWA
(USER First Word Address)

000000

HDOS-MBASIC MEMORY MAP
(= = Approximately)

loaded into memory unless you LOAD them.
As you know you cannot print to your LP:
device while in MBASIC if you have not
LOADed it first. We, therefore must take
loaded device drivers into account also.

With all this in mind we are able to look
at the chart and see where the four
remaining parts of HDOS are located on
our memory map. With the help of STAT,
we found that our top of physical memory
is located at 337377Q (Q is defined as
split-octal). The HDOS lower bound
excluding device drivers and either
overlay is located at 314154Q. With the
LP: device driver the lower bound is

YeREMark « Issue 18 » 1981

312066Q, while including LP: and the two
overlays will bring us to our lowest bound
of 276151Q.

All of this background just to determine
where the FWA of HDOS lies in a 48K
system. Yes, but it is very important
background because we have narrowed down
the area even more of where we CANNOT
POKE.

While running MBASIC, we actually only
have one more area that we must not POKE
into and this is where the MBASIC
interpreter and the MBASIC program you
are running is stored. This is obviously

11

another area in which we must be very
careful because each program that is run
uses different amounts of memory. The
MBASIC FRE(0) command will show us how
much of RAM is free and not used by the
MBASIC interpreter and user program.
This will give us a good approximation
of where the top of MBASIC could be
located in memory. I do not think that
MBASIC recognizes the HDOS overlays as
part of memory . . so beware of the
FRE(0), if you are referring to it.

When the MBASIC interpreter is loaded
it locates itself into the lowest address
that is available to it. Well, as many
of you know this is the users first word
address (USERFWA), which is at 0422000Q.
MBASIC will then take as much memory that
is left for user programs, string space,
and variables. However, in most cases,
as in our example program, MBASIC does
not need or use all of the remaining
memory but yet it "claims" it, that is
the available memory allocation "DEFAULTS"
to MBASIC.

But if MBASIC "claims" all remaining
memory, how can we use part of the memory
for our own use? Well, somehow we must
"delimit" MBASIC or set the top of MBASIC
at a predefined address. (We must again
be careful to allow for user programs,
string space, and variables.) We have
two ways of setting the top of MBASIC;
one, is to use the /M flag while loading
MBASIC or, two, by using the CLEAR
statement within our MBASIC user program.
The syntax of the /M and the CLEAR
statement is as follows:

/M:addressl (address2)
CLEAR string-space, addressl(address2)

Addressl is the address assigned to the
top of MBASIC, address2 is the address
assigned to the LWA of user memory,
string-space is the number of bytes
allocated for string storage. The second
address, address2, can be omitted which
will default all of the remaining memory
above the top of MBASIC, addressl, for
user defined subroutines.

If MBASIC takes approximately 20K of
memory for the interpreter, and we can
give an approximate size of our MBASIC
user program, we can estimate our last
boundary where we are not allowed to
POKE. Ah ha, but now we have narrowed
the memory map down to know where we can
POKE. We must always allow for a safety
factor on both the lower bound bordering
MBASIC and the upper bound bordering HDOS.

For our example program, we can determine
the approximate areas that we can POKE
into by estimating where we should not
POKE. While doing this, I again emphasize

12

the importance of the safety factor on

our boundary limits. MBASIC occupies
approximately 20480 bytes, our example
POKE program will occupy about 1792 bytes
(approximately 7 sectors times 256
bytes). This will set our lower limit
address at about 1712000Q. We have
determined through STAT that our upper
limit address is 276151Q.

Just to be safe we will begin our POKEing
at 200000Q for 30 bytes, which is
approximately the size of the BEEP
program. However, as mentioned earlier,
we could just use "addressl"™ but for the
"experience" we will use both. Please
note we are no where near either MBASIC
or HDOS.

I think we are finally ready to go through
our example program. Ocops, before we
go on we better understand that MBASIC
POKEs octal codes not split-octal. Now

we are ready! (see FIGURE A.)

As you can see the MBEEP program is self
documenting through the REM statements,
therefore only a few things need to be
covered here. Did you note the DATA,
in octal, was identical code to Bob's
BEEP program? The only difference is
the RETURN to MBASIC rather than to HDOS.
The Q=USRl (BEEP) is the statement that
actually does the execution of the
BEEPing. This is similiar in function
to the PRINT statement of MBASIC, in that
PRINT causes the action. The " (BEEP)"
is arbitrary and may be any string between
the parenthesis. ©One further idea is
that you can enter the number of BEEPs,
in octal, if you wish, just enter the
"&" sign first e.g. &10.

That about completes this lesson on the
use of the POKE and PEEK commands of
MBASIC. For further information, refer
to APPENDIX E - ASSEMBLY LANGUAGE
SUBROUTINES and APPENDIX F - RUNTIME
MEMORY ALLOCATION, of the MBASIC version
4.82 manual.

PLEASE . . . PLEASE NOTE: Be very careful
when using the POKE command. If you will
think about it, the POKE command is MEMORY
dependent. Our example program was
written for a 48K machine. Where is HDOS
located in a 32K machine? Sure, it
locates itself in HIGH memory again but
HIGH memory in a 32K machine is 237377Q
and therefore, the FWA of HDOS maximum
overlay size would be at 176151Q which
is below our 200000Q starting point for
our BEEP subroutine. Guess what would
happen if you used this program on a 32K
machine? On a 48K machine, if the MBASIC
program is fairly small, you could have
about 10K of RAM for assembly language
subroutines. If it is a large program,

HREMark « Issue 18 » 1981

such as DUNGEONS AND DRAGONS, even a 56K
machine has ZERO area for user
subroutines.

So, I guess the bottom line is . . POKE
can be used affectively but it must be
used carefully and when swapped or traded
be sure to specify the amount of memory
needed to run that particular program.

(We obviously could not go into any more
detail on many items that many of you
might know e.g. POKEing into the available
RAM area below the USERFWA of 042200Q.)

We have had many calls and letters asking
for an article explaining the PEEK and
POKE functions of MBASIC. We hope this
has been helpful and informative.

<TLJ>

FIGURE A.

5 REM:

10 CLEAR100,32768(32798) :REM:
20 LET A=&100000: REM:
30 READ D: REM:
40 IF D=999 THEN 100: REM:
50 POKE A,D: REM:

60 LET A=A+l:
70 GOTO 30:

LOAD THE ASSEMBLY LANGUAGE PROGRAM AT ADDRESS 100000 OCTAL
CLEAR ADDRESS 200000Q TO 200036Q

A = FIRST ADDRESS (OCTAL)
D = THE INSTRUCTIONS AND DATA (OCTAL) FROM THE "BEEP" PROG
999 INDICATES THE END OF DATA

PUT DATA INTO MEMORY LOCATION A

REM: INCREASE "A" ADDRESS BY ONE FOR NEXT MEMORY LOCATION

REM: GO GET THE NEXT DATA "BYTE" TO BE PLACED IN MEMORY

IN MEMORY WE WILL POKE

80 DATA &6,&%5,&315,&136,&2,&26,&377,&36,&377,&35,&302,&11
90 DATA &200,&25,&302,&7,&200,&5,&302,&2,&200,&311,999

FURTHER TO DEMONSTRATE "POKE" THIS

100 REM:

110 REM: THE FOLLOWING MBASIC PROGRAM DEMONSTRATES THE USE OF
120 REM: THE MACHINE LANGUAGE CALL TO THE PROGRAM "BEEP" PLACED
130 REM: IN MEMORY ABOVE.

140 REM: SECTION WILL ASK FOR THE TOTAL NUMBER OF BEEPS THAT
150 REM: WILL BE USED AND POKED INTO ADDRESS 100001 (OCTAL) FOR
160 REM: THE PROGRAM "BEEP" TO ACCOMPLISH.

170 INPUT "HOW MANY BEEPS WOULD YOU LIKE ";B

REM: PUT NUMBER OF BEEPS AT 100001 (OCTAL)
REM: DEFINE STARTING ADDRESS OF BEEP FOR MBASIC
REM: "Q" PERFORMS THE OPERATION OF RUNNING "BEEP"

180 POKE &100001,B:
190 DEFUSR1=&100000:
200 Q=USRL(BEEP) :

210 REM:
220 REM
230 REM:
240 REM
250 REM
260 REM

T

OF THE PEEK COMMAND.

" ose ww

IN MEMORY

THIS NEXT PORTION OF THE PROGRAM DEMOSTRATES THE VALUE
YOU WILL NOTICE THAT WE WILL PEEK
AT LOCATION 100001 (OCTAL) TQO DETERMINE THE VALUE THAT
WE HAD POKED THERE WHEN ASKED FOR THE NUMBER OF BEEPS.

270 LET V=PEEK(&100001) : REM: V = THE MEMORY VALUE (DECIMAL) OF 100001 (OCTAL)
280 PRINT "THE VALUE OF THE ORIGINAL NUMBER OF BEEPS IS ";V

290 END

VECTORED FROM PAGE 6

NOTE: Answering <Y> to BINARY TAPE
requires that two cassettes be used, one
for play and one for record. If you are
using one cassette player, you would
perform a MEMORY DUMP at the starting
address of 100000 as if you were making
a configured BASIC tape. If you intend
to do a MEMORY DUMP, perform this step
NOW as the program is still in the memory
of your machine!

TWO CASSETTES.......

