

-
on the cover. . ..

"'but Uncle Gerry . .. ?

\Photo by Gerry Kabelman

BACK-TO-SCHOOL
NUMBERS — An example of COMPUTER AIDED IINSTRUCTION.

~

J

4 on the stack

*CAI — WITH “NUMBERS” .. .oiiirinireiininnananss 3
Gerry Kabelman

REMark 20 — A Special Issuecc0uvnnnn 6
The HDOS Device Driver Programmer’s Guide 7
Al Dallas, Dale Lamb, Tom Jorgenson

New HUG Softwareccoiiiiiiiiiniinannas 16
HUG Product Listcovvvurnninnnnnnnnnnianannes 17
A Review of Small Business Package III 23
Terry Jensen

Corrections to SBPIIIcoivivinnnricnnnnnen. 24
Gerry Kabelman

Buggin’ HUG .. .vevmensmmsmsssnesssvesissiin oo 25
Using an Extended Capacity Drive as SY0: 28
Patrick Swayne

HUGBB Stiuff ... civiyvaisuinimanineseisve sovinviiesin 29
Heath Related Productscovvuvvenninnnns 31
Local HUG NeWSccviinnnnnnnnnnsnennnnnransnns 32

*Computer Aided Instruction

M

“REMark” is a HUG membership magazine pub-
lished ten times yearly. A subscription cannot be
purchased separately without membership. the
following rates apply.

U.S. Canada &

Domestic Mexico International

$20 US FUNDS $28
$17 US FUNDS $22

$18
$15

Initial

Renewal

Membership in England, France, Germany, Bel-
gium, Holland, Sweden and Switzerland is ac-
quired through the local distributor at the prevail-
ing rate.

Back issues are available at $2.50 plus 10% hand]l-
ing and shipping. Requests for magazines mailed
to foreign countries should specify mailing
method and add the appropriate cost.

Send payment to;

Heath Users’ Group
Hilltop Road
St. Joseph, MI 49085

Although it is a policy to check material placed in
REMark for accuracy, HUG offers no warranty,
either expressed or implied, and is not responsible
for any losses due to the use of any material in this
magazine.

Articles submitted by users and published in RE-
Mark, which describe hardware modifications, are
not supported by Heathkit Electronic Centers or
Heath Technical Consultation.

HUG Manager and Editor Bob Ellerton
Assistant Editor and
Software Developer........... Patrick Swayne

HUG Secretary Nancy Strunk
Software Developer Gerry Kabelman
HUG BB .« onummmwessnmysmmemesums Terry Jensen

Copyright © 1981. Heath Users’ Group

HUG is provided by Heath Company as a service to
its members for the purpose of fostering the ex-
change of ideas to enhance their usage of Heath
equipment. As such, little or no evaluation of the
programs in the software catalog, REMark or other
HUG publications is performed by Heath Com-
pany, in general and HUG in particular. The pros-
pective user is hereby put on notice that the prog-
rams may contain faults the consequences of
which Heath Company in general and HUG in
particular cannot be held responsible. The pros-
pective user is, by virtue of obtaining and using
these programs, assuming full risk for all consequ-

m%REMark

HREMark - Issue 20 « 1981

NUMBERS

"But Uncle Gerry, I don't know how to do that!!", exclaimed Melissa when the
division problem appeared on the screen as shown on the cover of this issue of
REMark.

Melissa's complaint is about the program called NUMBERS.BAS and follows on the
next couple of pages.

NUMBERS.BAS is an example of a COMPUTER AIDED INSTRUCTION (CAI) program. Many
educators, parents and students have requested CAI programs for use with the
Heath/Zenith computers. HUG is offering the NUMBERS.BAS program as an example
of what a CAI program can do. HUG also has available a complete disk of CAI
programs running under HDOS and MBASIC. This disk, HUG part 885-1097 ($20.00),
is described in detail in issue #18 of REMark.

NUMBERS.BAS is a very good example of a CAI program for addition, subtraction,
multiplication and division using one inch numbers for the early elementary
students.

The program is broken down into four sections and may best be explained by
reviewing the listing and trying it.

The sections are:

Description Line Numbers

. Startup 10 to 200
2. Letter & Number Setup 1000 to 1550
3. Main Program 2000 to 2560
4. Subroutines 10000 to 16040

The letter and number setup is the most important part of this program. Lines
1000 to 1040 create the parts of the characters, while lines 1100 to 1550 actually
create the characters from the parts. Also note the subroutines for inputting and
printing the large characters.

This program may not make you an Einstein, but it will help you feel like you could
be one.
:GK:

10 ° NUMBERS.BAS Version 07.01.81 :GK: @

100 CLEAR 9000 :WIDTH 255:DIM L$(130)
110 E$=CHRS (27) :EP$=E$+"E":Y$=ES+"Y" :F$=E$+"F":G$=E$+"G" : P$=ES$+"p" :0$=E$+"q"
120 Y5$=E$+"y5"+Q$:X5$=E$+"x5":QL$=CHRS (34) :AL$=CHRS (64) : JS=ES+"J": @

200 PRINT EP$X5$:LSS=" "e

1000 B$=ES$+"B":D$=E$+"D":D1$=D$+D$:D$=D1$+D1$+D1$+BS$:D1$=D1S$+D$: @
N1$="iiiiii"4D$:N2s=" ii"+D$:N3$="1ii "+D$:@
N4$=" ii "4D$:N5$="ii ii"+D$:N6$="iiii "+D$:@
N7$="iii ii"+D$:N8$="ii ii "+DS @

1010 M1$="ii iii"+D$:M2$=" iiii "+D$:M35=" ii "+DS$:@
M4S=" ii "4+D$:M58=" iiii"+D$:M6S="iiiii "+DS$:@
M7$=" iii "4D$:M8S=" ii ii"+D$:M9S=" "ips @

1020 O1$="ii ii ii"+D1$:02%="iii 1ii"+D1§:03§="iiiiiiii"+D1§ @

1030 CS$=ES+"C":C$=C$+CS+CS+CS:CS=CS+CS:AS=ES+"A" :RS=AS+AS+AS+ASHASHCS:UPS=AS
1040 B1S$=DlS$+UPS:B2S$=" "4pl$:@

S REMark « Issue 20 « 1981

1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550

2000
2010

2020
2030

2040

2050
2060
2070
2080
2090
2100
2110

2120
2130

J Setup of Characters

L$(7)="":" Bell
L$(8) Bl$+B2$+B2$+B2$+B2$+B2$+R$ Backspace
L$(32)= () SPACE
L$(33) Nl$+Nl$+Nl$+Nl$+M9$+Nl$+R$+UP$!

L$(37)=N5S+M3S+N4S+M4AS+NSS+RS :

LS (43)=MI9$+N4S+N1S+N4S+MIS+RS: '
L${45}=M9$+M9$+Nl$+M9$+M9$+R$:‘
L${48)=Nl$+N5$+N5$+N5$+N1$+R$

L$(49)=" iii "+DS+N4S+NAS+N4S+N1S+RS:
L$(50)=N1$+N2S+N1S+N3S+NIS+RS: "'
L$S(51)=N1S$S+N2S+M5S+N2S+N1S+RS:"
L$(52)=N5S$+N5$+N1S+N2$S+N2S+RS :
L$(53)=N1$+N3$+N1S+N2$S+N1$+RS:
LS (54)=N1S+N3S$+N1S+N5S+N1S+RS:
L$(55)=N1$S+N2$S+N2S+N2S+N2S+RS$:
L$(56)=N1S+N5S$+NLS+N5S+N1S+RS:
LS (57) =N1S$+N5$S+N1S+N2S+N1S+RS: "'
LS (63)=N1S$S+N5S+N2S+M55+N4S+BS+N4S+RS+UPS+UPS:
L$(65) =M2S+N5$+N1S+NSS+N5S+RS =
LS (66)=N1$+N5S+M6S+NS5S+NLS+RS: "
LS(67)=NLS+N3S$+N3S+N3S+NLS+RS:"'
L$(68)=N1$+MBS+MB8S+MBS+N1S+RS:!
L$(69) =N1$+N3S+N6S+N3IS+N1S+RS: "'
L$(70)=N1$+N3S+N6S+N3S+N3S+RS: '
LS(71) =N1S+N3$+M1S+N5S+NLS+RS '

%
+
0
1
2
3
4
5
6
7
8
9
$
A
B
C
D
E
F
G
LS(72)=N5$+N5S+N1S+N5S+N5S+RS : H
LS$(73)=M2S+N4S+N4S+N4S+M2S+RS: I
L$(74)=N2$+N2S+N2S+N5$+N1S$+RS$: J
L$(75)=N5$+NBS+N6S+NBS+N5$+RS : K
LS(76) =N3S+N3S+N3S+N3S+N1S+RS: L
L$(77)=025+035+01$+01$+015+" "+RS:' M
LS(78) =N5S+N7S+N1S+M1S+N5S+RS: "' N
LS(79)=L$(48) ' 0]}
LS (80)=N1S+N5S+N1S+N3IS+N3S+RS:"' P
L$(81)=N1$+N5$+N5S+M1S+N7$+RS: " Q
LS(82)=N1$+N5S+NLS+NBS+N5S+RS: " R
LS (83)=LS$(53):" S
LS(84)=N1$+N4S+N4S+NAS+NAS+RS: " T
LS$(85) =N5S+N5S+N5S+N5S+NLS+RS ¢! U
LS (86) =N5S+N5$+N5S+M25+N4S+RS: "' \'
LS (87)=01$+015+01$+03$+025+" "+RS:' W
LS$(88) =N5S+M2S+N4S+M2S+N5$+RS ! X
LS (89) =N5$+N5S$+M2S+N4AS+N4AS+RS: ' 4
LS(90)=N1$+N2S+N4S+N3S+N1S+RS: ! Z
L$(127)=L$(8) :" D

elete @

' Print "HELLO MY NAME IS Z89"
Al=1:PRINT Y$" O";:S$="HELLO" :GOSUB 16030 :PRINT Y$"& ";:5$="MY NAME IS":@
GOSUB 16030 :PRINT Y$",6";:S$="2Z89":GOSUB 16030: GOSUB 11000:@

y Print "WHAT IS YOURS?"

PRINT EP$; :S$="WHAT IS":GOSUB 16030 :PRINT Y$"& ";:S$S="YOURS":GOSUB 16030:@
PRINT ¥Y5$" "y$". ";:86="2":GOSUB 16030

GOSUB 15010:@

' Print "HOW MANY QUESTIONS?"
PRINT EPS$; :S$="HOW MANY":GOSUB 16030

A=0:B=0:C=0:

PRINT Y$"& ";:5$="QUESTIONS" :GOSUB 16030

PRINT Y$"00";:5$="2 ":GOSUB 16030:N=1:GOSUB 15010
A=VAL (AlS$)

IF A<l THEN 2060 ELSE 2120 @

A=INT(A) :' Allow only integers
PRINT EP$:@

HREMark « Issue 20 » 1981

2140 ° Start selecting numbers to be used. @

2150 Random Function @
1=Addition @
2=Subtraction @
3=Multiplication@
4=Division

W=INT(RND (1) *PEEK (8219)) ;'

2160
2170
2180
2190
2200

IF W>4 THEN 2150
J=10:J1=10
IF W=2 THEN J=20:GOTO 2200
IF W=4 THEN J=100:GOTO 2200
X=INT(RND(1l) *PEEK (8219))+1:'@

lst Random Number
2210
2220
2230

IF X>J THEN 2190
FOR I=1 TO W*(RND(l)) :NEXT I
Y=INT(RND(l) *PEEK(8219))+1:'@

2nd Random Number
2240
2250

IF Y>J1 THEN 2200
ON W GOTO 2260,2270,2280,2290

2260
2270

Z=X+Y:GOTO 2320:"'

ELSE GOTO 2150:'
Z2=X*Y:GOTO 2320:'
IF ¥Y=0 THEN 2150

2280
2290
2300

ELSE GOTO 2150:°

Find Sum

IF X>Y THEN Z=X-Y:GOTO 2320:@

Find Subtrahend
Find Multiplicand

IF INT(X/Y)=X/Y THEN Z=X/Y @

Find Dividend @

2310 ! Print Numbers

2320 GOSUB 13010

2330 PRINT PSYS$"0?";:N=1:GOSUB 15010:21=VAL(AlS)

2340 PRINT YS$"O;"ES"J";

2350 IF LEN(Al$)=3 THEN 2380 @

2360 Z2=Z1:GOSUB 14010:' Reprint Answer if only one character @

2370 ! If answer is CORRECT

2380 IF Z=Z1 THEN PRINT EP$;:55=" RIGHT" :GOSUB 16030 :PRINT YS$"& ";:@
GOSUB 12010:GOSUB 11000 :B=B+1:C=C+1:IF A=B THEN 2420 ELSE 2130 @

2390 ! If answer is INCORRECT

2400 Z2=Z:PRINT YS$"0 "J$;:5S5=" WRONG!":GOSUB 16030:GOSUB 11000 :PRINT YS$"0 "J$;:@
GOSUB 14010:B=B+1:IF A=B THEN 2420 ELSE 2130 @

2410 ! Print up tally display

2420 PRINT EPSYS" ";:5$="END SCORE":GOSUB 16030 @

2430 ¢ C=Score & A=Number of Problems

2440 PRINT Y$"& ";:SS$=STRS(C) :GOSUB 16000

2450 S$=" RIGHT":GOSUB 16030

2460 PRINT Y$", ";:S5$="0OUT OF ":GOSUB 16030

2470 SS$=STRS$(A) :GOSUB 16030 @

2480 '
2490
2500
2510

Figure Percentage Correct * Display It
IF C/A=1 THEN PRINT FY"20";:S$="100 %" :GOSUB 16030:GOTO 2510
Cl=INT(C/A*100) :S$=STR$ (C1l)+" $":PRINT YS$"2"CHRS$ (64);:GOSUB 16030
GOSUB 11000:@

