=REMark

Issue 30 < July 1982

Official magazine for users of Heath/Zenith computer equipment.

(on the cover. . ..

Z Series
Low-boy unit

~

N

N

on the stack

+CAT

10..9...8...7..6..5.4

Jim Blake

Getting Started

withCP/MPart50.....

William N. Campbell

New HUG Products -

HUG Product List

An Editor for

BENTON HARBOR BASIC

Patrick Swayne

The MX-80OnceMore

Patrick Swayne

Ooooopppsss, I Forgot!

Or the Missing

Pat’s Patches . .
Patrick Swayne

CP/M Disk Errors
Patrick Swayne

The Flying Huggies
Alan Bose

Program,.

“REMark"" is a HUG membership magazine published 12
times yearly. A subscription cannot be purchased sepa-
rately without membership. The following rates apply.

U.S. Canada &
Domestic Mexico International

Initial $18 $20 US FUNDS $28
Renewal $15 $17 US FUNDS $22

Membership in England, France, Germany, Belgium, Hol-
land, Sweden and Switzerland is acquired through the local
distributor at the prevailing rate.

Back issues are availble at $2.50 plus 10% handling and
shipping. Requests for magazines mailed to foreign coun-
tries should specify mailing method and add the approp-
riate cost.

Send payment to:

Heath Users' Group
Hilltop Road
St. Joseph, MI 49085

Although it is a policy to check material placed in REMark
for accuracy, HUG offers no warranty, either expressed or
implied, and is not responsible for any losses due to the use
of any material in this magazine.

Articles submitted by users and published in REMark,
which describe hardware modifications, are not supported
by Heathkit Electronic Centers or Heath Technical Consul-
tation.

HUGManagerco00eo. Bob Ellerton
Software Coordinator and Developer Jim Blake
Software Engineer Pat Swayne
Hug Bulletin Board and

Software Developer Terry Jensen
HUG Secretary Margaret Bacon
REMark Editor Walt Gillespie
Assistant Editor and Layout. Nancy Strunk

Copyright © 1982. Heath Users’' Group

HUG is provided as a service to its members for the purpose
of fostering the exchange of ideas to enhance their usage of
Heath equipment. As such, little or no evaluation of the
programs or products advertised in the software catalog,
REMark or other HUG publications is performed by Heath
Company, in general and HUG in particular. The prospec-
tive user is hereby put on notice that the programs may
contain faults the consequence of which Heath Company in
general and HUG in particular cannot be held responsible.
The prospective user is, by virtue of obtaining and using
these programs, assuming full risk for all consequences.

MeREMark

¥cREMark - Issue 30 + 1982

10..9...8...7... 6.. .5. -

weeks is all that is left before about 1000 HUGGIES will descend on the Hyatt
Regency O'Hare in Chicago for the first National HUG Conference August 6,7 and 8.
There are about 400 tickets left, so if you have not registered, do so soon. We would
like to see you there. The Agenda is as follows.

HUG CONFERENCE AGENDA

FRIDAY Afternoon

Most of the HUG staff will be found running around the main floor in an interrupt driven
mode.

4:00-10:00PM - Exhibitors set-up time. Stop by and interrupt them too.

8:00-10:00PM - Late Registration ($20). Right by the front entrance. Even if you've already
registered, you will want to stop and pick up a holder for your badge and a HUG note pad.

SATURDAY
8:00 - More late registration.

The Exhibits will be open all day.

9:00 ~ Opening remarks and introductions. There will be many of the Heath/Zenith hardware
and software engineers and executives present during the two days and they will be glad to
answer any of your questions.

9:15 - Bill Johnson, Heath Company President will open the conference with a dicussion of the
growth and direction of Heath/Zenith with regard to all product lines as well as the computers
and a visual tour of the twelve acre facility in St. Joseph.

10:15 - Jerry Pearlman, Senior Vice President of Finance, the man responsible for Zenith's
acquisition of Heath Company in 1979 will address the overall corporate position as well as the
computer industry as a whole.

11:15 - Tom Dornback, Vice President of Software Development, will discuss the overall
philosophy of the software group, how they operate, what's coming and give us the first look
at the software capability of the 'Z' series of computers. Tom has reserved a period of time
for questions.

12:30 - Lunch for all HUGGIES courtesy of Heath Company.

1:45 - Barry Watzman, Computer Product Line Manager, will present the new 'Z' series and
answer questions.