As was described earlier, answering "y"
or yes to "BINARY TAPE" will produce a
"stored" program on tape that can be now
loaded and run just as if it were BASIC,
TED-8, or HASL-8. Repeat the process
described for "USING THE ASSEMBLER" in
this article. This time however, answer:

BINARY TAPE (Y/N)? type: Y

SREMark » Issue 18 + 1981

This change will produce the program
"BEEP" on tape rather than in memory.
All other steps will remain the same
except you would not run this program
as described earlier. Remember to use
TAPE #3 when storing the program. Also,
remember to place the cassette recorder
in the "record mode".

Now that you have a finished program on
TAPE #3 it can be placed in either the
H-8 or the H-88 by "load" as with BASIC,
TED-8, HASL-8, and finally BEEP!

I hope the above information will be
useful to those of you with tape systems.
Further, those of you with disk drives
may want to try the changes described
to see the effect of the different program
on your machines.

BE:

13

BUGGIN’
HUG

Dear HUG,

After many hours of converting programs
from HDOS MBASIC to CP/M MBASIC I have
found some short cuts that make the task
a bit easier.

First, CP/M MBASIC file structure for
random files supports random I/0 files
but defaults at a record length of 128
bytes. HDOS MBASIC supports a 256 byte
random I/0. With CP/M you can change
the default random buffer using the /S
switch when loading MBASIC 5.2 (MBASIC
/8:256). When MBASIC loads, you can then
open your file for a 256 byte file: OPEN
“"R",l1,"FILE,256. You must include the
"256" after the file name!! This method
is documented in the MBASIC users' manual
but it is well hidden. (/S: is described
on page A-3.)

The second item is TT: and LP: output.
In HDOS MBASIC two dual-purpose routines
can be used to send data to the printer
or to the terminal. This is done using
files. To write to the printer you can
OPEN "O",1,"LP:" and use PRINT#1 to send
data to the LP:. You can also OPEN
"O",1,"TT:" and use the same routine to
send to the screen.

Under CP/M the above procedure DOES NOT
WORK!! One can however, trick CP/M and
write a dual-purpose routine WITHOUT using
the LPRINT statement. Memory location
3 in standard CP/M contains a current
device flag. In normal CP/M this wvalue
is 0 for TTY: and 1 for LST:. Under Heath
CP/M these values are not zero and one
but they are one unit apart.

To accomplish the above task you can
define a variable at the beginning of
your program called PR. PR=PEEK(3).
When you want to print to the screen POKE
3,PR. To send a print statement to the
printer you can POKE 3,PR+l. POKE 3,PR+1

14

will completely disable your terminal.
You must therefore, POKE 3,PR as you would

close a file in HDOS. Please note the
following examples:

10 LINE INPUT" (TT:) or (LP:)? ";:DEVS

20 OPEN "O",l1,DEVS

30 PRINT#!1,This is a print out to " :DEVS
40 CLOSE#1:GOTO 10

5 PR=PEEK(3)
10 LINE INPUT"(TT:) or (LP:)? ";DEVS

20 IF DEV$="LP:" THEN POKE 3,PR+1
30 PRINT"This is a print out to ":DEV$
40 POKE 3,PR:GOTO 10

Robert wild
286 Littleton Apt. 306
West Lafayette, IN 47906

Dear HUG,

Here is a patch for XBASIC that allows
lower case for my H-11 with the H-19 video
terminal.

A study of the reference text showed that
bit 14 of location 44 controlled the
conversion of the lower to upper case
characters. On a hunch I locaded XBASIC,
hit "break" and opened location 44. Thus
44/120000. I entered 160000 to enable
bit 14 and hit "P" for proceed and was
rewarded by the appearance of lower case
functions and graphics in XBASIC.

A dump of the BASIC Language seemed to
suggest that block 0 was probably an
absolute section so I loaded XBASIC into
the patch file and found that 44 did
contain 120000. Upon entering 44/120000
160000 I have been able to use the lower
case functions since.

Frederick W. Kent
333 Liberty
Conneaut, OH 44030

Dear HUG,

As an Amateur Radio Operator, one of the
things I was looking forward to for my
new H-89 was using it to replace my old
Model 19 TTY. I was very disappointed
upon receiving the HUG Catalog to find
that the RTTY Program (885-1023) was for
the H-8 ONLY! After some study, I could
find no reason why the program should
not run the H-89 other than I/0 port
addressing and the loss of the H-8 front
panel status indications. I concluded
that the port address should be able to
be changed in scoftware, and I could live
without the status indications.

¥ REMark « Issue 18 = 1981

As a novice working with the computer
software, I had no trouble changing the
port address. Using only one disk drive,
"PIP" was used to review the .ASM and
.ACM files to determine required changes.
The three files requiring port address
cahnges were transferred to another disk
containing the "EDIT" Program using
"ONECOPY". Using "EDIT", the changes
are as follows:

1. FILE: INPUT 8. ASM

LINE: UPORT EQU 070Q

CHANGE: 070Q TO 330Q

2. FILE: OUTBAUD, ACM

LINE: TTY EQU 070Q

CHANGE: 070Q TO 330Q

3. FILE: CWROU. ACM

(a) LINE:: CWSPRT EQU 075Q

CHANGE: 075Q TO 335Q

(b) LINE: CWPRT EQU 074Q

CHANGE: 074Q TO 334Q

Again, using "ONECOPY", the three revised
files plus all remaining original .ACM
files were transferred to another disk
following the sequence on the original
disk. Because of disk space, it was
necessary to call on a friend who has
two drives in order to reassemble the
program producing RTTY.ABS now usable
on the H-89 port 330Q. Finally, RTTY.ABS
was copied to a bootable disk for everyday
use.

I am very pleased with this HUG Program.
It works fine! Lack of status indications
is not much of a problem since other
station equipment provides "on the air"
and "output activity" indications. The
only thing missing is the actual number
readouts. My Model 19 is for sale.

In keeping with the stated basic purpose
of HUG, it is suggested that this
information be made available to others
via REMark, and additionally, HUG should
make available a disk (885-1023/H-89)
with the same changes. It seems to me
that this is not a program change as
such. It is only adapting an existing
HUG product for use on the H-89.

EDITOR'S NOTE: Mr. Anderson called to
inform us that the UPORT change is the
only change necessary to run on the H89.
This was confirmed by Howard .Nurse.

Robert R. Anderson, K2BJG

69 Page Drive
Oakland, NJ 07436

HREMark « [ssue 18 « 1981

Dear Bob,

Thanx for the neat information on the
RTTY package. Gerry Kabelman now has
your data and will add it to the future
production of the HUG part 885-1023.
We really appreciate your help with this
package as I am sure other Amateur Radio
Operators will that use the H-89 as their
main computer.

Uncle HUG

FOR DOC CAMPBELL FROM MNET......

Just a short note on a personal basis
to let you know that, I for one,
appreciate you and what you offer to the
users' of the BB and the readers of
REMark. A great number of questions that
have occurred to me have been more than
answered by reading your comments on the
"BOARD" and by reading your articles in
the magazine. It is people as yourself
that make a hobby like "hacking" a real
pleasure. Sometimes one can feel alone
with his problems...just getting an H-89
up and running (kit) is no small task.
Heath does provide support but it is a
long distance call or a ten day wait for
the mail. Sometimes the explanation
is merely a repeat of what is already
printed in the manual...we do not always
think alike. Thank you again, sir, for
making me feel like a friend even tho'
we've never met nor even corresponded
before.

BEST PERSONAL REGARDS ... Dave Harrah

Listings Available Shortly
for HDOS 2.0

HDOS 2.0 source listings will be available
shortly. The only way to distinguish
the new listings from Version 1.6 is via
the part number on the cover. Version
1.6 listings have the part number of
595-2466, while Version 2.0 listings will
carry the part number 595-2466-01.

Customers wishing to upgrade their current
listings to Version 2.0 are instructed
to return their copies of the Version
1.6 listings along with a check for $50.00
to the following address any time after
June 1, 1981:

Heath Company
Service Receiving Department
Benton Harbor, MI 49022

Be sure to include with your order the

new part number so that you will receive
the correct information.

15

New HUG Software

885-1095 HUG SY: Device Driver $30.00
The HUG SY: Device Driver is a replacement
for the standard Heath SY: device driver
for H17/H77/H87 mini-floppies written
for HUG by UltiMeth Corporation. It
offers the following features:

1) A 35% reduction in time to load large
programs (e.g. MBASIC) and in copying
large files using PIP.

2) Individually SETtable step times for
SY0:, S¥l:, and S¥Y2:.

3) The ability to SET the time interval
after a disk I/0 operation that the
read/write head stays loaded. This allows
the head to remain loaded between rapid
I1/0 operations (as when loading MBASIC
programs or when editing files), reducing
head and media wear.

6) The ability to SET the time interval
the motor stays on after disk I/0.

7) The ability to perform a media check
during INIT, eliminating the need for
TEST17 except for drive check-out.

8) Recording of the step time in the boot
track during INIT, resulting in up to
a 50% reduction in boot time for fast
drives.

9) Improved error recovery which
temporarily increases the seek step time
during the error retry of a disk
operation. This allows the step time
to be SET to give the fastest usable seek
rate, and still handle an occasional
error.

10) Circumvention of a bug in the H17
ROM disk read routines.

11) An attempt to initialize a write
protected diskette is detected when the
disk is inserted in the drive during INIT,
not when initialization is complete.