2520 !
2530 GOSUB 11000
2540 S$="AGAIN? ":PRINT EP$;:GOSUB 16030 :PRINT ¥5$; :AL$=INPUTS (1) : PRINT X5%;

Delay Visual "BYE"

2550 IF Al$="Y" OR Al$="y" THEN 2060

2560 PRINT EP$;:S$=" BYE":GOSUB 16030 :PRINT YS"& "YS5$5:END:@
10000 *** SUBROUTINES **%* @
11000 FOR S=1 TO 100:NEXT S:°' Time Delay

11010 RETURN @

12000 ° Select & Print Correct Message
12010 ON INT(RND(1)*5)+1 GOTO 12020,12030,12040,12050,12060

12020 ss$=" BRAIN":GOTO 16030

I=REMark « Issue 20+ 1981

12030 ss=" WOW" :GOTO 16030
12040 S$="HAVE MERCY":GOTO 16030
12050 S$="FANTASTIC":GOTO 16030
12060 S$=" EINSTEIN":GOTO 16030 @

13000 °

Print Numbers For Problem

13010 PRINT EPSSYS" 2?";:S$=STRS$(X) :GOSUB 16000 :PRINT Y¥YS$"'?";:5$=STRS(Y) :GOSUB 16000

13020 ON W GOTO 13030,13040,13050,13060
13030 PRINT FSYS$"(5"L$(43);:G0TO 13070
13040 PRINT FSYS$S"(5"L$(45);:GOTO 13070
13050 PRINT FSYS"(5"L$(88) ;:GOTO 13070
13060 PRINT FSYS$" (5"N4$SMISNISMISNAS;

13070 PRINT YS$".0"STRINGS (46,"i")GS$S:RETURN @

14000 °

Print Answer In Proper Position

14010 S$=STR$(Z2) :PRINT Y$"0?";:GOSUB 16000:GOSUB 11000:GOSUB 11000 :RETURN @

15000 "
15010 Als="":'

Input Characters

15020 PRINT Y5$;:A$S=INPUTS (1) :PRINT X5$;:IF A$=CHR$ (13) THEN 15090

15030 IF A$=" " THEN PRINT "

";:AlS=AlS+" ":GOTO 15020

15040 IF (A$=CHRS$ (127) OR AS$=CHR$(8)) AND LEN(Al$)>0 THEN 15100
15050 IF N=1 AND (AS$>"/™ AND AS$<":") THEN @
PRINT FL(ASC(Af})G$;:A1$=Al$+A$:GOT0 15020

15060 IF A$>""" AND AS$<"

" THEN AS$=CHRS (ASC(AS$)-32)

15070 IF N=1 OR (A$<"A" OR A$>"{") THEN PRINT "";:GOTO 15020
15080 PRINT FSLS(ASC(AS))GS$;:Al$=A1$+AS$:IF LEN(AlS$)=9 THEN 15090 ELSE 15020

15090 N=0:GOTO 16040

15100 IF RIGHTS$(Al$,1l)="W" OR RIGHTS(Al$,1)="M" THEN PRINT E$"D"ES$"D";
15110 PRINT L$(8) ; :A1$=LEFTS$ (Al$,LEN(Al$)-1) :GOTO 15020 @

16000 s2$=s$:'
16010 IF LEN(S$)>2 THEN 16030
16020 IF LEN(S2$)<3 THEN PRINT L$(32)"

Print LARGE Characters

"::828=528+" ":GOTO 16020

16030 FOR I=1 TO LEN(S$) :PRINT F$LS$(ASC(MID$(S$,I,1)))GS;::NEXT I

16040 RETURN

REMark 20 — A Special Issue

This Issue of REMark is indeed speciall!
Contained in the following pages is
probably one of the most important single
articles (or should I say manuals?) that
has been featured in a long time. Al
pallas, the Editor of NIBBLE, in
cooperation with both Dale Lamb and Tom
Jorgenson have produced The HDOS Device
Driver Programmers Guide. Similiar to
The HDOS Programmers Guide which most
of you are familiar with, this great piece
of work answers some of those questions
most often asked. How about this one? --
"Wwhat is PIC CODE and how is it
implemented?" OR -- "How can I construct
a special DVD for my XYZ printer?" Maybe
this one -- "What can be accomplished
by constructing my own DVD?"

All of these questions and a lot more
will be answered by reading what AL, Dale,
and Tom have put together in the following

pages. Your Heath Users’ Group feels that
this information is S000 complete and
useful, that the entire text and related
appendices are included in the following
pages. The information even includes,
as Appendix D, Dale Lambs CK.DVD. CK.DVD
is a real-time clock that actually becomes
a part of your operating system.

Be sure that you hold on to Issue 20 of
REMark as it will probably be one that
will be termed "collector's item" in the
future. Further, the information in The
HDOS Device Driver Programmers Guide
will prove most valuable as we, together,
strive to do more "work" with our
computers!

‘wREMark « Issue 20+ 1981

The HDOS Device Driver Programmer’s Guide

By Al Dallas (70250,637),
Dale Lamm (70555,302), and
Tom Jorgenson (70120,153)

Introduction

What is a device driver? Under HDOS, a device driver is a relocatable
program (usually less than 3K) which the operating system loads in order to
communicate with external devices. When programmers speak of HDOS as a "high-level"
or sophisticated operating system, one of the things they have in mind is this
device-independence, which makes HDOS adaptable to just about any peripheral
equipment.

Originally, device drivers were a method of providing software support for
the Heath line of printers. The console and disk device drivers were built-in to
HDOS, because 1) they constitute a minimum system, 2) their functions are more
sophisticated than those of printers or punches, and 3) it was assumed that end
users would not need access to them. Users, it seems, have surprised quite a few
with their knowledge, programming ability, and above all, their desire for access
to everything about their computer. Heath's introduction of the H47 8" disk drives
demonstrated a need for greater flexibility for mass-storage devices as well as
printers. The result was version 2.0 of HDOS, which allows device drivers for "mass
storage devices", such as disk drives.

Obviously, a device driver is necessary in order to use HDOS and system
utilities with a peripheral device. A functioning device driver incorporates the
entire system; i.e., SYSCMD's COPY and CAT commands will work with the new device,
as will PIP and even MBASIC (provided the driver is loaded first). This is very
powerful, as it amounts to "patching™ the entire operating system and high-level
languages to suit potentially unique external equipment. It also opens the door
to psuedo-device driver development, such as a software clock.

We assume the reader has a good knowledge of assembly language programming
techniques. The relocatable aspect of the driver code coupled with the numerous
system communication parameters, flags and "magic" addresses make device drivers
challenging to the uninitiated. Registered owners of HDOS 2.0 have several Software
Tools at their disposal -- Heath supplies several device drivers in source code
gorm along with a plethora of .ACM files describing system equates and other useful

ata.

Environment

The basic HDOS Memory Map includes HDOS resident in high memory, overlay
space below it, and user code below that. When overlays are required, they are
moved into position, relocated (more on this later) and entered (meaning the program
counter jumps to the starting address and begins execution). Overlays are transient
-— space is not permanently allocated to them -- unless HDOS must run with SY0:
dismounted (i.e., Stand-Alone). Device drivers function the same way, and the
driver must be LOADed at the command level (by SYSCMD) in order to allocate space
permanently. Loading from within a program (by using the .LOADD system call) does
not 'lock' the driver in memory. The routine to do that is explained later.

At boot-time, HDOS builds a Device Table in memory by scanning the Directory
for two-letter files with the .DVD extension. It reads in each file's header and
checks that it is flagged as a device driver, in an attempt to keep prying hands
from creating illicit device drivers. HDOS must be re-booted to re-build this
table, so remember to re-boot after assembling, debugging, or renaming a device
driver. Curiously, the device table includes the physical sector of the device
driver and therefore deleting a .DVD file on SY0: and then referencing it can
confuse things badly. HDOS has verified that a valid .DVD file exists at a
particular sector which the GRT now flags as available for new files -- prudent
programmers will avoid this situation by simply re-booting after all creation,
deletion or change of device drivers. Note also that device drivers on disks other
than SY0: are not "known" to the system because they are not included in the table.

HREMark « Issue 20+ 1981

User programs access any new devices just the same as typical Heath
devices. Performing an .OPENW with HL pointing to 'CK:' as the name is just as
valid as 'AT:' as the name, though what the driver chooses to do with the data it
is sent may be totally different. To better lace the ties with the operating
system, HDOS informs the driver as it performs each step. For instance, a MOUNT
CK: command causes HDOS to first load the device driver, then check device ready
status, and finally mount the device. At each step, as HDOS finishes what it has
to do, the driver code is entered and the appropriate function is requested, so
that the driver code is informed of the action. The SY: driver, for example,
doesn't care about the OPEN command -- it returns 'no error' to HDOS, where the
real work is done (setting up tables, flags, etc.). However, an LP: device cannot
be mounted, so if this function is requested, the driver must flag an Illegal
Function error upon return. MBASIC is even simpler. Any device can be used as
a data sink, provided its driver defines it as capable of WRITE, and the driver
was first LOADed from the command mode. Just 'OPEN "O",1,"DV:", and start PRINTing
data to #1.

PIC Header

PIC stands for Position Independent Code, probably the biggest hurdle to
overcome for the potential device driver programmer. Device Drivers are, for all
intents and purposes ORG'd at address 6. Why 6 and not 0 in a minute. When HDOS
loads the driver into memory, its exact location will vary based on a number of
factors including the amount of RAM in the computer. Therefore, HDOS must relocate
(change all the addresses) in the driver before running (entering) it, so that the
various JMPs and CALLs know where they're going. To keep track of which bytes need
relocation, the assembler treats PIC code differently and generates a relocation
table of bytes at the end of the actual program. Routines in HDOS process this
table and change the necessary addresses.

Binary files in HDOS are stored with a header, or descriptor, to flag the
file type and note the starting and entry addresses and the length of code. For
this purpose, Heath has supplied the PICDEF.ACM file, which (starting at 0)
generates a six-byte header, and creates the offset mentioned above. The header
format is:

Byte Value Description

0 377Q Binary File Flag

1 1 File Type = PIC
2,3 Length of Code + Rel Table
4,5 Address of Start of Rel Table

These are the actual bytes -- assembly language (as opposed to machine language)
programmers do not refer to them directly. It is important to refer to actual
values and absolute addresses by their symbolic names because the code is much more
easily adapted to future releases (it also helps reduce a common source of errors).
The only way to learn these techniques is by observing examples -- and the Heath
device drivers and XTEXTs are especially good. Insert the PICDEF.ACM as an XTEXT
last thing before the first actual program instructions, followed by CODE PIC in
the opcode and operand fields. The CODE PIC pseudo must come before the start of
the program (so that the entire program will be relocatable), but after all the
external definitions (such as H17 ROM addresses) which are not to be relocated.

The INIT program supplied with HDOS is capable of initializing just about
any mass-storage device when passed certain parameters. MAKMSD.ABS is a program
to concatenate your xx.DVD file with a xxINIT.SYS file containing these parameters
and device-specific initialization routines. One format for the xxINIT.SYS file
1s:

512-byte Read-Only Boot Driver (org'd at 42200Aa)

Sub=-Functions
Media Initialization

Volume Parameters
Cluster Sizes
Directory Offsets

Studying the SYINIT and DDINIT examples distributed with HDOS 2.0 will
bette; explain how these files must be confiqured, but there is considerable
latitude.

sREMark « Issue 20+ 1981

Device Header

The first 15 bytes of the file constitute the device header, defined as
follows:

Byte Value Description
0 307Q Device Driver Flag
1 Device Capabilities Byte
2 Mounted Units Mask
3 Maximum Number of Units
4-11 Unit Capabilities for 0 - 7
12 307Q Device Driver Flag (if device will take
Set options)
13 Pointer to INIT code (set by MAKMSD)

Bear in mind that these are the actual bytes, not the symbolic values.
It is dangerous to ignore the Heath XTEXTs, because future compatibility requires
their use. The actual bytes are shown here as an aid to understanding what the
XTEXTs accomplish. The Device Driver flag is apparently just an arbitrary 11000111
pattern used to validate the driver code. The Device Capability Byte is defined:

Bit: 76543210
0 Directory-Type Device
1 Capable of Read
2 Capable of Write
3 Capable of Random-Access
4 Capable of Character Mode

These capability codes are defined in the DEVDEF.ACM file supplied by
Heath. The Mounted Units Mask is typically defined as 0 for variable numbers of
units, or 1 for devices with only one unit. The Maximum Number of Units is 8 (0..7)
for any device, but your driver can set this to any value between 1 and 8. For
each valid unit, the unit capability is flagged as explained above, and each invalid
unit if flagged with a zero. These 13 bytes are used directly in building the
Device Table entry in HDOS. Another 22 bytes are reserved by Heath prior to the
Set Entry Point, by use of the symbolic SET Entry Point, DVD.STE.

Set Entry

The SET.ABS program is used to patch device driver files, among several
other things. The address 53Q is considered the SET entry point, and the next 469
bytes are reserved for SET processing. To assure that these important addresses
are maintained, Heath device drivers make use of the error-checking abilities of
ASM to flag an error if the correct address is not produced. DVD.STE is defined
as 53Q, and this code follows the header bytes:

. SET 025Q (SET is used as an ASM psuedo here)
ERRNZ LE
DS DVD.STE-.