All of the above are supported under HDOS
2.0 without any hardware or software

for the replacement of
SY.DVD on your system disks. This device
driver also supports increased disk
capacity as follows:

1) Support for dual-sided drives (the
H8 requires the extended configuration
option to run dual-sided drives),
including the ability to detect, read,
boot, and write a single sided diskette
on a double sided drive.

16

2) Support for 80-track per side drives,
including the ability to detect, read,
and boot (but not write) a 40-track
diskette in an 80-track drive.

As above, these features do not require
any hardware or software changes except
the replacement of SY.DVD, along with
the replacement of one or more of your
drives. An BO-track double sided drive
can store 4 times as much data as the
5-inch drives now equipped in your
computer. Three of them will give you
1.2 megabytes of on-line storage on
ipexpensive 5-inch diskettes. The
pin-outs and screw holes on most 5-inch
drives are the same, so replacement is
fast and easy.

NOTE: More specific information on drives
is supplied with the documentation
included with the HUG SY: Device Driver,
but if you wish to purchase drives while
waiting for your copy, the following
information is given. 1If you buy 80-track
drives, they must be the 96 TPI (Tracks
Per Inch) type. Some 80 track drives
are 100 TPI, and some 96 TPI drives are
only rated at 77 tracks. Tandon Magnetics
and Micro Periferals, Inc. manufacture
80-track 96 TPI drives, single and double
sided.

The HUG SY: Device Driver comes complete
with the source listing and instructions
for re-assembling the driver if you wish
to make changes. Complete documentation
is also provided. If you have technical
questions concerning this device driver,
direct them to:

Dean K. Gibson

UltiMeth Corporation

24025 Fernlake Drive

Harbor City, CA 90710

(213) 539-4276 (9 AM to Noon Pacific Time)

885-1094 HDOS Fig-FORTH 2 disks $40.00

885-1208 CP/M Fig-FORTH 2 disks $40.00

HUG FORTH is an implementation of the
Forth Interest Group's FORTH for the
B0BO. The HDOS and CP/M versions are
virtually identical. Both use
track-sector disk access that is
independent of the operating system, so
that HDOS FORTH can read "screens" (FORTH
files) written by CP/M FORTH and vice
versa. (This does not mean that you can
use FORTH to copy regular HDOS and CP/M
files between operating systems, though.)
HUG FORTH includes an 8080 assembler for

S-REMark « Issue 18 « 1981

including assembly code in FORTH
definitions, and a complete version
of the Fig Editor,

including MATCH in
high level FORTH and all string commands.
A SAVE command lets you save any words
you add to the protected dictionary as
part of FORTH itself on disk. Both
versions support output to a printer.

HUG FORTH requires an HDOS or CP/M system
with at least 32k RAM and at least 1
5-inch disk drive (2 on CP/M). For more
information on FORTH, see the article
Comments on the FORTH Language in this
issue of REMark.

885-1097 Educational Quiz Disk $20.00
ATTENTION: Educators, students and those
interested in learning from their
computer.

Your computer can teach addition,
subtraction, multiplication, division,
ratios, spelling and word usage with the
885-1097 Educational Quiz Disk.

This disk includes programs which teach
the above subjects and includes a special
reward if the student gets a passing
grade.

The word usage, spelling and ratio quizs
are written in a format that allows
changing or adding to the quiz with little
programming knowledge.

The 885-1097 disk requires HDOS, MBASIC
and an H89 computer or H8 computer with
the H17 disk drive and the H19 terminal.

A PROLOGUE.SYS and MENU.BAS are included
with this disk to make the disk accessible
to the youngest user.

The quizes included on this disk are
intented for students in the grades one
to four except the word usage and the
ratio quizes. These two quizes are on
the level of six or seventh grade.

885-1096 MBASIC Action Games $20.00
Take a scenic drive, destroy your
opponent's tank, shoot the enemy planes
down, surround your opponent, blast your
way out or just doodle a while with this
MENU driven HDOS MBASIC games disk.

The 885-1096 disk comes with its own
PROLOGUE.SYS and a linking MENU.BAS to
allow Turn-Key type operation. You will
have to supply HDOS and MBASIC.ABS. You
also need the HB89 computer or H8 computer
with the H17 disk drive and H19 terminal.

SREMark » Issue 18 » 1981

The action within several of the games
included on this disk is created by a
real-time user-defined function. This
user-defined function is explained on
page 24 of this issue of REMark.
The action games are Tanks, Planes,
Surround and Scene Drive.

pon't be fooled by the SCENIC DRIVE, as
you will have to remain on one of the
most crooked roads in AMERICA. This
road is almost as bad as the world famous
Lombard Street of San Francisco. Try
negotiating this road at 55 miles per
hour, many have tried but few have made
it past the hair-pin curves.

The AIRPLANE game has enemy planes flying
overhead and your mission is to shoot
as many as possible with your gun and
guided missle.

The TANK game is for two players and the
object is to shoot the other's tank and
to avoid the large mine field.

The BLAST game is also for two players.
Each trying to blast his way out without
being blown up, by getting too close to
one of the mines when they explode.

The SURROUND game is a really tough one
in that the two opponents are trying to
get the other into a corner causing their
opponent to destroy him/herself.

The DOODLE program is just that,
doodling. You can draw pictures on the
terminal and then save them to disk.
Retrieval is done in HDOS by typing the
file to the terminal.

HUG PRODUCTS LIST

Part Selling

Number Description Price

CASSETTE SOFTWARE (HB and H88)

MISCELLANEOUS COLLECTIONS

885-1008 Volume I Documentation and $ 9.00
Program Listings (some for H11)

885-1009 Tape 1 Cassette $ 7.00

885-1012 Tape II BASIC Cassette $ 9.00

885-1013 Volume II Documentation and $ 12.00
Program Listings

885-1014 Tape II ASM Cassette H8 Only § 9.00

885-1015 Volume III Documentation and $ 12.00
Program Listings

885-1026 Tape III Cassette $ 9.00

885-1036 Tape IV Cassette $ 9.00

885-1037 Volume IV Documentation and $ 12.00
Program Listings

885-1057 Tape V Cassette $ 9.00

885-1058 Volume V Documentation and $ 12.00

Program Listings

17

UTILITIES

885-1034
885-1035

PROGRAMMI
885-1039
885-10L40
885-1045
885-1085
AMATEUR R

885-1027
885-1028

Character Ed Cassette H8 Only
ED/ASM/DEBUG Cassette H8 Only

NG LANGUAGES

WISE on Cassette H8 Only
PILOT on Cassette H8 Only
FOCAL Cassette H8 Only
PILOT Documentation

ADIO

Morse8 Cassette H8 Only
RITY Cassette H8 Only

HDOS SOFT

MISCELLAN

885-~1024
885-1032
885-1044
885-1060
885-1062
885-1064
885-1066
885-1069

GAMES

885-1010
885-1029
885-1030
885-1031
885-1067

885-1068
885-1088
885-1093

885-1096

UTILITIES

885-1019
885-1022
885-1025
885-1043
885-1050
885-1061
885-1063
885-1065
885-1075
885-1077
885-1079
885-1080
885-1082
885-1083
885-1092
885-1095

PROGRAMMI
885-1038
885-1042

885-1059
885-1078

18

WARE (H8 with H17 or H89)
EQUS COLLECTIONS

Disk I H8 /H89

Disk V H8/H89

Disk VI H8/H89

Disk VII H8/H89

Disk VIII H8/H89 (2 Disks)
Disk IX H8 /H89

Disk X H8 /H89

Disk XIII Misc HB8/H89

Adventure Disk H8/H89

Disk II Games 1 HB8/H89
Disk III Games 2 H8/H89
Disk IV Music H8 Only
Disk XI Graphic Games

.ABS or B H BASIC

Disk XII MBASIC Graphic Games
MBASIC Graphic Games

DND Game for HDOS

MBASIC and H89 or H8/H17/H19
MBASIC Action Games

MBASIC and H89 or H8/H17/H19

Device Drivers (HDOS 1.6)
HUG Editor (ED) Disk H8/H89
Runoff Disk HB8/H89

MODEM Heath to Heath H8/H89
M.C.S. Modem for H8/H89

TMI Load H8 Only

Floating Point Disk H8/H89
Fix Point Package H8/H89 Disk
HDOS Support Package HB8/H89
TXTCON/BASCON H8/H89 Disk
HDOS Page Editor

EDITX H8/H19/H89

Programs for Printers H8/H89
Disk XVI Recover, etec.

RDT Debugging Tool HB/HB9 Disk
HUG SY: Device Driver HDOS 2.0

NG LANGUAGES

WISE on Disk H8/H89
PILOT on Disk H8/H89
FOCAL-8 on Disk H8/H89
HDOS Z80 Assembler

- o

5 O 45 B o O B O O B B 8 - € o o o £ o £ o O O 0 -

4 45 4

11.00
11.00

9.00
11.00
11.00

9.00

14.00
11.00

18.00
18.00
18.00
18.00
25.00
18.00
18.00
18.00

10.00
18.00
18.00
23.00
18.00

18.00
20.00
20.00

20.00

10.00
15.00
35.00
21.00
18.00
18.00
18.00
18.00
60.00
18.00
25.00
20.00
20.00
20.00
30.00
30.00

18.00 -

19.00
25.00
25.00

885-1085 PILOT Documentation $ 9
885-1086 Tiny Pascal Disk $ 20,00
885-1094 HUG Fig-Forth H8/H89 2 Disks §$ 40

BUSINESS, FINANCE AND EDUCATION

885-1047 Stocks HB8/H89 Disk $ 18.00
885-10U8 Personal Account H8/H89 Disk $ 18.00
885-1049 Income Tax Records H8/H89 Disk $ 18.00
885-1051 Payroll H8/H89 Disk $ 50.00
885-1055 MBASIC Inventory Disk HB8/H89 $ 30.00
885-1056 MBASIC Mail List H8/H89 Disk $ 30.00
885-1070 Disk XIV Home Finance H8/H89 $ 18.00
885-1071 SmBusPkg III 3 Disks H8/H19/H89 $ 75.00
885-1091 Grade and Score Keeping $ 30.00
885-1097 Educational Quiz Disk $ 20,00
MBASIC and H89 or H8/H1T7/H19

AMATEUR RADIO

885-1023 RTTY Disk H8 Only $ 22.00
885-1052 Morse8 Disk H8 Only $ 18.00
H11 SOFTWARE

885-1008 Volume I Documentation and $ 9.00

Program Listings (some for H11)

885-1033 HT-11 Disk I $ 19.00
CP/M SOFTWARE (version 1.43 -- ORG U4200H)
885-1201 CP/M (TM) Volumes H1 and H2 $ 21.00
885-1202 CP/M Volumes 4 and 21-C $ 21.00
885-1203 CP/M Volumes 21-A and B $ 21.00
885-1204 CP/M Volumes 26/27-A and B $ 21.00
885-1205 CP/M Volumes 26/27-C and D $ 21.00
885-1206 CP/M Games Disk $ 21.00

CP/M SOFTWARE (version 2.2 -- ORG 0)

885-1207 TERM and H8COPY $ 20.00
885-1208 HUG Fig-Forth H8/H89 2 Disks $ 40.00

MISCELLANEOUS
885-0017 H8 Poster $ 2.95
885-0018 HB9 Poster $ 2.95
885-0019 Color Graphiecs Poster $ 2.95
885-4 HUG Binder $ 5.75

CP/M is a registered trademark of
Digital Research Corp.

DID YOU KNOW?

There are approximately 175 programs
available to the computer hobbyist via
Volumes I to V of the Software
Documentation offered by your Heath Users'
Group. These programs, although designed
for the tape user, can be easily modified
and saved to disk. The programs vary
in both content and variety and can serve
as comparisons for that special project
you may want to write.

SREMark « Issue 18 - 1981

Number Base Conversions in FORTH

by Glen B. Haydon, M.D.

Box 429,
La Honda,

I was amused at the BASIC programs for
decimal to binary conversion included
in REMark issue #15. It illustrates the
complexity of BASIC programs.

In FORTH,
defined,
written:

if "BINARY" is not already
its definition can be easily

: BINARY 2 BASE C! ;

Use of this FORTH word for number
conversions is illustrated in the terminal
session (which was echoed at the printer
for the listing following this article).
The only apparent time required is for
the output even if a printer is not used.
Compare the speed of this with the
programs in BASIC.

FORTH is usually used with numbers in
decimal notation. Therefore, one need
simply enter the number to be converted
followed by "BINARY U." and the binary
value will be printed. Then enter a
binary number followed by "DECIMAL U."
and the decimal value will be printed.
The FORTH word "U." causes the number
to be printed as an unsigned 16-bit
number. If the usual word for print,
Mg is used, any number over 32767
decimal is printed as a two's compliment
negative number. To return to the usual
number format without converting a binary
number back simply enter "DECIMAL". This
is much shorter than either BASIC program.

Because of the problems of converting
among the various number systems used
in programming, I devised a FORTH program
(listed below) which defines two H19/H89

Star Route 2

CA 94020

function keys, fl1 and f2, to convert any
number in any base to its value in each
base. Arithmetic can be done among
numbers in various bases and the answer
presented in all bases. The second
function key, £2, is needed for split
octal entry, which is actually entered
as two octal numbers. You should enter
OCTAL first to set the base to octal.
Use fl to enter any other base.

With FORTH, after you load this one-screen
program, all number conversion problems
are solved. Lines 4 and 5 define the
words "BINARY" and "OCTAL", which change
the base for inputting and outputting
numbers. FORTH uses the variable BASE
to store the current input-output base
as a number (2 for binary, etc.). On
lines 5 and 6 are words to convert octal
to split octal (0-S0O) and vice versa
(SO-0). As mentioned before, split octal
values are treated as two separate octal
values. The FORTH word "PRINT" beginning
at line 8 does all of the work. The
columns are labeled and then the output
is formatted for each base and printed.
The current base is saved in the return
stack (»R) and restored after conversion.
Finally, there are the two function key
definitions. These keys are non-printing,
and do not show up on the listing. The
comments in parentheses indicate that
the function keys have been entered.

Following the screen listing is a session
illustrating first simple conversions
as mentioned above, then a sample run
of the program. Since the function keys
do not print, comments show where they
have been entered.

40 LIST
SCR # 40
0 (NUMBER BASE CONVERSIONS IN FORTH by Glen B. Haydon, M.D.)
1 (Modified by P. Swayne)
2
3 [COMPILE] FORTH DEFINITIONS DECIMAL
4 : BINARY 2 BASE C! ;
5 : OCTAL 8 BASE C!
6 : SO-0 SWAP 256 * + ;
7 : 0-S0 OCTAL 0 256 U/ 7 .R ." ." 3 .R ;
8 : PRINT CR CR DUP DUP DUP DUP DUP CR ." SPLIT-OCTAL HEX"
9 " DECIMAL OCTAL BINARY"
10 CR 0-S50 HEX 0 9 D.R 0 12 DECIMAL D.R
11 0 10 OCTAL D.R 0 20 BINARY D.R HEX CR H
12 : (F1) BASE Ce@ >R PRINT CR R> BASE C! DROP H
ii :s (F2) BASE C@ >R S0-0 PRINT CR R> BASE C! DROP H
15

SREMark « Issue 18 » 1981

19

20

Sample Run of the Number Base Conversion Program

65 BINARY U. 1000001 OK

1100 DECIMAL U. 12 OK

7 (£f1 struck)

SPLIT-OCTAL HEX DECIMAL OCTAL BINARY
0. 7 7 7 7 111

OK
HEX D (f1)

SPLIT-OCTAL HEX DECIMAL OCTAL BINARY
0. 15 D 13 15 1101

OK
DECIMAL 7 HEX D + (f1) (add 7 decimal to D hex and print result)

SPLIT-0OCTAL HEX DECIMAL OCTAL BINARY
0. 24 14 20 24 10100

OK
OCTAL 42 200 (f2)

SPLIT-OCTAL HEX DECIMAL OCTAL BINARY
42,200 2280 8832 21200 10001010000000

OK
377 377 (£2)

SPLIT-0OCTAL HEX DECIMAL OCTAL BINARY
377.377 FFFF 65535 1FTLTA 111131113 11111120

OK
EOF

The Versatile LPH24.DVD

Mr. Ted Andrews
672 Washington Ave.
Havertown, PA 19083

To those of you that have received, or are about to receive HDOS 2.0, may I suggest
that you examine the entire package of disks carefully.

Like many HEATH users, I have been looking for a set of good Device Drivers for
my various line printers. Unlike many printer device drivers supplied by other
venders, the HEATH supplied LPH24.DVD, accurately Tabs, Spaces, Form Feeds, and
otherwise prints a true copy of any ASCII file. The only short coming is this
driver only responds to a +12vdc printer buffer full indication on the RTS lead
from the printer.

Now, true to the HEATH standard, there is a bonus for us on the HDOS 2.0 Driver
Source disk. A listing of the nicest LP.DVD anyone could want, "LPH24.ASM".

I use three different types of terminals for producing hard copy. The first is

a H24 type, which sends a high (+12v) on its RTS lead to the computer to indicate
a full buffer. The second is a DIABLO type printer that sends a low (-12v) on its

HREMark «Issue 18 » 1981

RTS lead to the computer to indicate a full buffer. The third is a 43 BSR Teletype
that sends a Control-S to the computer to suspend printing when its buffer is full,
and then sends a Control-Q to restart printing as the buffer empties.

My solution on how to support all three types of printers is as follows:
1) This is a partial listing of LPH24.ASM from HDOS 2.0. In "WAITO" the JNZ

WAITO sets up a do-nothing loop any time the printer places a high (+12v) on its
RTS lead.

TITLE 'HDOS LP: DEVICE DRIVER, H-24 (TI 810)'
*** LPDVD - LINE PRINTER DEVICE DRIVER
*
* G. A. CHANDLER 24-AUG-78
*
WAIT EQU *
PUSH H
WAITO LDA S.CAADR+1
ANA A
JNZ WAIT3 IF CTL-Z,-A,-B,-C HIT
LDA TLP. POR
MOV H,A
MVI L, UR.MSR
CALL IN
ANI UC.CTS
JNZ WAITO BUFFER FULL, RTS= #5 TO +15 VDC (H14 & 24)
WAIT3 POP H
RET
EJECT

2) This is a modified (*) listing with the JZ WAITO0 providing a do-nothing loop
whenever the printer places a low (-12v) on its RTS lead.