SETN EQU *

ERRNZ *-DVD.STE

A 'P' error is generated while assembling the program if this critical
address (SETN) is not 53Q, but the technique allows the value of DVD.STE to be
changed at any time, reassembling, and preserving the intent of the code. An
undocumented feature of the 2.0 Assembler is the ability to turn relocation on and
off, and therefore legally SET a value to the Origin pointer (*), thus:

CODE -REL Turn Relocation Off
: SET *

CODE +REL Turn Relocation On

DS DVD.,ENT-.

. These procedures are not mandatory, they simply represent good programming
practice, make the code easier to update, and easier for others to work on.

The SET program loads the device driver into a convenient location in memory

srREMark = Issue 20+ 1981

and relocates the first 512 bytes (the Header and the SET processor). It then
enters the driver's SET portion, passing a unit number parameter in A, and a pointer
to the rest of the command line in DE. From here, your program can do anything
you want, except that memory values thus updated must be in the part of the code
that was not relocated. Only this portion is read back to the disk by SET when
done, to save having to un-relocate the set code. Rather than free-wheeling,
however, due to the limited space for set functions, most Heath drivers make use
of routines in the SET.ABS program itself to process the various options. These
useful routines are documented in Appendix C.

The primary routine, $SOP, is the Set Option Processor. $SOP is called
with BC pointing to the command line, DE pointing to a processor table, and HL
pointing to an option table. $SOP matches the command line to an option in the
table, uses the index found in this table to fetch the processor (sub-routine)
address, and then jumps to that processor with HL pointing to any additional data
in the option table and BC pointing to the rest of the command line. The option
table is defined as follows:

DW End of Table Address

DB Number of Data Bytes following option
DB 'SEARCH STRIN','G'+200Q

DB Index into Processor Table (8 Bit)

DB Additional Data Bytes (N - 1)

DB 'NEXT STRIN','G'+200Q

DB 0 (End of Table)

The processor table lists routines:

DW HELP
DW FLAG... etc.

Refer to the Heath Device Drivers for the assembly language methods used
to implement these tables and provide for modification ease, documentation, and
compatibility with future releases.

SET commands should include a HELP command which prints a list of valid
commands. Typically, SET commands will either set a flag bit in a variable
somewhere, or change a value. To assist these operations, the SET.ABS program
includes the $PBF and S$PBV routines. Both routines are compatible with $SOP, so
that the FLAG or VAL processors listed in the processor table need only jump to
$PBF or $PBV. The difference is evident in the option table data structure. $PBF
expects at least 5 data bytes following the option string and $PBV expects 6.

$PBV Data Bytes:
DB Default Radix (2,8,10)
DB Minimum Value
DB Maximum Value
DW Address of Variable

$PBF Data Bytes:
DB Mask (Bits to Alter)
DB Bit Pattern to Set
DW Address of Variable
DB 0 (if 6 data bytes are used)

S$PBV is quite sophisicated. The Default Radix is used unless the user
specifies B, D, Q, etc. after the value. $PBF uses a fail-safe mask just as the
.CONSL SCALL does (see the System Programmer's Guide to HDOS). The remaining SET
routines are described in the new SETCAL.ACM included as Appendix C.

Driver Entry

Starting at DVD.ENT (2000A, typically), the remainder of the device driver
code is just that -- device driver. HDOS enters at this address with (A) equal
to a Device Communication code as defined in DDDEF.ACM. If (A) exceeds DC.MAX,
the driver must flag an Illegal Request error. Functions which are logical for
the device in guestion (Write for a printer, for example) must be directed to
appropriate processors. However, inappropriate functions must return errors to
HDOS. In a gray area between are functions which are not erroneous, but at the

10 seREMark « Issue 20+1981

same time require no processing by the driver. These functions simply return no
error to HDOS.

READ enters with a byte count in BC (typically a multiple of 256), a buffer
address in DE (to which the data must be read), and a block number in HL. A block
number is equal to a logical sector number (i.e., 320 as opposed to Track 32, Sector
0). A serial device simply ignores any value in HL.

WRITE is the same as READ, except that DE points to the data to be written
out to the device.

READ REGARDLESS is anachronistic. It involves reading the label sector
on the disk, disregarding volume number protection. Chances are good your driver
can either map it to READ, return no error, or return a Device Not Suitable error
without processing it at all.

OPENR opens a file for read. Disk drivers typically ignore all OPENs, but
a tape device driver might use OPENR as a signal to rewind a data tape.

OPENW opens a file for write. The LP: device driver, for instance, uses
this routine to initialize and prepare the device, a function that would probably
be handled by READY if the driver had been first written under 2.0.

OPENU opens a file for update (random read/write). You most likely will
not have to deal with this, in that the really tricky part is handled by HDOS.

CLOSE presents a good opportunity to dump a buffer out to a printer, but
disk drivers typically ignore it.

ABORT cancels the current operation. The SY: driver resets the device,
seeks track zero, and exits with no error flagged. LP: flags a Device Driver Abort
error before leaving, however.

MOUNT is used by the SY: driver to set up volume protection and to seek
track zero. (Register L = the volume number at entry). LP: ignores this routine.

LOAD is used by SY: to initialize constants in system RAM, re-vector
obsolete ROM code, etc. This is a new function for 2.0.

READY is another function added for 2.0. Your code should perform some
test to verify that your device is ready and return no error to HDOS. 'C' set
indicates that the device is not ready, and HDOS will provide the loop -- this way,
HDOS remains cognizant of interrupt requests as opposed to hanging up in your
routine.

Often, a device driver may want, under certain circumstances, to load itself
permanently in memory. The following code from SYSCMD.SYS explains the simple
process.

LHLD S.SYSM Update System FWA

SHLD S.RFWA

LHLD AIO.DTA Get Device Table Address
LXI D,DEV.REX Offset to Residency Flag
DAD D

MOV A, M

ORI DR.PR Set Flag = Perm. Resident
MOV M, A

These symbols are defined in the DEVDEF.ACM, ESINT.ACM and ESVAL.ACM files.
This works because HDOS has variable pointers which are addressing our device driver
as it is entered. 1If the code is to be locked, this routine must be called before
any other device I/0 is attempted. 1In fact, it is usually not a good idea to
perform system calls from within the device driver, because it was entered using
the system call process which is only partially re-entrant.

You may want to include a LON G pseudo in your code just before the end
to direct the assembler to list the relocation table. Heath drivers typically
include a patch area here as well. With PIC code, entry begins at PIC.COD, so there
is no need for an operand with the END statement.

SREMark « Issue 20+ 1981

11

12

Summary

Writing or modifying a device driver should not be beyond the capabilities
of any assembly language programmer. Looking at naked Heath driver code can be
confusing due to the large number of symbolic values assigned in .ACM files
elsewhere, but studying these examples is the best way to learn about device
drivers. Remember to define all external (non-relocating) addresses before using
the CODE PIC psuedo, and to confine the variable accessed by SET to addresses higher
than DVD.ENT.

This guide represents Al Dallas' study of device drivers and the HDOS
Version 1.6 source code listings, along with many suggestions and helpful guidance
of two HDOS wizards, Dale Lamm and Tom Jorgenson. There are no warranties, express
or implied and Heath Company takes no responsibility for the data herein.

APPENDIX A
Minimum XTEXTs

DDDEF.ACM Device Driver Communication Flags
DEVDEF. ACM Capability Flags, etc.

DVDDEF.ACM Driver Header Equates

ECDEF.ACM Error Code Definitions

ESINT.ACM For Direct HDOS operations only
ESVAL.ACM Direct operations only

PICDEF.ACM PIC Format

SETCAL.ACM Routines in SET.ABS

APPENDIX B

Typical Driver Layout

0 - PIC.COD PIC Header

PIC.COD - 20 Driver Header

21 - 42 Reserved

DVD.STE - SET Code

DVD.ENT-1 Entry Processor

Processor Routines

Processor Table

Option Table
DVD.ENT - ?2 Driver Code

Entry Processor

Processor Routines

Sub-Routines

Data Area

APPENDIX C
SETCAL.ACM

SETCAL SPACE 4,10
ok SETCAL - ROUTINES IN SET.ABS

SSNA SPACE 3,10

* SNA - SCAN TO NEXT ARGUMENT

* SNA IS CALLED TO SKIP OVER BLANKS

*

* ENTRY: (BC) = LINE POINTER

* EXIT: (BC) UPDATED

* 'z' SET IF AT END OF LINE

* USES: A,F,B,C

$SNA EQU 42201A

$DCS SPACE 3,10

** DCS - DELIMIT CHARACTER STRING

*

* ENTRY: (BC) = LINE POINTER

* EXIT: (BC) UPDATED

* (DE) = ADDR FIRST STRING CHAR
* (HL) = ADDR LAST STRING CHAR
* (A) = STRING LENGTH

wREMark = Issue 20+ 1981

x 'Z' SET IF STRING EMPTY
* USES: ALL
$DCS EQU 42204A

SCNA SPACE 3,10
i CNA - CONVERT NUMERIC ARGUMENT

* CNA CONVERTS ARGUMENT IN COMMAND LINE TO
* A BINARY VALUE

*

* ENTRY: (BC) = LINE POINTER

* (A) = DEFAULT RADIX

* EXIT: (BC) = UPDATED

* (HL) = VALUE

* 'C' SET IF ERROR

* USES: ALL

SCNA EQU 42207A

SFST SPACE 3,10

*k FST - FIND IN SERIAL TABLE

* FST SEARCHES A SERIAL TABLE FOR A
* SPECIFIC KEY

*

* ENTRY: (HL) = ADDR OF TABLE

* (DE) = ADDR OF SEARCH KEY
* EXIT: (DE) = UNCHANGED

* 'Z' SET IF MATCH FOUND
* USES: A,F,H,L

SFST EQU 42212a

$TBLS SPACE 3,10

* % TBLS - TABLE SEARCH

* TABLE FORMAT:

* DB KEY1, VALl

* * *

* %* *

* DB KEYN, VALN

* DB 0

*

* ENTRY: (A) = PATTERN

* (HL) = ADDR OF TABLE

* EXIT: (A) = PATTERN IF FOUND
* 'Z' SET IF FOUND

*

USES: A,F,H,L
$TBLS EQU 42215A

SWTBLS SPACE 3,10
L ks WITBLS - WORD TABLE SEARCH
LOOK-UP WORD VALUE USING 1-BYTE KEY

*

* TABLE FORMAT:

* DB KEY1

* DW VALL

* * *

* * *

* DB KEYN

* DW VALN

* DB 0

*

* ENTRY: (A) = PATTERN

* (HL) = ADDR OF TABLE

* EXIT: (A) = PATTERN IF FOUND
* 'zZ' SET IF FOUND

* USES: A,F,H,L

SWTBLS EQU 42220A

$LBD SPACE 3,10

:* LBD - LOOK UP BAUD RATE DIVISOR
* ENTRY: (DE) = BINARY BAUD RATE
* EXIT: '2Z' SET IF VALID BAUD RATE
*

(HL) = DIVISOR
USES: AJF;D,E;H,L
SLBD EQU 42223A

rREMark « Issue 20+ 1981

*

$SOP

* % % ok F *

$SopP

S$PBF

APPENDIX D

CK.DVD

* % ¥

DVDFLV
DVD.ENT
DC.MAX
DT.CR
DT.CW
EC.EOF
EC.FNO
EC.ILR
EC.FAO
UIVEC
STBRA
NL

CAL

% d Kk

14

TITLE
STL

PBV

SPACE
SOP -~

ENTRY

EXIT:

USES:
EQU

SPACE
PBF -

ENTRY
EXIT:
USES:
EQU

SPACE
PBV -

ENTRY

EXIT:

USES:
EQU

3,10

SET OPTION PROCESSOR

(BC) = LINE POINTER
(DE) = PROCESSOR TABLE ADDRESS
(HL) = OPTION TABLE ADDRESS

(RET) TO PROCESSOR IF NO ERROR

(BC) = UPDATED

(HL) = NEXT AVAILABLE DATA BYTE
ALL

42226A

3,10

PROCESS BYTE FLAG

(HL) = ADDR OF TABLE VECTOR
'C' SET IF ERROR

ALL

42231A

3,10

PROCESS BYTE VALUE

(BC) = NEXT CHAR ADDRESS
(HL) = TABLE VECTOR INDEX
(BC) UPDATED

'C' SET IF ERROR

ALL

42234A

'Super-Simple Super-Small CK.DVD'

'Version 2.2

18-Jun-81 D. Lamm'

This begins an elementary example of a "device driver", in this case
a real-time clock. For the sake of simplicity, no XTEXT's are used.
all required symbol definitions are included in the main
body of the source code (this file).