WAITO LDA S.CAADR+1

ANA A

JNZ WAIT3 IF CTL-Z,-A,-B,-C HIT

LDA TLP.POR

MOV H,A

MVI L,UR.MSR

CALL IN

ANI UC.CTs

Jz WAITO * BUFFER FULL= -5 TO -15 VDC (DIABLO 1640)
WAIT3 POP H

RET

EJECT

3) This is the modification (*) that performs a do-nothing loop on WAIT5 from
receipt of a CTRL-S to receipt of a CTRL-Q.

WAITO LDA S.CAADR+1
ANA A
JNZ WAIT3 IF CTL-%2,-A,-B,-C HIT
LDA TLP.POR
MOV H,A
MVI L,UR.RBR * RCVR BUFFER REGISTER ADDR
CALL IN READ IT
ANI 7FH * STRIP PARITY
CPI CTLS * IS IT A CTRL-S

FeREMark « Issue 18 » 1981

21

JE WAITS %

WAIT3 POP H
RET

WAITS LDA S.CAADR+1 *
ANA A *
JNZ WAIT3 o
LDA TLP.POR *
MOV H,A »
MVI L,UR.RBR "
CALL IN L
ANI 7FH *
CPI CTLQ N
JE WAIT3 *
JMP WAITS -

YES, GOTO WAITS

IF CTL-2,-A,-B,-C HIT

RCVR BUFFER REGISTER ADDR
READ IT
STRIP PARITY
IS IT A CTRL-Q
YES, GOTO WAIT3
NO,

WAIT FOR IT

This device driver provides all of the normal LPH24.DVD commands. SET 'HELP',

'BAUD', 'FORM or NOFORM',
as well as the Hl4's 'LPI'.

'PAGE',

'LENGTH',

'PORT' and 'WIDTH' are all provided

The only unusual requirement for using this device driver is if you are not driving
an H24 type printer a mysterious character will be printed on line 1, column O.
This can be corrected by entering a 13 (ASCII Carrage Return) for the length, EG:

SET LP: LENGTH 13.

HUGBB Via MicroNET

Well, another month has gone by and the
HUGBB is still improving. Russel Renshaw
of CompuServe continues to make
enhancements to the existing Bulletin
Board. We may actually be using that
projected "new" Bulletin Board I have
been advertising for the past few months.
I do not know for sure if there will ever
really be another Bulletin Board but if
there isn't, that is "OK" by me. Our
existing Bulletin Board is the envy of
the other special interest groups on
MicroNET. 1In fact, the Super Wizard uses
our BB as an example to new interested
groups.

For the past few months, I have been
adding 70+ HUG members to the HUGBB member
list. This is really something! The
original Bulletin Board was never written
to operate with this many users. The
message base on the existing BB has a
limit of 200 possible messages. We are
reaching a level where this limit 1is
reached during the middle of the week,
the slow part of the week. If I do not
monitor the BB periodically during the
weekend, it would easily exceed this
message base.

This minor problem does not concern me
as this is just a programming modification
to the existing software. What lifts
my curiousity is why the continued
interest in the HUGBB and similiar
services from computer systems like
MicroNET and the SOURCE?

22

As you might have read, we have just begun
a new HUG Bulletin Board on the SOURCE.
NO, we are not moving the HUGBB to SOURCE,
nor are we giving up what we have taken
so long to build on MicroNET. This
service on the SOURCE is just a "Message
Board" for the members of SOURCE who do
not have the opportunity to get on to
the HUGBB via MicroNET.

What does all this mean to you the user,
whether or not you have already
experienced this "new world" of Multi-user
systems?

As we view our present industrial and
economical "world", what are the things
that stand out as being "long-lasting"?
What industries are continuing to grow
and demand expertise in engineering,
production and marketing? Where is the
best return on an investment?
Transportation? No! Look at the auto
or railroad industries. Space
exploration? Well, maybe engineering
but production and marketing expertise?
How about communication? Ah ha . . now
we're cookin'! What about computers?
Why sure! This is obvious . . why else
would you be reading this article! So,
what am I getting at?

First, let's attack communication. An
advertisement I am sure we have all heard
via radio waves or seen via television
is that "business calls" are much more

FrREMark « Issue 18 = 1981

efficient than those long expensive
business trips. What is this saying to
us? Maybe that we are demanding better
communication. What does this imply?
Just the telephone? Not likely! Maybe
this implies new and better communication
devices! Is satellite television a
communication device? Ah ha, what does
that imply?

Second, what of this fascinating world
we as HUG members are involved with
everyday with these "crazy contraptions™"
called computers? Computers . . wOw,
that means everything from microprocessors
on a single intergrated circuit to the
most complex large system which occupies
an entire building. 1Is one independent
of the other? 1Impossible! Are these
two different "worlds" of computers to
be used to compliment each other? Yes,
and they must if computer technology is
to continue to develop and become more
attractive.

Communication and computers . . . is there
something with these two industries?
Are they, working together, going to have
a major impact on our future? If so,
how soon? These are the questions that
come to mind when I wonder why are more
and more users looking to computer service
systems such as MicroNET and the SOURCE.

I guess the answer is right there . . .
communication and computers. What we
see today on MicroNET or the SOURCE are
large computer systems talking to
microprocessors via telephone lines.
Is this a preview of what will become
common practice in the near future? Bob
and I foresee that within two years much
of our transfer of information, be it
programs, utilities or games will be done
via this type of media. Does this really
seem possible? Well, at 1000+ new HUG
members being added per year, just on
MicroNET (and this is accelerating) . .
what type of demand is this going to put
on HUG, MicroNET, the SOURCE, and the
telephone company? This does not include
any other special interest groups which
are strickly hobbyists. What of
businesses?

As these demands increase, what will
happen? Well, when calculators came out,
as a student I could not afford to buy
one, even with just the arthimetic
operations. Now you can purchase
programmable calculators for less than
that. Do we project that the same will
happen with computers via telephone
lines. Again I mention satellite
television . . is this another media means
to improve and lower the expense of
communication between computer systems?

I felt that I had about completed this
article when just today, I was made aware

HeREMark « Issue 18 = 1981

of an interesting note on the HUG Bulletin
Board. Paul Mayer (70040,645) left me
a message telling me of a mini-CBBS system
which he runs on his HB8/H47/H17. This
mini-CBBS is run solely on his H8 and
is independent of any outside computer
system. The mini-CBBS is a service that
local Chicago users are able to access
as a group. Is this another angle for
information exchange of the VERY near
future?

Well, have I answered my curiousity?
Yes and no! Yes, because this might
explain why more and more interest is
being shown with MicroNET, the SOURCE,
and other Bulletin Board services . . .
No, because I have simply created new
questions that cannot be answered today!

With all this in mind, I realize that
for us to stay closed minded to the SOURCE
and stay strickly with MicroNET is simply
not fair to what is taking place "right
under our noses"! The SOURCE has plenty
to offer, as well as MicroNET. Many users
cannot afford to purchase accounts to
both . We do not expect that. However,
as HUG representatives we cannot afford
not to "open that door" to the SOURCE
and what we can learn from it.

*SYSOP <TLJ>

HUGBB Via “SOURCE”?

What's that you say . . a HUG Bulletin
Board on the SOURCE? Yep!! . . . Well,
sorta. The SOURCE has provided a spot
on their POST Board for Heath users or
anyone for that matter to exchange info.

This "Bulletin Board" is not intended
to replace, take away, hinder or do any
such thing to the HUG Bulletin Board on
MicroNET. This is intended to provide
an access to HUG via the SOURCE.

This
bulletin board per
simulates a message board. For lack of
a better term I will refer to the
"Bulletin Board" on the SOURCE as the
"Message Board".

"Bulletin Board" is not really a
se but actually

To access the "Message Board" (MB), use
the POST function of the SOURCE. You
may READ or SEND messages through POST.
At the SOURCE prompt ">" you only need
to enter the KEYWORDS . . POST READ HUG.
This will take you directly to the HUGMB
where you can READ any or all of the
messages left to date.

Now this brings up a few interesting
questions.
VECTORED TO PAGE 32

23

Real-time Functions under HDOS MBASIC

A real=-time function may be used in HDOS MBASIC by using the user-defined function.
This brief article is not to teach how to use the user-defined function rather to
show an application for the user-defined function. See TLJ's article in this REMark
for further information on user-defined functions.

The actual program is only a few lines long, however the use of these lines is not
as difficult as it may seem at first. The important information is contained in
lines 2000 to 2080. In these few lines the dimensioning and setup of the actual
user defined function is done.

The comments within the listing explain the indivdual functions of each line so
further information is felt best explained by actually using the routine.

Examples of this routine may be found in several HUG programs, including the
following programs:

Program Name HUG PéN

SINK.BAS -

PLANE.BAS 885-1068
LUNAR.BAS 885-1088
SCENCECAR.BAS 885-1097
TANKS.BAS 885-1097

SURROUND.BAS 885-1097
AIRPLANES.BAS 885-1097

10 . INPUT.BAS Real-Time For HDOS MBASIC

20 CLEAR 5000:° . . Clear String Space

30 WIDTH 255:°' Set Terminal Width

40 DEFINT A-Z:' Define A-Z as Integer

50 GOSUB 2010:' Set Input Buffer to Zero
L]

100 PRINT TAB(25)AS$:' Game Functions
110 °* =

120 GOSUB 1000:'
130 °* =

140 IF AS$="E" THEN STOP:
150 ! . = .
160 GOTO 100:" . .
900 GOSUB 2070:'.
910 END:' .

920 ! i . i
1000 X=USRO(0):"'.

1010 IF X>96 AND X<123 THEN X=X-

Get a Character if there was one

B8 8 — a4 s 8 & & =

heck Input For What You're Looking For

- - . .
-

Zero Input Buffer Before END

X=ASCII Value of Input Character
Check For Lower Case Letters

[%]

1020 AS$=CHRS$ (X):' " Make A$ Equal STRING Of X
1030 RETURN:' = Return Tto Where We Came From
1040 * . - E = s .
2000 ' . & Real Time Function for MBASIC
2010 DIM UO(3):"'. Dimension U0 (3)

2020 UO(0)=&H36:"
2030 U0(l)=&HL1FF:'
2040 U0 (2)=&H77D8:"
2050 U0 (3)=&HCY9:"' =

2060 DEF USRO=VARPTR(UO(0)):'
2070 IF USRO(0)<>0 THEN 2070:"
2080 RETURN:' 5 H

Setup U0 (0)

Setup U0 (1)

Setup U0(2)

Setup U0 (3)

Define USRO

Make Sure USRO Equals Zero (0)
Return To Where We Came From

O T T T
T L R T S % R S T S T T o HC SN S S R ST S)

24 ¥ REMark - Issue 18 1981

Disk Catalogs from BASIC or Tiny Pascal

Luis E. Suarez
PO Box 66994
Caracas 1061-A
VENEZUELA

The following programs open DIRECT.SYS to read the HDOS Directory. '1‘1.1e program
was first developed in Tiny Pascal and then converted to BASIC. I used T:'Lny_Pascal
because it is possible to code truly structured programs, from then on it 1s very
easy to convert it to BASIC.

The file names are filed in DIRECT.SYS as follows:

H D 0] S
000110 000104 000117 000123 000000 000000 000000 000000

s Y s
000123 000131 000123 000000 000000 000003 000360 000000

000006 000022 000002 000145 000024 000150 000025

The above example corresponds to the first name filed in DIRECT.SYS. We are
interested in the first 11 bytes that are devoted to filed names and in byte 15
which defines the FLAG. If no name is filed or the file has been deleted then the
first byte will be octal 377. Everything finishes with byte octal 376. Let's see
what could be done with those remaining bytes. The programs follow.

00015 REM : DIRECT.BAS by Luis E, Suarez

00025 REM : OPEN DIRECT.SYS AND LIST DIRECTORY

00035 REM : THIS ROUTINE COULD BE INSERTED IN ANY BASIC PROGRAM TO LIST THE
00045 REM : DISK DIRECTORY WITHOUT EXITING TO HDOS TO DO SO.

00055 REM : VALUES IN THIS PROGRAM ARE DECIMAL

00065 REM : VARIABLE B AT LINE 180 COULD BE USED TO DEFINE FLAGS.

00075 REM : DELETE ODD LINES TO SAVE SPACE.

00085 REM : DIMENSIONING VAR AS$

00090 DIM AS(1l1)

00100 INPUT "CAT (L) OR CAT/S (S) ";IS$

00110 PRINT CHRS$ (27)"E"

00120 Cl=1: N=0: IF I$="L" THEN Cl=0

00130 OPEN "DIRECT.SYS" FOR READ AS FILE #1

00135 REM : IF NO NAME, JUST READ ALL 23 BYTES UPDATE COUNTER AND BACK AGAIN
00140 B=CIN(1l): IF B=255 THEN FOR A=2 TO 23: B=CIN(l): NEXT : N=N+23: GOTO 140
00145 REM : IF END OF FILE PRINT BLANK LINE AND FINISH.

00150 IF B=254 THEN PRINT : END

00155 REM : IF VALID, STORE CHARACTER IN BS

00160 B$=BS$S+CHRS (B)

00165 REM : READ BYTE 2 TO 8, STORE THEN IN BS AND ADD A PERIOD

00170 FOR A=2 TO 8: B$=B$+CHRS (CIN(1l)): NEXT : BS=BS+". "

00175 REM : READ BYTES 9 TO 11. STORE THEM IN BS. THIS IS THE NAME EXTENSION.
00180 FOR A=9 TO 1ll: BS$=BS+CHRS (CIN(l)): NEXT

00185 REM : JUST READ BYTES 12 TO 14

00190 FOR A=12 TO 14: B=CIN(l) : NEXT

00195 REM : READ BYTE 15. CHECK IF CORRESPONDS TO S FLAG.

00200 B=CIN(l): IF B>96 THEN C=1: IF Cl=1 THEN C=0

00205 REM : JUST READ BYTES 16 TO 23

00210 FOR A=16 TO 23: B=CIN(l): NEXT

00215 REM : PRINT NAME ACCORDING TO FLAGS.

00220 IF C=0 THEN PRINT B$

00225 REM : CLEAR VARIABLE BS$

00230 C=0: BS=""

00235 REM : UPDATE COUNTER. IF 506 BYTES WERE READ, READ NEXT 5 AND RESET COUNTER
00240 N=N+23: IF N=506 THEN FOR A=l TO 6: B=CIN(l): NEXT : N=0

00245 REM BACK AND START AGAIN

00250 GOTO 140

SREMark « Issue 18 « 1981

25

DIRECT.PAS By Luis E. Suarez}

WRITTEN IN TINY PASCAL]}

OPEN DIRECT.SYS AND LISTS CURRENT FILES WITH FLAGS}

THIS PROCEDURE COULD BE INSERTED IN ANY PASCAL PROGRAM TO LIST}
THE DISK DIRECTORY WITHOUT EXITING TO HDOS TO DO SO}

PROC DIRECT; {DELETE THIS LINE TO RUN IT AS A PROGRAM}
VAR FLAG, X, CHR, CHRl, CHR2: INTEGER;
BEGIN
WRITE(27,69) ; {CLEAR DISPLAY}
FOR X:=0 TO %14 DO
MEM[$76146+X] :=0; {THIS ALLOWS NON ASCII CHAR. IN GET COMMAND}
CHR1:=0;
CHR2:=0;
RESET ('SY0 : DIRECT. SYS') ; {OPEN DIRECT.SYS TO READ}
REPEAT {THIS ROUTINE READS BYTES IN GROUPS OF 23 EACH}
GET (CHR) ; READ FIRST BYTE}
FLAG:=0; FLAG WILL BE 0 IF NAME EXIST}
IF CHR = %377 THEN CHANGE FLAG TO 1 IF THERE IS NO NAME}
FLAG:=1;
IF CHR = $376 THEN {CHANGE FLAG TO 2 IF END}
BEGIN
FLAG:=2;
CHR2:=1
END;
CHRL :=CHR1+23; {BEGIN COUNTING GROUP OF 23 BYTES}
CASE FLAG OF
: BEGIN
WRITE(27,106,9,CHR) ; [WRITE FIRST CHARACTER}
FOR X:= 2 TO 8 DO READ BYTES 2 TO 8}
BEGIN
GET (CHR) ;
* WRITE (CHR) {WRITE 1T}
END; NEXT BYTE PLEASE}
IF FLAG=0 THEN WRITE(27,107,9,9,'.'); {WRITE PERIOD}
FOR X:=9 TO 11 DO {READ BYTES 9 TO 11}
BEGIN
GET (CHR) ;
WRITE (CHR) WRITE IT}
END; NEXT BYTE PLEASE}
FOR X:=12 TO 14 DO READ BYTE 12 TO 141
GET (CHR) ; YOU COULD USE THEM
GET (CHR) ; {READ BYTE 15 (WHAT THE FLAG IS)}
CASE CHR OF {DEFINE FLAGS}
$20: WRITE(9,9,9,'C'); {WRITE FLAGS}

$40: WRITE(9,9,9,'W');
$100: WRITE(9,9,9,'L");
$120: WRITE(9,9,9,'CL");
$140: WRITE(9,9,9,'LW');
$200: WRITE(9,9,9,'S"');
$240: WRITE(9,9,9,'SW');
$260: WRITE(9,9,9,'SWC');
$300: WRITE(9,9,9,'SL');
$340: WRITE(9,9,9,'SLW');
$360: WRITE(9,9,9,'SLWC')

END; END FLAG CASE]}
FOR X:=16 TO 23 DO READ BYTE 16 TO 23}
GET (CHR) ; THEY COULD BE USED TOO}
WRITE (10) DO A LINE FEED}
END; END VALID NAME CASE}
1: FOR X:=2 TO 23 DO [NO NAME. JUST READ THOSE BYTES}
GET (CHR)
END; {END NO NAME CASE}

LISTING CONTINUED ON PAGE 32

26 HeREMark « Issue 18 = 1981

Comments on the FORTH Language

FORTH is rapidly becoming one of the most
popular computer langquages for the
advanced user. Many see it as surpassing
Pascal for some applications, and it is
already in wide use. For example, the
Atari company is using FORTH to write
programs for coin operated games, and
many other manufacturers are using it
in similar (hardware controlling)
applications.