Instead,

SPACE
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
SPACE
CODE

6

0C7H

200H

11
00000010B
00000100B
01lH

09H

OAH

19H

201FH

193EH

OAH

-1-500

3

PIC
*+DVD.ENT-6
DVDFLV
DT.CR+DT.CW
1

1
DT.CR+DT.CW
7

0

S-%

THIS FLAGS TO HDOS AS A DEVICE DRIVER
STANDARD DEVICE DRIVER ENTRY POINT
ELEVEN DRIVER FUNCTIONS CURRENTLY SUPPORTED
FLAG BIT; CAPABLE OF READS

FLAG BIT; CAPABLE OF WRITES

ERROR CODE; END OF FILE

ERROR CODE; CHANNEL NOT OPEN

ERROR CODE; ILLEGAL REQUEST

ERROR CODE; FILE ALREADY OPEN

HDOS UIVEC TABLE FROM MTR-88

ROM TABLE BRANCH ROUTINE

HDOS NEWLINE CHARACTER

CLOCK CALIBRATION; 500 TICKS=1 SECOND

NEED TO DEFINE DVD.ENT AS A RELOCATABLE SYMBOL
STICK IN THE DEVICE DRIVER FLAG

MAKE IT CAPABLE OF READS AND WRITES
MOUNTED UNIT MASK

MAXIMUM NUMBER OF UNITS

SUB-CAPABILITY IS SAME AS UNIT CAPABILITY
DON'T CARE ABOUT UNITS 2-8 SUB-CAPABILITY
NO SET OPTIONS AVAILABLE

RESERVE SPACE UP TO DRIVER'S ENTRY POINT

'DRIVER ENTRY POINT'

PROCESS ENTRY POINT

(&) =

PROCESS CODE

SREMark = Issue 20+ 1981

Rk O Ok * X ¥

w0
<
>
o]
=]

* % % % % % % % N ¥ ¥ N ¥ % F Ok N ¥ ¥ ¥ N % ¥ % % H F H ¥ % O % ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ *

(BC) BYTE COUNT

nn

(DE) DATA BUFFER ADDRESS

EXIT: (PSW) = CARRY CLEAR IF NO ERROR
= CARRY SET IF ERROR; ERROR CODE IN (A)

USES: DEPENDS ON FUNCTION CALLED
EQU * HDOS COMES HERE EVERY TIME DRIVER IS CALLED
CPI DC.MAX SEE IF REQUESTED FUNCTION IS UNDEFINED
JNC ILLEGAL IF SO, TREAT AS ILLEGAL REQUEST
CALL STBRA LET THE TABLE BRANCH ROUTINE FIND CORRECT JUMP
DB READ-* FNCTN 0= READ FROM DEVICE
DB WRITE-* FNCTN 1= WRITE TO DEVICE
DB IGNORE-* FNCTN 2= READ REGARDLESS
DB OPREAD-* FNCTN 3= OPEN FOR READS
DB OPWRITE-* FNCTN 4= OPEN FOR WRITES
DB ILLEGAL-* FNCTN 5= OPEN FOR UPDATES
DB CLOSE-* FNCTN 6= CLOSE CHANNEL TO DEVICE
DB CLOSE-* FNCTN 7= ABORT; TREAT AS CLOSE
DB ILLEGAL-* FNCTN 8= MOUNT DEVICE
DB LOAD-* FNCTN 9= LOAD DEVICE
DB IGNORE-* FNCTN 10= EXAMINE DEVICE READY STATUS
STL ' DOCUMENTATION'

EJECT

When HDOS calls up a device driver, the accumulator contains the
function that HDOS wants the driver to perform. In version 2.0

of HDOS, there are eleven possible functions. The clock driver
ignores some, treats others as illegal, and processes the rest.

The routine at label "Start" uses the supplied function number to
branch into the proper handler, via the ROM routine called

"Table Branch", or $TBRA for short. It is up to the individual
function processors to handle errors that occur within a processor.

In general, if a device driver returns with a set carry bit, HDOS
assumes that an error occurred. The single case here where an error
is not fatal is when reading from the clock. An "End of File"
error must happen, or HDOS will continue to read until you abort
the driver with control-C.

The "Load" processor is special in that it can only happen once.
When you type "Load CK:" from the HDOS command mode, HDOS will
check that the drivers address is in the device table, which was
built upon boot-~up. If so, it spools the driver code into memory
and enters at the label called "Load". The load function places

a detour in HDOS's normal TICCNT interrupt path which causes control
to branch to the label called "Clock" every TICCNT (2 ms intervals).
The routine called "Clock" will determine whether 500 of these
TICCNTs haveoccurred, and if so, will update the time-of-day held
in the storage area labeled "Timebuf". The "Read" and "Write"
functions are the only functions that pull data out of the buffer

or stick data into the buffer.

After the Load Processor is finished patching internal vectors,

it returns control to HDOS. The operating system then flags the

device driver as being permanent in memory. Further "Load CK:"
commands are ignored by HDOS. If they were not, the system would

crash as soon as the "Load" processor trys to patch vectors that

have already been patched. No provision is made to "Unload" the

driver after it has been made permanent. The CPU overhead associated
with maintaining the correct time-of-day is minimal, and you will

not notice any degradation in CPU execution speed in a practical sense.

The "Illegal" function is branched to when HDOS issues an impossible
or meaningless command to the driver. The "Ignore" function does
just that...ignore. It is called when the command is meaningless,
yet otherwise harmless.

== CONTINUED ON PAGE 18 --

SREMark « Issue 20 - 1981

15

New store] |

885-1103 SEA BATTLE Game for HDOS $20.00
885-1211 SEA BATTLE Game for CP/M $20.00

Move over, Space Invaders! Here comes
SEA BATTLE, a fast action graphics game
for HDOS or CP/M on an H89 or H8 with
H19. Imagine that you are the captain
of a single high speed destroyer with
two guns, and you face an armada of a
huge carrier with fighters, bombers, and
escorting submarines. You maneuver your
ship into position to fire. Watch out!
Those fighters and bombers are attacking!
Your ship can take a few fighter hits,
but one bomb and you're sunk! If you are
sunk, your radioman has time to get off
a quick SO0S and the Admiral gives vyou
another ship, but he only had 5 to start
with, so be careful. Finally you manage
to cripple a few of the fighters and
bombers and score a hit on the carrier,
but what's that on the horizon? A
periscope! Quick! Your only defense
against submarines is evasion, and you
have to score 14 more hits on the carrier
to sink it. And if you do sink it, his
radioman sends an S0S as the ship sinks
into the waves, and soon another carrier,
armed more powerfully than before is
sending waves of fighters and bombers
after your ship!

This game features scoring, bonus points,
and records your name and score if you
score the highest. A freeze mode lets
you answer the phone (or whatever) right
in the middle of a game. SEA BATTLE was
written by Victor A. Abell, author of
Pinball and Reversi on HUG disk 885-1067,
and requires a 32k system. The complete
source code is included!

885-1022 HUG EDitor V 2.0 $15.00
The HUG Program Development Editor (ED),
a fast character editor, has been
improved. Version 2.0 offers all of the
previous version's features plus the
following enhancements. It now can delete
(backspace) correctly through tabs and
even through a carriage return or new-line
(does an automatic control-R on the
previous line if you delete a new-line).
You can insert escape characters into
the text and view them in two ways: as
true escapes for graphic effects, etc.,
and as "~[" so that you can see where
they are. A command has been added to
put a line gauge on the 25th line of
H19/H89's and to remove it. Version 2.0
is compatible with all mass storage

devices supported by HDOS (SY:, DK:, or
custom) . It has a CP/M style printer
toggle that lets you send any part of
a file to a printer while you are
editing. It will run on any version of
HDOS since 1.5 and requires only a minimum
system. Source code is included.

16

885-1210 HUG CP/M Editor $20.00
Now you can have the popular HUG Editor
with all of the enhancements described
above for CP/M. EDIT.COM is a fast
character editor with single letter
commands and automatic backup file
creation. It can edit files of any size
up to a disk full, and you can specify
different input and output drives. It
comes with source code and complete
documentation. This version requires
CP/M 2.0 or higher (ORG-0) and a minimum
system.

885-1089 MACRO, CTOH, and Utilities $20.00

This disk is a new collection of HDOS
utilities, and contains the following:

MACRO -- This is a macro pre-processor
for the standard HDOS assembler. It
provides full macro capabilities to the
ASM user, including nested macros and
nested definitions. It can link to ASM
and pass a command line to it so the two
appear to the user as one macro assembler.

CTOH -- This is the complement to HBCOPY
on disk 885-1207. It allows you to copy
CP/M programs to HDOS (5-inch CP/M only).
It runs under HDOS and can display the
CP/M directory.

HTERM -- This program turns an H89 or
H8 with H8-4 and H19 into a terminal for
use with another computer. It allows
all escape codes and normal control
characters to be transmitted and received,
and can send breaks. It can transmit
files from disk to the external device
and can store and save or print incoming

data. Although it was designed as a
terminal for other computers, it also
can be used as a modem program for
MicroNET, etc.

IHEX and IABS -- These programs convert
files from .ABS format to Intel HEX format
and vice versa. The Intel HEX format
is ideal for sending machine code programs
over a modem, because it provides load
address and entry point information and
a checksum for every 16 bytes of data.
The IABS program reports any checksum
errors by address when loading a HEX file
so you can quickly locate errors and make
a good file from two bad ones. IHEX lets
you develop programs for CP/M with the
HDOS assembler, convert them to HEX, then
copy them over and LOAD them.

TAB2SPC -- This program was written in
answer to those &%S$#@!!! editors that
replace spaces with tabs in text files.
It replaces those tabs with the correct
number of spaces so that the appearance
of the file is maintained.

These programs require HDOS and at least
32k of memory.

SREMark « Issue 20« 1981

20.00
20.00

885-1083 Disk XVI RECOVER, etc. 20.00

: X 8 /H8
HUG PrOdUCtS LlSt ggg-:ggg Egiziamg ﬁglgPr‘iiters H8/H89

Part) Selli;; 885-1089 MACRO, CTOH, and misc Utilities $ 20.00
- i Tool HB8/HB8 30.00
Number Description Price 885-1092 RDT Debugging Too 9

30.00
20.00
20.00

885-1095 HUG SY: Device Driver HDOS 2.0
885-1098 HB8/HA-8-3 Color .ABS/.ASM
885-1099 H8/HA-8-3 Color in Tiny Pascal

£ o 5 B o

CASSETTE SOFTWARE (H8 and H88)

PROGRAMMING LANGUAGES

885-1008 Volume I Documentation and $ 9.00
Program Listings (some for H11} 2
885-1038 WISE on Disk HB/H89 $ 18.00
885-1009 Tape I Cassette $ 7.00 882—1032 PILOT HB/H89 $ 19.00
885-1012 Tape II BASIC Cassette $ 9.00 885-1059 FOCAL-8 HB/H89 $ 25.00
885-1013 Volume II Documentation and $ 12.00 885-1078 HDOS 780 Assembler $ 25.00
[rogral Loscings 885-1085 PILOT Documentation $ 9.00
ggs-101u Tape II ASM Casset.t.e HB Only $ 9.00 882—1082 Tln}’ Pascal HB/HSQ $ 20.00
5-1015 Volume III Documentation and $ 12.00 co 40.00
Spogran Tisttngs 885-1094 HUG Fig-Forth H8/HB89 2 Disks $
885-1026 Tape IIL Cassette $ 9.00
885-1036 Tape IV Cassette § 9.00 BUSINESS, FINANCE AND EDUCATION
885-1037 Volume IV Documentation and $ 12.00 885-1047 Stocks H8/HS9 $ 18.00
Program Listings - >
885-1048 Personal Account HB8/H89 $ 18.00
222'1823 Sl o ENnoebia B Sy : g 885-1049 Income Tax Records H8/H89 $ 18.00
i P ISR AN 7 885-1051 Payroll H8/H89 $ 50.00
885-1058 Volume V Documentation and $ 12.00 885-1055 Inventory H8/H89 * ¢ 30.00
Program Listings 885-1056 Mail List H8/H89 ; 3§ 33_00
885-1070 Disk XIV Home Finance H8/H89 $ 18.00
HDOS SOFTWARE (H8/H1T or HB9 -- S-inch only) 885-1071 SmBusPkg III 3 Disks ¥ $ 75.00
HB8/H19 or H89
MISCELLANEOUS COLLECTIONS 885-1091 Grade and Score Keeping % $ 30.00
885-1097 Educational Quiz Disk * $ 20.00
885-1024 Disk I HB/H89 $ 18.00 8 3 HS; or HB/H19
885-1032 Disk V H8/HB9 $ 18.00
885-10L4Y4 Disk VI HB8/HB9 $ 18.00 AMATEUR RADIO
885-1064 Disk IX H8/H89 $ 18.00
0685-1066 Disk X HB/HE $ 18.00 885-1023 RTTY Disk H8 Onl $ 22.00
. g - Yy .
885-1069 Disk XIII Misc HB/HB9 $ 18.00 885-1052 Morse8 Disk H8 Only $ 18.00
GAMES * Means MBASIC is required
885-1010 Adventure Disk H81H89 $ 10.00 H11 SOFTWARE
885-1029 Disk II Games 1 HB8/HB9 $ 18.00 -
885-1030 Disk III Games 2 H8 /189 $ 18.00 885-1008 Volume I Documentation and $ 9.00
885-1031 Disk IV Music H8 Only $ 23.00 Program Listings (some for H11)
885-1067 Disk XI Graphic Games $ 18.00 885-1033 HT-11 Disk I $ 19.00
.ABS and B H BASIC (H19/H89) .
885-1068 Graphic Games (H19/H89) * & 18.00 CP/M SOFTWARE (5-inch only)
885-1088 Graphic Games (H19/H89) * $ 20.00
885-1093 Dunggons and Dragons Game # § 20.00 ggg::gg; gg;: azTim::l:m::dH;1fgd H2 ’; gl:gg
885-1096 i:%g;;egazzg ?§1g§ég;? % $ 20.00 885-1203 CP/M Volumes 21-A and B %% $ 21.00
: 885-1204 CP/M Volumes 26/27-A and B %% $ 21.00
885-1103 Sea Battle Game (H19/H89) $ 20.00

885-1205 CP/M Volumes 26/27-C and D %%
885-1206 CP/M Games Disk %%

WETLTIZES 885-1207 TERM and H8COPY

885-1019 Device Drivers (HDOS 1.6) $ 10.00 885-1208 HUG Fig-Forth HB/HB9 2 Disks

885-1022 HUG Editor (ED) Disk H8/H89 $ 15.00 885-1209 Dungeons and Dragons Game

885-1025 Runoff Disk H8/H89 $ 35.00 MBASIC and H89 or HB/H19

885-1043 MODEM Heath to Heath H8/H89 $ 21.00 885-1210 HUG Editor

885-1050 M.C.S. Modem for HS8/H89 $ 18,00 885-1211 Sea Battle Game for CP/M

885-1060 Disk VII HB8/H89 $ 18.00

SUBMIT, CLIST, FDUMP, ABSDUMP, etc.
885-1061 TMI Cassette to Disk H8 only § 18.00

o € 5 S £ o O B o
[\%]
—_
.
(=]
(=]

%4 Means CP/M 1.43 only (ORG-4200}
4% Means CP/M 1.43 or 2.2 (Heath)

885-1062 Disk VIII HO/H8Y (2 disks) $ 25.00 Vs GREH Slie-SiR 2o Sk
MEMTEST, DUP, DUMP, DSM
225—1023 Floating Point Disk H8/H89 $ 18.00 MISCELLANEQDS
5-1065 Fixed Point Package HB8/H89 $ 18.00
885-1075 HDOS Support Package H3/H89 § 60.00 g R L ! 52
885-1077 TXTCON/BASCON H8/H89 $ 18.00 - = i
885-1079 HDOS Page Editor $ 25.00 (Vectored to page 31)

SrREMark = Issue 20+ 1981 17

18

* Ok F % * ¥ %

* Ok R R R K R R N % B Ok ok o ok 3 ok ok % N M O 3 Ok Ok ok ok 3 ¥ O Ok N 3 O ok F H Ok O F H F F F H H H Ok R Ok H *

ILLEGAL

IGNORE

If either the "Read" or "Write" function is executed, they first
determine whether there is already file I/0 in progress for the
respective function. If that is the case, an error is returned and
the second invocation of "Read" or "Write" is ignored. The "Close"
function resets both the "Read" and "Write" functions status flags.
Channels open on CK.DVD must be closed before new channels can be
opened on the clock driver.