FORTH is probably one of the most unusual
languages available for microcomputers.
It combines a compiler, an interpreter,
and an operating system in one. It is
interactive like BASIC, and you can enter
commands and have them executed
immediately as in the BASIC command mode.
It is a compiler that in some cases
produces code more compact than assembly
language. It is also an operating system
and has its own way of creating and
accessing disk files. It is an extensible
language, which means that when you
compile a program you have written, it
actually becomes part of the language
itself. Writing a program in FORTH
consists of defining words, similar to
the way fuctions and procedures are
defined in Pascal. Like Pascal, FORTH
is highly structured. 1Its compiler makes
only one pass through the source (single
pass compiler), and there is no GOTO,
so everything must be defined before it
is used. Words that have been defined
can be used in further definitions until
you arrive at a single word that does
the whole job. You can run a program
in FORTH by typing that final word.

FORTH is often referred to as a systems
language because it is well suited to
operating hardware systems. Most
implementations of FORTH (including HUG
FORTH) do not support floating point math,
so it is not widely used in business or
scientific calculations, but I predict
that a floating point package will soon
be available. Since FORTH is extensible,
compiling the floating point package will
make it part of the language. 1In a sense,
FORTH is obsolescense proof.

FORTH uses Reverse Polish Notation (RPN)
for mathematical operations and for the

whole language as well. For example,
the FORTH equivalent of the BASIC statement

PRINT 1 + 1

would be

11+.

SREMark « Issue 18 = 1981

(.) is one of the FORTH words
for PRINT. (There are several, to meet
various needs. For example, .R prints
a number right justified in a specified
field.) Note that each word in FORTH
must be separated from other words by
at least one space. You could not say
"] 1 +.", because FORTH would see "+."
as one word which may not be defined.
The use of RPN can be a bit confusing
at first, but if you work at it, it will
eventually make sense. (Hewlett Packard
users will feel right at home.) For
example, in an IF statement, the thing
to be decided upon comes before the IF.
In BASIC (or most other languages) you
say

The period

"IF A > B THEN do if true ELSE do if false

In FORTH, you would say

(A) (B) > IF do if true ELSE do if false
The variables A and B are in parentheses
because variables are not normally used.
Forth uses a last-in first-out stack for
passing parameters which makes the use
of variables almost unnecessary. If they
are used, their values must first be
placed on the stack. This is normally
done using the FORTH word €@ (pronounced
"fetch"), so the above example becomes

A @B @ > IF do if true ELSE do if false
NUMBERS

FORTH can perform operations with bytes
(8 bits), words (16 bits) and long words
(32 bits). The base used to input and
output numbers can be readily changed
in a program or in the interactive mode.
That makes it easy to write programs that
convert numbers from one base to another
in FORTH (see "Number Base Conversions
in FORTH" in this issue).

Mathamatical operations in FORTH are
usually done using signed 16-bit integers,
allowing a range of -32738 to 32737.
The HUG implementation also supports
addition and subtraction using signed
32-bit integers (for a range in excess
of + or - 2 billion), and mixed
multiplication and division (two 1l6-bit
numbers multiplied to get a 32-bit
product, or 32 bits divided by 16 bits
to get 16 bits).

DISK 1/0

As a disk operating system, FORTH is

27

somewhat primitive. It accesses the disk
as "screens" of lk bytes each. Since
a Heath 5-inch drive can hold 100k bytes,
each disk can hold 100 screens, which
are numbered 0 to 99. Screens are
accessed by number only, so there are
no named files. (But you can define a
word that loads in a program from
particular screens, and in that sense
files can have names.) Screen numbering
continues through the drives, so a disk
in SYl: would contain screens 100-199.
If you put a program on screen 50 in SY0:,
then transferred that disk to SYl:, the
program would be on screen 150.

A SAMPLE PROGRAM

To allow you to compare FORTH to another

language, I have translated the color
graphics program from REMark issue #17
from Tiny Pascal to FORTH. The
translation was very easy since both
languages are structured. I learned from
this that Tiny PASCAL, which compiles
to an .ABS file, is about 2 or 3 times
faster than FORTH, which compiles to a
series of addresses that must be
interpreted by an Address Interpreter.
The address interpreter jumps to the
routines pointed to by each address in
the series, and these can again be more
address lists or they can be executable
machine code. A language which uses
addresses pointing to addresses pointing
to addresses, etc., is called a threaded

language.
PS:

"BOUNCE" Color Graphic Program in FORTH

for the HA-8-3 Color Graphic Board

SCR # 30

0 (BOUNCE -- COLOR GRAPHIC PROGRAM IN FORTH)

FORTH DEFINITIONS HEX
(DEFINE CONSTANTS)
4 CONSTANT DKBLU

0 CONSTANT PNT

800 CONSTANT PGTL
20 CONSTANT PCTL
380 CONSTANT SNT

B9 CONSTANT VDPCTL

VodonswWwNE

(DEFINE SHR AND SHL)
: SHR (SHIFT RIGHT:
0 DO 2 / LOOP ;

(SHIFT LEFT:
0 DO 2 * LOOP ;

: SHL

—_—

e
Ve WO

SCR # 31

ol =

: WVD
DUP VDPCTL P!

VDPDAT P! ;

DUP VDPCTL P!

WO EWN
>

8 CONSTANT MDRED
300 CONSTANT PNTL
1000 CONSTANT PGTE
320 CONSTANT PCTE
0 CONSTANT SGT

(WRITE AN ADDRESS TO THE VDP:

OF CONSTANT WHITE
800 CONSTANT PGT
300 CONSTANT PCT
380 CONSTANT SAT
B8 CONSTANT VDPDAT

number count SHR)

number count SHL)

(BOUNCE COLOR GRAPHIC PROGRAM -- PAGE 2)
(VIDEO RAM AND REGISTER CONTROL)
(WRITE DATA INTO VDP RAM:

val adr WVD)

8 SHR 3F AND 40 OR VDPCTL P!

adr WVA)

8 SHR 3F AND 40 OR VDPCTL P! ;

adr RVD data)

val reg WVR)

: RVD (READ DATA FROM THE VDP RAM:
10 DUP VDPCTL P!
11 8 SHR 3F AND VDPCTL P!
12 VDPDAT P@ ;
13 : WVR ({ WRITE TO A VDP REGISTER:
14 SWAP VDPCTL P!
15 7 AND 80 OR VDPCTL P! -——>
SCR # 32
0 (BOUNCE COLOR GRAPHIC PROGRAM -- PAGE 3)
1 DECIMAL
2 : DRAWBOX ({ DRAW A BOX, TOP SIDE OPEN)
3 DKBLU 3 SHL
4 24 1 DO
5 DUP I 5 SHL 5 + PNT + WVD
6 DUP I 5 SHL 27 + PNT + WVD
7 LOOP
8 23 5 SHL
9 27 6 DO

28

SeREMark « Issue 18 * 1981

=
o

2DUP I + PNT + WVD

11 LOOP DROP DROP ;
12 -—>
13
14
15
SCR # 33
0 (BOUNCE COLOR GRAPHIC PROGRAM -- PAGE 4)
1 DECIMAL
2 0 VARIABLE X 0 VARIABLE Y 0 VARIABLE VX 0 VARIABLE VY
3 : THROW (THROW A BALL AND BOUNCE IT
4 50 X! 10y ! 15 vX 1 0 Vy |
5 BEGIN VX @ VY @ OR Y @ 173 < OR WHILE
6 Y @ 175 < IF VY @ 2+ VY | ENDIF
7 Xaevie+X| Yevyraea+y!
8 X @ 208 > IF 416 X @ - X 1 VX @ MINUS 4 / VX ! ENDIF
9 X @ 48 < IF 96 X @ - X | VX @ MINUS 4 / VX ! ENDIF
10 Yy @ 176 > IF 352 Y@ - Y ! VY @ MINUS 2 / VY | ENDIF
11 SAT WVA
12 Y @ VDPDAT P| X @ VDPDAT P!
13 50 0 DO LOOP (DELAY)
14 REPEAT ;
15 ==>
SCR # 34
0 (BOUNCE COLOR GRAPHIC PROGRAM —-- PAGE 5)
1 HEX
2 : IVDP (INITIALIZE VIDEO DISPLAY PROCESSOR)
3 WHITE SGT 800 / SAT 80 / PGT 800 / PCT 40 /
4 PNT 400 / 80 O (INITIALIZATION VALUES)
5 8 0 DO I WVR LOOP
6 PGT WVA PGTL 0 DO 0 VDPDAT P! LOOP
7 PNT WVA PNTL 0 DO 0 VDPDAT P! LOOP
8 PCT WVA PCTL 0 DO I 10 MOD VDPDAT P! LOOP
9 3C 7E FF FF FF FF 7E 3C (BALL VALUES)
10 SGT 400 + WVA
11 8 0 DO VDPDAT P! LOOP (INSERT THE BALL)
12 DO MDRED 80 64 64
13 SAT WVA 5 0 DO VDPDAT P! LOOP
14 CO 1 WVR ; (ENABLE VIDEO)
15 ==>
SCR # 35

(MAIN PROGRAM)
BOUNCE

IVDP
DRAWBOX

5 0 DO
THROW
1000 0 DO LOOP
LOOP ;

DECIMAL ;S (END OF PROGRAM)

o Tl e
N WwhhFEFOWORdJO U & e=O

(BOUNCE COLOR GRAPHIC PROGRAM -- PAGE 6)

(INITIALIZE THE COLOR BOARD)
(DRAW THE BOX)

(DO IT 5 TIMES)
(THROW THE BALL)

(DELAY)

EOF

A Caution from Q. A.