EJECT

Another point that bears explanation is the "Xfercnt" storage cell,
used during writes to the clocks buffer. Since we have no way of
knowing for sure how many bytes the caller wants to stick in the

clock buffer, we have to have a means of limiting insertions to a
specific number of bytes, in this case, eight. When Basic writes to
a file, it usually sends along enough null characters to make the
file write multiples of 256 bytes. If we simply moved the supplied
bytes into the time buffer and beyond, we would likely crash whatever
was loaded in memory above the clock driver (usually another driver).
During writes to the time buffer, a running total of how many bytes
have already been sent to the buffer is kept in "Xfercnt". As soon
as eight bytes have been written, the remainder are simply eaten up
and not used. The "Xfercnt" is reset to eight when the clock driver
is once again opened for writes.

Another case for possible trouble is when the clock is open for
reads and the caller requests but one byte. If we let the caller

get the time out of the buffer in this fashion, chances are that

the time will change in between single byte transfers. That is why
the "Read" function processor checks to make certain that more

than eight bytes have been requested. For the sake of Basics "line
input" function, we always send a "newline" immediately after the
current time-of-day. If the caller requests more than nine bytes,

it is treated to a barrage of nulls until its appetite has been
satisfied, or until a full 256 bytes have been sent, whichever comes
first. Basic will ask for 256 bytes at a time, but user programs

or PIP will ask for varied amounts of bytes. If more than 256 bytes
is requested, CK.DVD will only return 256 bytes to the caller, and
will return an end-of-file error. If less than 257 bytes are requested,
the CK.DVD will return no error code.

At the end of this listing are two Benton Harbor Basic routines
that allow you to read or write to the clock. It is possible,
from the HDOS command mode, to do the same. If you want to see
what time it is, type "COPY TT:=CK:", or more simply, "PIP CK:".

If you want to set the clock from the command mode, type this:

COPY CK:=TT: [carriage return]
12:34:56 [or whatever]
CTL-D

Note that anything beyond eight characters is ignored by the "Write"
processor inside the clock driver.

Experienced assembly language programmers will have no problem in
getting the current time from the driver, or updating the time from
their special programs. The driver is small as far as drivers go,
only about 300 bytes of memory are given up to it.

Note finally that ANY interrupt driven clock will lose time if the
interrupts are turned off for some reason, such as SY: accesses.
The value of the CAL factor has been chosen to yield accurate
timekeeping only if the SY:'s are not heavily used and the CPU's
clock frequency is exact.

STL 'CK.DVD FUNCTION PROCESSORS'

EJECT

EQU " COME HERE IF ILLEGAL DRIVER FUNCTION REQUESTED
MVI A,EC.ILR PUT THE "ILLEGAL REQUEST" ERROR CODE IN (A)
STC SO HDOS KNOWS AN ERROR OCCURRED

RET TO WHOMEVER CALLED THE DRIVER

SPACE 3,9

EQU % COME HERE TO IGNORE A REQUESTED FUNCTION

XRA A CLEAR THE CARRY BIT

SrREMark « [ssue 20 - 1981

RET
SPACE
LOAD EQU
LHLD
SHLD
LXI
SHLD
XRA
RET
SPACE
OPREAD EQU
LDA
ORA
Jz
MVI
STC
RET
OPREADL MVI
STA
XRA
RET
SPACE
OPWRITE EQU
LDA
ORA
Jz
MVI
STC
RET
OPWRITL MVI
STA
MVI
STA
LXI
SHLD
XRA
RET
SPACE
CLOSE EQU
XRA
STA
STA
RET
SPACE
MOVE EQU
MOV
ORA

MoV
STAX
INX
INX
DCX
JMP
STL
EJECT
CK.DVD

*
*

ENTRY :

EXIT:

USES:

* % % % % ok ok ok ok % % ¥

=
W
=
-
t

EQU
LDA
ORA

I=REMark « Issue 20+ 1981

3,9

*
UIVEC+1
CLKRET+1
H,CLOCK
UIVEC+1
A

3,9
e

RSTAT
A
OPREADL
A,EC.FAOQ

A,-1
RSTAT
A

3,9
*

WSTAT
A
OPWRIT1
A,EC.FAO

Ap_l
WSTAT

A,8
XFERCNT
H, TEMPBUF
BUFPTR

TO WHOMEVER CALLED THE DRIVER

COME HERE WHEN USER TYPES "LOAD CK:"
GET THE HDOS "TICCNT" VECTOR

INSTALL AT END OF OUR CLOCK ROUTINE
GET OUR CLOCK'S START ADDRESS
REPLACE THE HDOS "TICCNT" VECTOR
CLEAR THE CARRY BIT

RETURN, SHOWING NO ERROR

FLAG TO DEVICE THAT A CHANNEL IS OPEN ON IT
FETCH OUR READ STATUS FLAG

SEE IF ALREADY OPEN FOR READS

NOT OPEN, SO SKIP NEXT

PUT "FILE ALREADY OPEN" ERROR CODE IN (A)
TELL HDOS WE HAVE AN ERROR

PUT A OFFH IN READ STATUS FLAG CELL
THIS FLAGS THE DEVICE NOW OPEN
CLEAR CARRY BIT

FLAG TO DEVICE THAT A CHANNEL IS OPEN ON IT
FETCH OUR WRITE STATUS FLAG

SEE IF ALREADY OPEN FOR WRITES

NOT OPEN, SO SKIP NEXT

PUT "FILE ALREADY OPEN" ERROR CODE IN (A)
TELL HDOS WE HAVE AN ERROR

PUT A OFFH IN WRITE STATUS FLAG CELL
THIS FLAGS THE DEVICE NOW OPEN
PUT MAXIMUM BYTE XFER COUNT IN HOLD PLACE

POINT AT FIRST ADDRESS IN TEMPORARY BUFFER
SAVE IT IN POINTER HOLDING PLACE
CLEAR CARRY BIT

FLAG DEVICE DISCONNECTED FROM ACTIVE CHANNELS
ZERO (A)

RESET "OPEN FOR READ" FLAG, IF SET

RESET "OPEN FOR WRITE" FLAG, IF SET

WITH A CLEAR CARRY BIT

MOVE (BC) BYTES FROM ((HL)) TO ((DE))
SEE IF BYTE COUNTER AT ZERO

ALL FINISHED; (DE)=NEXT *TO* ADDRESS
FETCH BYTE TO BE MOVED

WRITE BYTE VIA (DE)

BUMP *FROM* LOCATION

BUMP *TO* POINTER

DECREMENT BYTE COUNTER

LOOP UNTIL (BC) DECREMENTED TO ZERO

'CK.DVD WRITE PROCESSOR'

WRITE PROCESSOR

(BC)
(DE)

won

(PSW)

non

ALL

WSTAT

BYTE COUNT; MUST BE EQUAL TO OR GREATER THAN EIGHT
BUFFER ADDRESS; WHERE NEW TIME STRING IS COMING FROM

CARRY CLEAR IF NO ERROR
CARRY SET IF ERROR; CODE IN (A)

COME HERE WHEN CALLER WANTS TO WRITE TO DVD
FIRST, SEE IF WE'RE OPEN FOR WRITES

19

20

WRITEL

WRITE2

* ¥ F ¥ % %
*
*

* ok ok % F Ok % F Ok K N * ¥ ¥

w
5
o

READL

MVI
STC
RZ
MOV
ORA
RZ
LDA
ORA
Jz
DCR
STA
LHLD
LDAX
MOV
INX
SHLD
INX
DCX
JMP
LXI
LXI
LXI
DI
CALL
EI
RET
SPACE

A,EC.FNO

A,B
&

XFERCNT
A

WRITE2

A
XFERCNT
BUFPTR

D

M,A

H

BUFPTR

D

B

WRITEL

H, TEMPBUF
D, TIMEBUF
B,8

MOVE

3

PREPARE OURSELVES FOR "CHANNEL NOT OPEN" ERROR

RETURN IF CHANNEL WAS NOT PREVIOUSLY OPENED
SEE IF BYTE COUNT AT ZERO

RETURN WITH CLEAR CARRY; TIME IN "TEMPBUF"
SEE HOW MANY BYTES WE'VE WRITTEN SO FAR

SEE IF MAXIMUM NUMBER WRITTEN INTO "TEMPBUF"
EIGHT BYTES WRITTEN; NOW MOVE TO REAL BUFFER
ADJUST TRANSFER COUNT

UPDATE TRANSFER COUNT

GET POINTER INTO "TEMPBUF"

FETCH CHARACTER TO BE WRITTEN INTO "TEMPBUF"
PLACE CHARACTER IN "TEMPBUF"

POINT TO NEXT POSITION IN BUFFER

UPDATE POINTER INTO "TEMPBUF"

BUMP POINTER INTO SOURCE FIELD

DECREMENT BYTE COUNTER

TRY AND TRANSFER SOME MORE CHARACTERS

SOURCE FOR MOVE

DESTINATION OF MOVE

HOW MANY TO MOVE

DON'T WANT "TICCNTS" TO MESS US UP !

PUT TIME IN THE REAL "TIMEBUF"

ENABLE ALL INTERRUPTS

CARRY CLEARED; (BC)=ZERO

This looks kludgy, first writing the time into a temporary buffer
then putting it into the actual time buffer, but if a user program
for some reason only transfers one byte at a time, we risk the
chance of a TICCNT updating the actual buffer while we are writing

into it.

The time

is moved into the actual buffer only after eight

bytes have been placed into the temporary buffer.
'CK.DVD READ PROCESSOR'

STL
EJECT

CK.DVD READ PROCESSOR

ENTRY:

EXIT:

USES:

EQU
LDA
ORA
MVI
STC

MOV
CPI
JNC
MOV
ORA

PUSH
LXI
LXI

CALL
EI °
POP
LXI
DAD

(BC)
(DE) =

(PSW)

I

(BC)
(DE)

ALL

*
RSTAT

A
A,EC.FNO

A,C

9

READL

A,B

A

ILLEGAL

B

B,9

H, TIMEBUF

MOVE
B

H,-9
B

= BYTES REQUESTED; MUST BE AT LEAST NINE

BUFFER ADDRESS; WHERE TIME STRING GETS PLACED

CARRY CLEAR IF 256 OR LESS BYTES REQUESTED;

ELSE, RETURN WITH END-OF-FILE ERROR. IF LESS

THAN NINE BYTES REQUESTED, EXIT THROUGH "ILLEGAL".
UNUSED BYTE COUNT (NORMALLY ZERO)

ADDRESS OF NEXT BYTE TO BE READ (IF ANY)

COME HERE WHEN CALLER WANTS TO READ TIME OF DAY
FIRST, SEE IF WE'RE OPEN FOR READS

PREPARE OURSELVES FOR "CHANNEL NOT OPEN" ERROR

RETURN IF CHANNEL NOT PREVIOUSLY OPENED
CHECK FOR REQUEST OF AT LEAST NINE BYTES

IF (C) GREATER THAN OR EQUAL TO NINE
SEE IF A MULTIPLE OF 256 BYTES REQUESTED

CAN'T SUPPLY LESS THAN NINE BYTES !

SAVE BYTE COUNTER

FORCE DEFAULT MOVE OF NINE BYTES

WHERE TIME STRING IS COMING FROM

IN CASE A "TICCNT" BOTCHES THINGS UP !
GIVE THE STRING TO THE CALLER OF THE DVD
TURN ALL INTERRUPTS BACK ON

RESTORE BYTE COUNTER

ACCOUNT FOR BYTES ALREADY SENT TO CALLER
(HL) EQUAL TO NUMBER OF BYTES TO PAD OUT

REMark « Issue 20+ 1981

READ2

*
*

* % % % F F % % ¥ % ¥

CLOCK

INRS

INRTS

INRM

INRTM

INRH

MOV
MOV
MVI
MOV
ORA
RZ
XRA
STAX
DCX
INX
INR
JINZ
MOV
ORA
RZ
MVI
STC
RET
STL
EJECT
CK.DVD

ENTRY:

EXIT:

USES:

EQU
LHLD
INX
SHLD
LXI
DAD
JNC
SHLD
MVI
LXI
INR
MOV
CPI
JM
MOV
DCX
INR
MOV
CPI
JM
MOV
DCX
DCX
INR
MOV
CPI
JM
MOV
DCX
INR
MOV
CPI
JM
MOV
DCX
DCX
INR
MOV
CPI
JM

SeREMark « Issue 20+ 19871

=
m >
lw)]
[

P OQOrPOWECCWO» OQOPFPUEOW

 EC. EOF

PUT UNUSED BYTE COUNT IN (BC)

ACCOUNT FOR BYTES ALREADY SENT TO CALLER
SEE IF DONE PADDING OUT THE BUFFER
(BC)=ZERO IF DONE

FINISHED, SO EXIT WITH NO ERROR

ZERO (A)

WRITE A NULL INTO THE BUFFER
DECREMENT BYTE COUNTER

BUMP BUFFER POINTER

BUMP THE MODULO 256 BYTE COUNTER
CONTINUE READING UNTIL (L)=0 OR (BC)=0
SEE IF MORE THAN 256 BYTES REQUESTED

WAS NOT; RETURN WITH NO ERROR
ELSE; RETURN WITH EOF ERROR

'CK.DVD TICCNT ENTRY POINT'

TICCNT ENTRY POINT

EVERY TICCNT (2 MILLISECOND INTERVALS)

TO NORMAL HDOS TICCNT PROCESSOR
TIME IN "TIMEBUF" UPDATED IF A NEW SECOND

ALL; HDOS SAVES IT'S OWN REGISTERS

*

TICKS
H
TICKS
B,CAL
B
CLKRET
TICKS
C'IOI
H, TIMEBUF+7
M

A,M
19141
CLKRET
M,C

PREEDIDIN =PI X
~ o~
NnNx -2
o
o]
H

=

'gryl
CLKRET
M,C
H
M
A,M

|6I
CLKRET

M,C
H
H
M
A,M
l4|
CLKRET

COME HERE EVERY "TICCNT" AND UPDATE THE TIME
RETRIEVE OUR OWN PRIVATE "TICKER"

ADD ONE MORE TICK

UPDATE OUR PRIVATE "TICKER"

GET CALIBRATION FACTOR

WILL CREATE A (CY) IF "TICKS"=500 DECIMAL
NOT TIME FOR A NEW SECOND, SO RETURN

(HL) WAS ZERO, RESET PRIVATE "TICKER"

PUT AN ASCII ZERO IN REGISTER (C)

POINT AT UNITS SECONDS

BUMP IT

OVERFLOW ?

NO, SO RETURN

RESET UNITS SECONDS
POINT AT TENS SECONDS
BUMP IT

OVERFLOW ?

NO, SO RETURN

RESET TENS SECONDS
POINT AT THE COLON
POINT AT UNITS MINUTES
BUMP IT

OVERFLOW ?

NO, SO RETURN

RESET UNITS MINUTES
POINT AT TENS MINUTES
BUMP IT

OVERFLOW ?

NO, SO RETURN

RESET TENS MINUTES
POINT AT THE COLON
POINT AT UNITS HOURS
BUMP IT

OVERFLOW ?
NO, SO RETURN

21

22

INRH1

INRH2

INRTH

CLKRET

%* %k
*
*

TICKS
TIMEBUF
BUFEND
RSTAT
WSTAT
XFERCNT
BUFPTR
TEMPBUF

* %k % % * ¥ % * ¥

% % % % ¥ * ¥ ¥ ¥ ¥ *

* ok ko R ok ok * ¥ ok F ¥ ¥ F *

DCX H POINT AT TENS HOURS

MOV A,M

CPI 120 IS IT 24 AND NOT 14 OR 04 ?

JM INRH2 STILL MORE TO CHECRK

MOV M,C RESET TENS HOURS

INX H POINT AT UNITS HOURS

MOV M,C RESET UNITS HOURS

JMP CLKRET (IT WAS MIDNIGHT)

INX H POINT AT UNITS HOURS

MOV A,M

CPI 191 4] OVERFLOW ?

IM CLKRET NO, SO RETURN

MOV M,C RESET UNITS HOURS

DCX H POINT AT TENS HOURS

INR M BUMP IT

SPACE 3,9

EQU * NOW CONTINUE ON WITH HDOS CLOCK INT. ROUTINE
JMP 0 NEW ADDRESS INSTALLED AT "LOAD" TIME

SPACE 3,9

CK.DVD STORAGE AREAS

DW 0 THIS IS OUR PRIVATE "TICK COUNTER"

DB '00:00:00" CORRECT TIME OF DAY MAINTAINED HERE, IN ASCII
DB NL TIME STRING ALWAYS TERMINATED WITH A "NEWLINE"
DB 0 HOLD PLACE FOR "OPEN FOR READ" STATUS FLAG
DB 0 HOLD PLACE FOR "OPEN FOR WRITE" STATUS FLAG
DB 0 HOLD PLACE FOR COUNT OF BYTES TRANSFERED

DW 0 HOLD PLACE FOR POINTER INTO "TEMPBUF"

DB '00:00:00" TEMPORARY BUFFER DURING "WRITE" PROCESSING

SPACE 3,9

Another note for the astute programmer:

This driver, as do all Heath drivers except the disc drivers, will
allow you to read or write any number of bytes you want. Contrary to
what the System Programmer's Guide says, I/0 to non-storage devices
need not be in multiples of 256 bytes. Realizing this fact makes it
easier to get data one character at a time from a device or into a
device. Programs will be more efficient, memory wise, if they do not
have to maintain a 256 byte buffer just to handle small I/0 tasks.
Be aware that this may not be the case with drivers not coming from
Heath Company.

STL 'BENTON HARBOR BASIC EXAMPLES'

EJECT

00010 REM READ CLOCK FROM BENTON HARBOR BASIC
00020 REM 11-JUN-81 DALE LAMM

00030 OPEN "CK:" FOR READ AS FILE #1
00040 INPUT #1,;T$

00050 PRINT T$

00060 CLOSE #1

00070 GOTO 10

The above merely opens a channel on the clock driver for reads,
then reads the current time-of-day, and then closes the channel.
The program repeats until the control-C key is struck.

SPACE 6

00010 REM WRITE NEW TIME TO CLOCK FROM BENTON HARBOR BASIC
00020 REM 11-JUN-81 DALE LAMM

00030 OPEN "CK:"™ FOR WRITE AS FILE #1

00040 INPUT "WHAT TIME IS IT NOW ? ";TS

00050 PRINT #1,T$

00060 CLOSE #1

00070 OPEN "CK:" FOR READ AS FILE #1

00080 INPUT #1,;T$

00090 PRINT "VERIFYING... CLOCK NOW READS "T$

00100 CLOSE #1

00110 END

The example above demonstrates how a new time-of-day may be put
into the clocks buffer. The clock remains running, and keeps
time using the just installed time string as the base.

SeREMark = Issue 20+ 1981

seconds.

® % % ¥ % % % % % % O * ¥

STL 'PIC TABLE'
EJECT

LON G

END

Note that no error checking is done by the actual clock driver.
wWhatever characters are inserted into the clocks buffer will be
the new base for timekeeping. Likewise, you may use whatever
character suits your fancy to delimit the hours, minutes, and

The newly entered time-of-day is read back to the user for
verification. Only the first eight characters in T$ are loaded
into the drivers buffer. There must be at least eight new
characters written into the buffer, else, the new time-of-day
will be meaningless. Since Basic pads out writes to a file with
nulls, it is not possible to use Basic to update only the first
two digits in the clock drivers buffer.

TURN ON THE PIC TABLE LISTER

A Review of Small Business Package ||

As a general overview for the SBPIII,
the most important single factor is to
know and understand what this package
is NOT capable of, as well as, what it
IS capable of doing. Do not expect more
than what it can do or you will just get
yourself into a position where you will
be disappointed in the package as a whole.

First, realize this package is not a
"General Journal". You are responsible
for keeping your own Journal entries.
Second, please understand that the Cost
of Goods and Expense Ledger is just that.
It is for posting to cost of goods
accounts and expense accounts, as payments
are made. It is not a General Ledger.

Second, it is not an inventory package.
The SBPIII does not keep a running total
of your inventory through the accounts
receivable and accounts payable. The
accounts receivable and accounts payable
programs will maintain running totals
of cash, A/R, and A/P as affected by these
entries.

Thirdly, this package does include the
necessary reports, that most small
business utilize. The SBPIII prints
several reports that relate to A/R and
A/P, of which includes a Sales Baragraph.
This package uses the running totals from
A/R and A/P to help create and print a
Profit and Loss Statement and a Balance
Sheet.

Finally, the example accounts, payments,
sales, posting and reports are all
fictitious by creating a "make-believe"
business. The accounts and related data
have ALL been entered to show you specific
examples of output, adjustments, payments,
and any errors you are likely to run

4REMark « Issue 20+ 1981

into. Even though the accounts are made
up, they were written to show you what
a typical business may encounter. We
have found already that because we created
a "make-believe" business, we were not
able to cover all areas of the package
and thus have come across some minor
problems, for which we have included
corrections.

This SBPIII is based on a "textbook"
form of accounting i.e. Double-entry.
Please note the word based. There is
no place for actually showing
double-entries. The double-entry is
implied, e.g. when a Payment is issued
for a particular A/R, CASH would be
debited and A/R would be credited for
the amount of the Payment. All that is
entered, however, is the "*PAYMENT" and
the amount paid . . No double-entry is
made. Due to this procedure and the
invoice number system, the SBPIII package
will be compatible with "Vouchers", if
that relates to your business.

Again, do not expect more than it can
do and you will have little difficulty
using this package. As you do use it,
you will find there are many "neat" things
that you can do with it that can not be
explained in the documentation.

We have had a couple of calls already,
that the SBPIII is not what they want
and want to send it back. Look at this
realistically!! There are big businesses
that spend tens of thousands of dollars
on their business packages and have

full-time programmers to work out any
"bugs". We do not promote that this
package will work for every small business
and we do not project that it is bug

23

free. My point is, this is a nice little
package and it will work as written and
documented, but if it is not what you
want . . DON'T BUY IT!! We have included
enough of an "overview" that you should
know whether you can use this package
in your business.

We will support the SBPIII as written
and documented. Many of you make your
own modifications to fit your business
. . this is great, but we cannot support
your modifications. We just cannot take
the time because we would not fulfill
our other obligations.

Thank you for your understanding.

The following is the Main Menu of the
SBPIII:

Return to STARTUP MENU

Issue Invoices -or- Credit Memos
Accounts Receivable Maintenance
Accounts Receivable Reports
Print Statements

Print Sales Report

Sales Bargraph

Mailing Labels

Cost of Goods and Expense Ledger
Accounts Payable

Print Profit and Loss Statement
Print Balance Sheet

LU (| | T 1 |

Enter Selection No. (1 to 12) <END>

Corrections to SBPIII

885-1071

Modifications to the Small Business Package III which should be done to the
following programs if they are version 06.23.81. The version number may be found
in line number 10 of all programs.

INV1.BAS PROGRAM Disk
1240 PRINT" Taxable (Y or N) <¥>";:GOSUB 1720:TX$=AS:PRINT AS;
1630 IF AS=CHR$(13) THEN ZS$="N"

POST.BAS PROGRAM Disk
30 CLEAR 5000:WIDTH 255:DEFINT A-Z:DEFSNG B,T:ON ERROR GOTO 2580

1430 NF$=X$:GOTO 1520

SALES.BAS PROGRAM Disk
250 IF A$="" THEN A$=DG$:GOTO 260
255 DGS$=AS

CONVERT. BAS PROGRAM Disk

100 SY$S=INPUTS(l) :PRINT :IF SY$="1" THEN SY$="SY0:":SZ$="SY0:":GOTO 130
555 IF DS$="0" AND INV=0 THEN 590
1165 IF ERR=65 AND ERL=990 THEN RESUME 950

620 IF YN$S="Y" OR YN$="y" THEN 630 ELSE 650

INV2.BAS DATA Disk I
100 PRINT :SX#=0:TS#=0:"' ** Zero Sales Tax & Sales Sub-Total **
470 FOR S9=1 to 14:PRINT #2, :NEXT S9:GOTO 750:' Skip spaces for Credit Memo
705 IF TXS$<>"TX"™ THEN PRINT #2, :PRINT #2,
810 IF PS$="S" THEN GOSUB 1010:GOTO 870
830 IF LEFT$(Q2$,1)="Y" THEN 870

BARGRAPH.BAS DATA Disk I
155 IF A$="1" THEN 170
250 INPUT ¥1,SFM¥:SFME (X)=SFM#:Y1#=Y14+SFM# (X) :CLOSE #1
255 NEXT X
940 IF ERL=240 THEN RESUME 255

LEDGER. BAS DATA Disk II
1650 AB=AA

1675 R2=R1\2:R3$#=R1/2:IF R2=R3# THEN R2=0 ELSE R2=l
1680 FOR R=1 TO RL\2+R2

1685 IF R2=1 AND R=RIN\2+1 THEN 1720

Version numbers of the programs being
The version is located in line

:GK:

All changes or additions are underlined.
modified should be changed to Version 07.20.81.
#10 of all programs.