The Quality Assurance Department of Heath
Company passed along additional
information regarding head cleaning
techniques for both disk drives and
cassette recorders. Siemens, the
manufacturer of the drives used in both

S REMark « Issue 18 « 1981

the H-8 and H-89, strongly discourages
using tape head cleaner or cleaning
diskettes such as Scotch 3M 744D. They
suggest that we USE ONLY SOFT COTTON VERY
LIGHTLY SOAKED WITH ISOPROPYL ALCOHOL.

29

Using Double Sided Drives on the H17

With the new HUG SY: device driver (see
New HUG Software), it is now possible
to increase your disk capacity under HDOS
2.0 by using double sided drives.
However, as the description of the HUG
SY: device driver states, the HB requires
the extended configuration option to use
double sided drives. If you don't have
(or can't get!) an extended configuration
option (HA-8-8) for your H8, here is a
hardware modification for the H17 that
will allow you to run double sided drives
without the EC option.

is a schematic of the
modification. This circuit decodes port
362 octal when the IOW line is active
to produce a pulse when the computer
writes to the port. This pulse is used
to latch the current value of data line
D6, and this latched value becomes the
side select signal for the disk drives.
This duplicates the side select capability
that is already built into an HB89
computer. The RESET line is used to
ensure that side 0 of the disk is selected
at power-up or when the computer is

Figure 1

operate the drive as a single sided drive,
maintaining compatibility.

The circuit was built by mounting 3 wire
wrap sockets on a small piece of perf
board. I wired the internal connections
first, then attached wires about six
inches long to each of the external
connections (that go to the H17). I
plugged in the IC's and mounted the whole
thing upside down with double stick tape
near the lower right corner of the board
under Ul9. I drilled a small hole in
the board to the right of Ul9 where it
would not cut any traces, and ran the
wires coming from the mod board through
it, and connected them to the appropriate
places. I cut the wire wrap pins as short
as possible so the board would fit in
my HB8 next to another board. I tested
the circuit by attaching a logic probe
to pin 32 of S103. It should show a logic
high when you first turn the computer
on. If you send 100 octal to port 362
(with the front pannel), it should go
low, and if you send 000, it should go
high again. 1If it passes this test, you

reset. With this arrangement, software should be able to run double sided drives.
that cannot handle two-sided disks can -
RESET +5
BUS PIN 29
4
PR |}
74Ls74 | CL
BUS PIN 16 —2° Zip q}® SIDE 5193 pIN 32
CLK
741562

BUS PIN 21

74L582

U24-10 ——1
U24-8 ——
u25-6
U25-4
u25-1

Uu25-13

u25-1@
U25-9

74LS30A

11|

Double Side Mod for the H17 Controller Board

30

srREMark « Issue 18 « 1981

IF CHR1=506 THEN {WE HAVE READ 506 BYTES FROM 512}

BEGIN

FOR X:=1 TO 6 DO {READ NEXT 6 BYTES TO FINISH THIS BLOCK}

GET (CHR) ;

CHRL1:=0 {RESET COUNTER TO 0

END
UNTIL CHR2=1

BACK AGAIN
STOP IF BYTE=376}

END; |REPLACE THE SEMICOLON BY A PERIOD TO RUN IT AS A PROGRAM}

Local HUG News

CHUG - The Capital Heath Users' Group
has 190 active members. This particular
group is one of the largest in the country
according to CHUG President, Bill
Johnson. This group supports classes
for the beginner at Fairfax High School
in Fairfax, VA. The classes are lead
by members of the club and include
introduction to many of the computer
languages, HDOS, and the system itself.
CHUG meets on the third Monday of each
month at Fairfax High School. For
additional details on becoming a member
of this growing group, contact Denny Smith
(703) 978-1260 or write to CHUG; Box 341;
Fairfax, VA 22030. Thanks CHUG for your
continued support of the Heath Users'
Group and the Heath User.

OOPS!euceese

Hans Korn of HUG, Germany wrote that their
group (approx. 200 strong) is now starting
with plans for formal meetings. We had

published in Issue 15 of REMark that a
new group was just getting together in
Frankfurt. Hans let me know in gquick
order that his club had been active for
two years and invited those individuals
to join them in their efforts at HUG,
Germany. For further details, please
contact Hans at the HUG premises in
Robert-Bosch-Strasse 32-38,
Dreieich/Frankfurt.

MUG....HEC BB on the SOURCE

The Mission Kansas Heath Electronics
Center supports the local users' group
known as MUG. Dave Kobets, the store
Manager, has produced a small bulletin
board on the Source for the area users'
and any other individual that is
interested in following the activities
of MUG. Several of Dave's group have
already contacted HUG via the new POST
section for Heath users' found on the
SOURCE. Dave encourages activity on the
MUG BB and recent announcements on HUG
POST should increase the input. For
further information on MUG, contact Dave
Kobets at the Mission, Kansas Heath Center

Changing your address? Be sure and let us know since the software catalog and
REMark are mailed bulk rate and it is not forwarded or returned.

HUG MEMBERSHIP RENEWAL FORM

When was the last time you renewed?

Check your ID card for your expiration date.

REMEMBER — ENCLOSE CHECK OR MONEY ORDER

CHECK THE APPROPRIATE BOX AND RETURN TO HUG

NEW MEMBERSHIP

IS THE INFORMATION ON THE REVERSE SIDE CORRECT? FEE IS:
IF NOT FILL IN BELOW.
RENEWAL RATES
Niitis) e US DOMESTIC $15] $18 []
CANADA $17 J US FUNDS $20
Address . o INTERNAT'L* $22 [] US FUNDS $28]
City-State S * Membership in England, France, Germany, Belgium, Hol-
land, Sweden and Switzerland is acquired through the
Zip . e p— local distributor at the prevailing rate.

FeREMark = Issue 18 « 1981 31

located at 5960 Lamar Avenue or phone
(913) 362-4486. Thanks Dave for bringing
the MUG BB to our attention.

H-8 NOW RUNNING A BULLETIN BOARD.....

Paul Mayer and Dave Lecnard have recently
completed many hours of construction to
produce a "home built" BB service. They
inform us that the entire system is
comprised of Heath hardware. The system
is a fully loaded H-8 operating with an
H-47 and the H-17-3 for a total of five
drives for storage. Should you wish to
take a look at what can be done when the
motivation is there, try your modem on
(312) 671-4992. Paul believes this is
the first "ALL-HEATH" system ONLINE as
a mini-MNET. What a project guys!!!!
(NEAT BOARD TOO!!!!)

VECTORED FROM PAGE 23

SRR T Is SOURCE slower than
MicroNET? Do you have to print out all
those instructions each time you want
to do something e.g. MAIL or POST? What
did I mean by KEYWORD in the previous
paragraph? Well, these and other
questions Bob and I will attempt to answer
in the following issues of REMark where
we will have a place for the HUGMB via
SOURCE.

For this issue I will just say a few words
about these questions. To a beginner
or someone who does not understand the

SOURCE, MicroNET appears to be more user
oriented. This is really not the case.
The SOURCE uses KEYWORDS, which simply
means this allows you to go any place
on the SOURCE just by entering the proper
KEYWORDS. The proper KEYWORDS can take
you "around" all the instructions and
time comsuming "jargon" that appears on
the screen each time you use some DATA
command. This will greatly increase the
speed and efficiency of SOURCE and as
you "play™ with the system and learn what
it can do, you will see how very power ful
it really is. (That is for future
issues.)

One final note about SOURCE: SOURCE
application forms are available through
all the Heath stores. For reference on
comparison of cost of MicroNET versus
SOURCE, see Bob's article in issue 17
of REMark, "A RE-VISIT WITH THE SOURCE".

If you are wondering why we are spending
so much time with SOURCE and MicroNET,
be sure to read the article "HUGBB via
MicroNET".

<TLJ>

A Heath
Users’
Group

Hilltop Road
St. Joseph Ml 49085

POSTMASTER: If undeliverable,
please do not return.

885-2018

BULK RATE
U.S. Postage
PAID

Heath Users’ Group

	REMark_issue18_1981_Page_01
	REMark_issue18_1981_Page_02
	REMark_issue18_1981_Page_03
	REMark_issue18_1981_Page_04
	REMark_issue18_1981_Page_05
	REMark_issue18_1981_Page_06
	REMark_issue18_1981_Page_07
	REMark_issue18_1981_Page_08
	REMark_issue18_1981_Page_09
	REMark_issue18_1981_Page_10
	REMark_issue18_1981_Page_11
	REMark_issue18_1981_Page_12
	REMark_issue18_1981_Page_13
	REMark_issue18_1981_Page_14
	REMark_issue18_1981_Page_15
	REMark_issue18_1981_Page_16
	REMark_issue18_1981_Page_17
	REMark_issue18_1981_Page_18
	REMark_issue18_1981_Page_19
	REMark_issue18_1981_Page_20
	REMark_issue18_1981_Page_21
	REMark_issue18_1981_Page_22
	REMark_issue18_1981_Page_23
	REMark_issue18_1981_Page_24
	REMark_issue18_1981_Page_25
	REMark_issue18_1981_Page_26
	REMark_issue18_1981_Page_27
	REMark_issue18_1981_Page_28
	REMark_issue18_1981_Page_29
	REMark_issue18_1981_Page_30
	REMark_issue18_1981_Page_31
	REMark_issue18_1981_Page_32