24 JREMark » Issue 20+ 1981

BUGGIN’
HUG

Hi Bob:

Enclosed is an example of USRDEF functions in MBASIC using the H-11l rqut;nes givgn
on page 7, Issue 18 of REMark. Some of your readers might have difficulty in
translating from H-11 BASIC to MBASIC.

10 REM DEFINE.BAS usr defined functions in MBASIC (PG 7, ISSUE 18 OF REMark)
20 °

30 CLEAR 2000

40 READ Z:' Z=total number of items to be read, in this case 5

50 FOR N=1 TO Z:READ L(N),C(N),S$(N):NEXT N:' read each item of 3 into array
60 DATA 5,40,40," NAME... ",42,40," ADDRESS... "

70 DATA 44,40," cCITY... ",46,40," STATE... ",48,40," TPy B

80 DEF FNXS$(L,C,S$)=CHRS$(27)+"Y"+CHRS (L) +CHRS$ (C)+S$:' define the "function"
90 PRINT CHRS$(27)+"E":' clear the screen

100 FOR N=1 TO %Z: PRINT FNX$(L(N),C(N),S$(N)):NEXT N:' print the function
110 END

120 !
130 ' Remarks -

140 ¢

150 ' Note line 60. Line 40 reads first data item (5) into Z. Then line 50
160 ' reads the 3 parts of each item into array. Since the "5" was already

170 ' read into Z, the first time thru the for-next loop puts "40,40,name" into
180 ' array, next time thru puts "42,40,address" into array etc.

Sincerely,

William (DOC) Campbell, M.D.
885 SmithBridge Road

Glen Mills, PA 19342

Dear HUG,

Bob Thomas' two programs for screen formatting in Issue 10 of REMark are great.
For my own use I made two minor changes. Since we are running MBASIC which allows
descriptive variable names, the various codes were assigned names to match those
given in the H-19/89 operations manual so they are easier to recognize. Also, the
list was extended to include entering and leaving graphics mode and disabling the
25th line.

Bob's use of the DEF FN statement for X,Y cursor positioning started the old gears
grinding. 1In setting up screens for data entry, it is useful to define an area
on the screen in reverse video to let the user know where the next data is supposed
to go and how long it can be. This requires placing the cursor at the right
position, entering reverse video, printing a string of "light" spaces the
appropriate length, and returning the cursor to the beginning of the input area.
I designed a second function which calls Bob's original function (!) and performs
;his task. Both the original function and the second calling function are presented
ere.

DEF FN C$(C1,C2) = Y$+CHRS (C1+31)+CHRS (C2+31)

DEF FN B$(X,Y,L)

P$+FNC$ (X,Y) +IJ$+STRINGS (L, " ") +K$

“#eREMark « Issue 20+ 1981)5

In a program, it would be used like this:

PRINT FNBS$(12,40,10) ; :REM SET 10-CHAR BLOCK AT LINE 12 POS 40
LINE INPUT "";A$:REM GET DATA FROM BLOCK
PRINT Q$:REM TURN OFF REVERSE VIDEO

This method has a lot of neat advantages. (1) It leaves no doubt in the user's
mind concerning the positioning and length of data allowed. (2) Data is entered
in reverse video —-- the lighted area does not disappear when the user types in
data. (3) The delete key restores the area in reverse video. (4) The user cannot
move to the left of the originally defined cursor position with the delete key!
(5) Prompts can be placed within the defined area through normal use of the INPUT
or LINE INPUT messages imbedded in the command. (6) By alternating PRINT FNBS$ and
LINE INPUT statements, many different fields of related information can be entered
from a "whole-screen" format. Used in conjunction with Bob's original FNC$, this
provides a very powerful tool for "human interfacing".

Jim Ingram
804 North C Street
Broken Bow, NE 68822

Dear HUG,

In reading REMark, I am continually impressed by the knowledge and ability of the
users who submit articles to you. There are apparently a lot of hobbyists who are
really sharp. I am new to computers and the art of programming them, so I have
a good bit of work, and fun, ahead of me.

I ordered UCSD PASCAL to run on my H-8, and really like the system and the
language. It has a lot of capabilities which fit well with the things which I need
to do. However, in comparison to BASIC, I have not found much software available
in PASCAL, either for doing work or just examining as part of the learning process.
Therefore, I would like to submit the following program so that HUG will have a
start on a UCSD PASCAL Library. Hopefully others will make improvements to my
program and submit some of their own as well.

One of the nicest parts of the UCSD PASCAL system is the E)ditor , which I found
to be easy to learn how to use. While I haven't mastered everything it can do,
it has done everything which I have needed done so far, except that I needed a
program to correctly arrange and page text which I wanted to write out on my
printer. I have therefore written the enclosed program which will do the following:

1. Transfer a text file on disk to the printer

2. Page the output, numbering the pages

3. Allow you to choose the number of blank spaces at the top of
page one, if your printer will allow you to use a sheet of
letterhead paper

4. Single-,Double-,or Triple-space the output

5. Offer the user a chance to check that the paper is properly
in the printer before actually printing

6. Do a little useless foolishness on the CRT

7. Use variable and file names which hopefully help in

demonstrating the workflow of the program so that someone
else who is also learning may be better able to understand
what happens in the program.

As a novice, I appreciate what HUG does for its users. Keep up the good work.

Steve Hagins
P.0. Box 1260
Enterprise, AL 36331

PS. UCSD PASCAL allows the user to shift the keypad for use with the editor as
part of a file called SYSTEM.STARTUP. If the individual user has shifted his
keypad, and if he wants to enter instructions to the program PrinText through the
keypad, he will have to modify the program with instructions to "shift" and
"unshift":

26 ¥REMark = Issue 20+ 1981

WRITE(CHR(27)TESCi,CHR(ll?]Iu}}: junshifts the keypadl
WRITE (CHR(27) {ESC},CHR(116) {t}); {shifts the keypad}

PROGRAM PrinText;

{BY STEVE HAGINS, 113 REDWING DRIVE, ENTERPRISE, AL 36330}

CONST PAGEFULL = 60;
BLANK ="' 1y
VAR DISKFILE,OUTFILE : INTERACTIVE; {FILES}

SPACING : 1..3;
LINENUM, PAGENUM,I : INTERGER;

CH : CHAR; {ELEMENTS OF THE FILES}

FILENAME :STRING; {DIRECTORY NAME, INCLUDING UNIT}

PROCEDURE INTRO;

BEGIN

WRITELN (BLANK:10, 'PRINT PROGRAM') ;WRITELN;

WRITELN('THIS PROGRAM WILL WRITE TO THE PRINTER A TEXTFILE STORED ON') ;
WRITELN('DISK. IT WILL ALSO PAGE THE OUTPUT, NUMBER THE PAGES, AND');
WRITELN('DOUBLE OR TRIPLE SPACE THE OUTPUT. YOU MAY ALSO SELECT THE') ;

WRITELN('NUMBER OF LINES AT THE TOP OF THE FIRST PAGE, IN CASE YOU ARE') ;

WRITELN('PRINTING ON A SHEET OF LETTERHEAD STATIONERY.');
WRITELN;WRITELN('PLEASE ENTER THE NAME OF THE FILE TO BE PRINTED.'):;
WRITELN('FOR EXAMPLE, "LETTER.TEXT", OR "#5:SUPER.TEXT"'):;

WRITE ('FILENAME -->');

READLN (LINENUM) ; WRITELN;

PAGENUM := 1;

END:

'BEGIN
INTRO;
RESET (DISKFILE,FILENAME) :
REWRITE (OUTFILE, '#6 : FANTASTIC.TEXT"') ;
PAGE (OUTFILE) ;
WRITELN('THE SYSTEM HAS ENGAGED THE PRINTER. PLEASE CHECK TO SE THAT') ;

WRITELN('THE PAPER IS AT THE TOP OF THE PAGE. DO NOT--ADJUST THE PAPER');

WRITELN ('"MANUALLY UNTIL YOU HAVE TURNED THE PRINTER OFF.') ;WRITELN;

WRITE('HOW DO YOU WANT THE OUTPUT SPACED? 1-2-32 -—->,);
READLN (SPACING) ;
FOR I := 1 TO LINENUM DO WRITELN (OUTFILE) ;

READ (DISKFILE,CH) ;
WRITELN;WRITE('HERE I GO');
WHILE NOT EOF (DISKFILE) DO
BEGIN
WHILE NOT EOLN (DISKFILE) DO
WRITE (OUTFILE,CH) ;
READ (DISKFILE,CH) ;
END;
IF EOLN(DISKFILE) ;
BEGIN
READLN (DISKFILE) ;
FOR I := 1 TO SPACING DO WRITELN (QUTFILE) ;
LINENUM:= LINENUM + SPACING;
WRITE('.'):
IF LINENUM > PAGEFULL THEN
BEGIN
PAGENUM := PAGENUM + 1;
PAGE (OUTFILE) ;
FOR I := 1 TO 4 DO WRITELN(OUTFILE) :
WRITELN (OUTFILE,BLANK: 35, 'PAGE ', PAGENUM:3) ;

FOR I := 1 TO 4 DO WRITELN(OUTFILE) ;
LINENUM:= 10;
END;
END;

END;
CLOSE (OUTFILE, LOCK) ;

WRITELN;WRITELN('I AM NOW FINISHED. YOU ARE WELCOME.') ;
END.

SREMark « Issue 20+1981

27

Dear Terry,

I have modified the SBPIII Ledger program so that it does not print continuously
but separates into pages when you have more that 10 expense items in the ledger.

Six lines of code were required.

1065 PRINT CSS$:FOR C8=1 to 3:PRINT #2,:NEXT C8

1085 NL=NL+5
1255 NL=NL+3
1315 NL=NL+1
1361 NL=NL+2

1362 IF NL>53 THEN PRINT:FOR C8=1 TO 66-NL:PRINT #2, :NEXT C8:NL=0

I hope this modification will be of interest to someone.

Thanks for your wonderful help recently.

Russ Kennedy

Rye,

Using an Extended Capacity Drive as SYO:

This article will explain the procedures
involved to use an extended capacity drive
as SY0: with the HUG SY: device driver
(885-1095). By extended capacity, I mean
a double sided and/or 80 track 5-inch
disk drive. The HUG SY: device driver
supports such drives, but setting up one
as the system drive can be a bit tricky.

First, I should point out that if you
have an HB89, vou should not use an
extended capacity drive in the H89 cabinet
(because of the signal-to-noise ratio
there), so you will have to use one of
vour outboard drives (H77/H87) as SY0:.
The difficulty in using an extended
capacity drive as SY0: comes from the
fact that when you initialize a disk with
the new SY: on your system disk,
information is written in the boot track
about the drives. This information is
taken from SY: and is what you specify
with the SET command. Remember that a
SET option does not take effect until
you reboot the disk, so you can SET SYO:
to the parameters of the new drive, but
you will not be able to re-boot your
system disk in SY0:. The solution is
to boot the disk in another drive.

I will present two procedures for using
an extended capacity drive in SY0:. The
first method requires two disk drives
(one standard, the other extended
capacity) and the Heath ORG-0 ROM set
(if you have an H89) or the Extended
Configuration Option (if you have an HS8).
If you have a third drive, it will not
be used in this procedure. Now carefully
do the following steps.

28

1. Confiqgure the drives so that the
standard drive is SY0: and the extended
capacity drive is SYl:. By "configure",
I mean set up the programming jumpers
on the drive PC boards.

2. Prepare a standard size system disk
with the new SY: on it, along with INIT,
SYSGEN, and all files required to do a
SYSGEN. Since we will be using two drives
in the SYSGEN, ONECOPY will not be used,
but SYSGEN will still look for it and
crash if it is not there. You can rename
another file to ONECOPY.ABS to fool it.

3. Boot up on the system disk you have
prepared, and SET SY0: to the parameters
of the extended capacity drive (number
of sides, tracks, and the step rate).

4., Exit HDOS with BYE.

5. Turn off the computer and drives and
swap the programming jumpers in your two
drives so that the extended capacity drive
is SY0: and the standard drive is SYl:.

6. Turn on the computer and drives and
insert the system disk into the standard
drive. If you have an H89, type the
letter B and the number 1 and hit RETURN.
If you have an H8, your Extended
Configuration Option should be set up
with the H17 as the primary device. Enter
(on the front panel) REG AF ALTER 001000
ALTER, and hit GO. The disk in SYl:
should boot up normally.

7. Insert a good blank disk into the
extended capacity drive and run INIT.

“#REMark » Issue 20+ 1981

Use either the standard INIT or INITAUTO
supplied with the HUG SY: disk. When
it asks for a device, enter SY2:. Answer
YES to "Double sided" if you set S¥0: to
two sides in step 3. Answer YES to "Media
check" just to be sureeverything will
be OK later on.

8. After the initialization is complete,
type two control-D's and hit RETURN.
Hit RETURN again to reboot your system
disk.

9. Give the command SYSGEN *.*, and when
asked for a device, enter SY¥2:. The disk
in the extended drive will be SYSGENed.
When the SYSGEN is completed, reset your
computer and try to boot up on the new
disk. It should work normally. You can
now use it as the source disk for
initializing and SYSGENing other extended
capacity disks. You can replace your
other drive(s) with extended capacity
drives, but don't forget to SET SY:
accordingly.

The second procedure is for those without
the new H89 ROMs or the Extended
Configuration Option. You will need 3

drives, two of them standard and one
extended capacity. Carefully follow these
steps.

l. Configure the drives so that SY0: and
SY2: are standard drives, and SYl: is
the extended capacity drive. 1If you have
an H89, SY2: should be the drive in the
H89 cabinet. You should use dip switches
instead of programming jumpers in SY0: and
SYl:, because later you will have to
change them with the power on. You should
have the cover off of your H77 or H1l7
cabinet.

2. Prepare a standard size system disk
as explained in step 2 in the first
procedure. I will refer to this disk
as the INIT disk. Prepare another
standard size system disk with BOOT.ABS
on it. I will call it the BOOT disk.

3. Boot up on the INIT disk and SET SYO:
to the parameters of the extended capacity
drive.

4, Exit HDOS with BYE.
BOOT disk, and insert the INIT disk into
SY2:. Give the command BOOT SY2:. The
INIT disk should boot up normally.

Boot up on the

5. Change the dip switches on SY0: and
SYl: so that the extended capacity disk
is 8Y0:, and the standard disk is SYl:.
The computer is on, so use caution.

6. Insert a good blank disk into the
extended capacity drive and run INIT.
When it asks for a device, enter SYl:.
Anser YES to "Double sided" if you set
SY0: to two sides in step 3. Answer YES
to "Media check".

SrREMark « Issue 20+ 1981

7. After the initialization is complete,
type two control-D's and hit RETURN.
Hit RETURN again to reboot.

8. Give the command SYSGEN *.*, and when
asked for a device, enter SYl:. When
the SYSGEN is completed, reset your
computer and try to boot up on the new
disk. It should work normally. You can
now use it as the source disk for
initializing and SYSGENing other extended
capacity disks. You can replace your
other drives with extended capacity
drives, but don't forget to SET SY:
accordingly.

PS:

HUGBB Stuff

For those of you, who are still wondering
what happens on the HUG Bulletin Board,
the HDOS Device Drivers Programmers Guide
by Al Dallas, is just a sample. Granted
this is an exceptional contribution from
the BB but it is just a small part of
the whole BB activity.

Subjects such as utilities, device
drivers, games, languages, hardware
modifications and others are all discussed
on the HUGBB. If you want to get more
involved with other Heath users' the HUGBB
is the place to be right now.

The SOURCE HUG Message Board activity
is still alittle slow, but we are showing
more participation with each week. We
expect things to pick up more this fall
after the summer season comes to a close.
Pon't forget that SOURCE accounts are
available through any Heath Store.

For any new HUG members that do not know
what the HUGBB or HUGMB are, you may like
to get the back issues of REMark, #15,
#17 and #18. These issues explain the
introduction and basics of getting an
account with either MicroNET or the
SOURCE.

The following messages were left on the
HUGBB:

Another way to bypass the boot
carrage/return and get the best of two
worlds is to reduce the 30 second Heath
default timer to 1 second. This is done
via 'DUMP.ABS' at:

Track=0, Sector=2, Addr=2C.

The original value is 074Q or '3C'X.
If this is changed to '01'¥X, no time is
allowed to get to 'CHECK-SUM', so use

'02'X. This provides a one second delay
before auto-boot. If you are quick, you

29

have time to use the 'IGNORE' and 'CHECK'
functions also. Remember, you get a one
second delay after each action message.

Bob Pearce

>

The M-H8 64K DYNAMIC MEMORY board from
TRIONYX ELECTRONICS requires the following
modification to operate properly with
zero based CP/M in the Heathkit HS
computer:

70140,356

1) Cut trace to U42-PIN 9, solder-side

of board.

2) Raise PIN 11 on U42,
of board.

3) Connect a jumper wire from U42-PIN9
to U43-PIN 2.

4) Connect a jumper wire from U42-RAISED
PIN 11 to US0-PIN 8.

component-side

This change is a design improvement which
should be incorporated on all TRIONYX
M-H8 MEMORY boards.

Myron J. Seibold 70340,270
Director of Engineering
TRIONYX ELECTRONICS, INC.

g

SPECIAL TO SYSOP: If you want to use this
in REMark, be my guest. TO ALL: In my
filespace is PSW.DOC[70110,626].
PROTECTion levels are down. As a novice
assembly programmer, I use DBUG quite
a lot. I always had to stop and figure
out what the 'F' REGISTER was telling
me. I have written a table which shows
the 32 possible values which the 'F'
REGISTER can have and shows which FLAGS
are set. It speeds up my DE-BUGGING time
quite a bit. Hope it can help you. It
is in ASCII, but download time is only
a couple of minutes. It can be printed
with any of the file print programs
available. A small contribution to those
who have contributed so many good programs
on this NET.

- Bill Richter 70110,626
The following is Bill's PSW.DOC file:
POSSIBLE FLAG REGISTER VALUES FOR DBUG
+-=VALUE--+ D7 D6 D5 D4 D3 D2 Dl DO <--BITS
DEC HEX OCT S Z 0O# AC O0# P 1# C <--FLAGS
2 02 002 0 0 " 0 " 0 : 0 S = SIGN
3 03 003 0 0 " 0 - 0 i 1 Z = ZERO
6 06 006 0 0 " 0 " 1 L 0 AC = AUX. CARRY
7 07 007 0 0 2 0 o 1 - 1 P = PARITY
18 12 022 0 0 " 1 il 0 by 0 C = CARRY
19 13 023 0 0 = 1 = 0 - I 0# = ALWAYS 0
22 16 026 0 0 g 1 " 1 L 0 1# = ALWAYS 1
23 17 027 0 0 * 1 " 1 " 1
66 42 102 0 1 " 0 " 0 " 0
67 43 103 0 1 “ 0 - 0 " 1
70 46 106 0 1 % 0 o 1 ks 0
71 47 107 0 1 = 0 = 1 - 1
82 52 122 0 1 " 1 " 0 " 0
83 53 123 0 1 2 1 u 0 " 1
86 56 126 0 1 o 1 " 1 " 0
87 57 127 0 1 b 1 " 1 2 1
130 82 202 1 0 i 0 " 0 " 0
131k 83 203 1 0 " 0 " 0 N 1
134 86 206 1 0 E 0 ™ 1 " 0
135 87 207 1 0 N 0 " 1 " 1
146 92 222 1 0 " 1 " 0 " 0
147 93 223 1 0 " 1. " 0 " 1
150 96 226 1 0 " 1 " 1 " 0
151 97 227 1 0 " 1 X 1 " 1
194 c2 302 1 1 " 0 b 0 " 0
195 c3 303 1 1 " 0 G 0 " 1
198 c6 306 1 1 " 0 = 1 o 0
199 c7 307 1 1 " 0 ¥ 1 " 1
210 D2 322 1 1 - 1 " 0 - 0
211 D3 323 1 1 " 1 " 0 " 1
214 D6 326 1 1 o 1 " 1 = 0
215 D7 327 1 1 1 " 1 o 1
1 = SET
0 = CLEAR *SYSOP <TLJ>

30

SREMark « Issue 20 - 1981

Heath Related Products

Scott Witt the author of the popular HDOS
text editor PAGED has informed us that
he has now converted PAGED for use under
CP/M Version 2.2. The CP/M version
contains the many editing and formatting
features of the HDOS version plus some
enhancements.

PAGED, is one of the few editors designed
exclusively for use on the HB9 computer
and the H-19 terminal. It uses the unique
features of the terminal, including the
special function keys. The program's
main attractions are its ease of use and
automatic functions, making it much more
powerful than standard text editors.
Its single-key commands and extensive
prompting make it one of the easiest
editors to use.

The CP/M, 0Org 0 version of PAGED is
available for $25.00 from Scott by
writing him at 79 0ld Haverstraw Road;
Congers NY 10920.

UltiMeth Corporation (the author of HUG's

SY: -- Dean Gibson), in cooperation with
Magnolia Microsystems Inc. of Seattle,
Wa., announces the availability of disk

device driver software for HDOS 2.0 which
supports Magnolia's single-board,
soft-sectored, double density floppy disk
controller for the Heath HB89/Zenith Z89
computers. The software, in conjunction
with the disk controller board, will

support the following disk drives under
HDOS 2.0:

1. Four eight-inch floppy disk drives
(single/double-sided,
single/double-density), each drive holding
up to one-million bytes.

2., Four 5 l/4-inch floppy disk drives
(single/double-sided, 40/80-tracks per
side, single/double-density), each drive
holding up to .66 million bytes.

For additional information on the Magnolia
Controller and supplied documentation,
contact:

Magnolia Microsystems Inc.
2812 Thorndyke Avenue West
Seattle, WA 98199
Phone: 206-285-7266

or: B00-426-2841

For specifics on Dean's new Disk Device
Driver for the Magnolia controller,
contact:

Dean Gibson

c/o Ultimeth Corporation
24025 Fernlake Drive
Harbor City, CA 90710
Phone: 213-539-4276

(Vectored from page 17)

885-0019 Color Graphics Poster $ 2.
885-4 HUG Binder $ 5.

CP/M is a registered trademark of
Digital Research Corp.

Changing your address? Be sure and let us know since the software catalog and
REMark are mailed bulk rate and it is not forwarded or returned.

HUG MEMBERSHIP RENEWAL FORM

When was the last time you renewed?

Check your ID card for your expiration date.

IS THE INFORMATION ON THE REVERSE SIDE CORRECT?

IF NOT FILL IN BELOW.

Name

Address

City-State

£ip _

HREMark = Issue 20 » 1981

REMEMBER — ENCLOSE CHECK OR MONEY ORDER
CHECK THE APPROPRIATE BOX AND RETURN TO HUG

NEW MEMBERSHIP

FEE 1S:
RENEWAL RATES
US DOMESTIC $15 [$18
CANADA $17 [J US FUNDS $20]
INTERNAT'L* $22 [JUS FUNDS $28

* Membership in England, France, Germany, Belgium, Hol-
land, Sweden and Switzerland is acquired through the
local distributor at the prevailing rate.

31

SMHUG (Southwest Michigan HUG) is now

up-and-running. This group meets on the

fourthSaturday of each month at 1:00 PM

L I HUG N in Room 1034 of Moore Hall on the campus

Oca eWS of Western Michigan University. For

information, contact Al Jacobs by calling

(616) 349-3535 or write to AL at 623

Wildwood Place; Kalamazoo, MI 49008.

Aloha Computer Club =- Jim Branchaud has
been appointed President for the local

computer group. Jim replaces Gerry Cramm The Wichita Heath Users' Group meets on

who is being transferred to Camp the second Sunday of the odd months
Pendleton. Jim can be contacted by (Jan,Mar,etc.) at 2:00 PM. Meetings are
calli'ng (808) 531-8843. Good luck Gerry held in the East Pike Building at the
and Jim on your new assignments! corner of Webb and Kellogg in Wichita,

Kansas. Please call David Horwitz at
(316) 681-3456 between 6:00 PM and 9:00

The Toronto Heath Users' Group (THUG) PM for details.

has been meeting monthly since 1978 at

the Heath Electronics Centre located on From HUG "RI" =~ The Warwick RI Heathkit
1478 Dundas Street East in Mississauga, Electronics Center opens its' doors to
Ontario. The exchange of information HUG "RI" on the second Wednesday of the
and ideas has been very effective in month. HUG "RI" has a monthly
helping users understand and expand their newsletter. Meetings begin officially
systems. For additional information at 8:00 PM. However, since the store
contact Bill Smith at the Centre or, as is open until 8:00, most members arrive
Bill says, drop him a message via SOURCE between 7:00 and 8:00. For further
MAIL at CL1483. details contact HUG "RI"; c¢/o Heathkit

Electronics Center; 558 Greenwich Avenue;
Warwick, RI 02886.

From MUG -- (The Mission Users' Group)

meets on the last Sunday of each month The Jericho Users' Group (Jeri-HUG) meets
at the Mission Heathkit Electronics on the second Thursday of every month
Center. All area users are welcome to at the Heathkit Electronics Center located
drop in. Meetings start at 2:00 PM and on 15 Jericho Turnpike; Long Island, NY
end between 6:00 or 7:00 PM. For 11753. For additional information, call
additional information, contact Dave Phil Levinson at (513) 334-8181. Phil
Kobets by calling (913) 362-4486. Dave can be contacted either on MNET or
;Ca;;gzé)e contacted via SOURCE MAIL at SOURCE. (MNET #70330163 SCR #TCV162)

BULK RATE
U.S. Postage
PAID
‘Heath Users’ Group

Hilltop Road
St. Joseph MI 49085

POSTMASTER: If undeliverable,
please do not return.

885-2020

	REMark_issue20_1981_Page_01
	REMark_issue20_1981_Page_02
	REMark_issue20_1981_Page_03
	REMark_issue20_1981_Page_04
	REMark_issue20_1981_Page_05
	REMark_issue20_1981_Page_06
	REMark_issue20_1981_Page_07
	REMark_issue20_1981_Page_08
	REMark_issue20_1981_Page_09
	REMark_issue20_1981_Page_10
	REMark_issue20_1981_Page_11
	REMark_issue20_1981_Page_12
	REMark_issue20_1981_Page_13
	REMark_issue20_1981_Page_14
	REMark_issue20_1981_Page_15
	REMark_issue20_1981_Page_16
	REMark_issue20_1981_Page_17
	REMark_issue20_1981_Page_18
	REMark_issue20_1981_Page_19
	REMark_issue20_1981_Page_20
	REMark_issue20_1981_Page_21
	REMark_issue20_1981_Page_22
	REMark_issue20_1981_Page_23
	REMark_issue20_1981_Page_24
	REMark_issue20_1981_Page_25
	REMark_issue20_1981_Page_26
	REMark_issue20_1981_Page_27
	REMark_issue20_1981_Page_28
	REMark_issue20_1981_Page_29
	REMark_issue20_1981_Page_30
	REMark_issue20_1981_Page_31
	REMark_issue20_1981_Page_32