3:30 - Gregg Chandler, Operating Systems Engineer, will present a preview of the next release
of HDOS.

The afternoon will conclude with a overall Q@ and A session on anything covered today.

5:00 - Free time to visit the exhibitors and socialize.

7:30 - Dinner courtesy of ZDS, followed by the Keynote Address by Don Moffet, President of
Zenith Data Systems. After that, the HUG staff, assisted by Joe Schulte President of
Veritechnology (your local Heathkit Electronic Centers) and the exhibitors, will conduet the

drawing for over 20 door prizes, including a Z machine, H-89 and a H-25'!... Yes... you must
be present to win. Large items will be shipped to your home.

¥REMark « Issue 30 - 1982

SUNDAY

8:00AM - The Exhibit area re-opens. You can sleep in and catch a few Z's or there will be a

few Z's to play with and a chance to chat with your new and old friends.
10:00 - Back to work. HUG business meeting. Your opportunity to rain on us.

11:00 - Gordon Eubanks Jr. Vice President of Languages from Digital Research. Gordon is the
author of CBASIC and the former president of Compiler Systems until its' acquisition by DR.
He will preview 'What's next from Digital Research.'

12:30 - Leisurely snack lunch on your tab.

1:30 - Gordon Letwin, or JGL to some. Gordon is the original author of HDOS and is now the
project leader at Microsoft on MS-DOS or Z-DOS the operating system chosen for the IBM PC
and the Z-100 series. Gordon will give a closer view of this operating system and a peek at
the future.

2:30 - Mike Brenner, Computer Product Line Manager for Terminals and Applications Software
may unveil some 'newies’.

3:45 - Doug Bonham, the Director of Educational Products will report on how microcomputers
are being used in the educational field and a review of present and future educational
products.

4:45 - See ya!

YOUR FRIENDS AND OURS

Among those planning to attend (in no particular order) are... most of our advertisers, including Software
Toolworks Ltd. Walt Bilofsky; CommSoft Inc. Howard Nurse; Ultimeth Ine. Dean (SY: Driver) Gibson;
Trionyx; Keyboard Studio, Ray (HUG posters) Massa; Generic Software, Dave Powers; D G Electronics, Bruce
Denton et al; Sextant/Buss, Charlie Floto; Software Wizardry Ine. Tom (ZLYNK by Dale Lamm) Jorgenson;
Livingston Logic Labs, Ray (BIOS 80) Livingston; Evryware, (Invasion, Y-WING etc.) Dave Murray and Joe
Gargiulo; Phillips Engineering, makers of A-D hardware for the 89, Mel Winters; Micro-Interface, Ted
Bengal; Sunflower Software, Richard Kerbel; Kres Engineering, Bob Koepel President will introduce the new
expansion unit for the 89; Atra (Housemaster home control unit) Reuel Launey, President.

Also, the Chicago VEC stores will have a booth featuring very special buys on many Heath products. (Bring
your plastic money.)

SPECIAL AWARDS
Saturday evening at the dinner, some special awards will be made to the following individuals:

Doc Campbell... For authoring the longest SUMMARY in the history of journalism, which apppears on page
10 of this issue... and continues next month!

Bill Parrott... for suggesting that there be a National HUG conference and that it be held in his home.
Henry Fale (H-Scoop)... for telling it like it almost is.

Tom Jorgensen...for maintaining the longest running dialog on MicroNet without a carriage return... or
modem.

Ray and Nancy Massa... A four color life-sized poster of the H-10 high speed paper punch mass storage
device.

Charlie Floto... for introducing sex to the computer industry.

There will be other prizes too, including a yet-to-be announced 64k expansion for the 89. This expanded
memory allows multi-tasking and can be arranged so that, for instance, you have a full 64k of work space
left for your program, after loading Basie! Here is how it works. The 64k is not quite random access.
65,535 eight bit bytes are arranged side-by-side and spaced & minute 5 mm apart (an industry de-facto
standard) on special weather-proof high speed mylar tape only one inch wide. Using a special adhesive,
supplied with the kit, the user then glues the ends together which renders a tape measuring 682.35 feet

Vectored to page 37

¥eREMark + Issue 30 - 1982

Getting Started with CP/M Part 5

William N. Campbell, M.D.
855 Smithbridge Road
Glen Mills, PA 19342

Copyright (c) 1982 by William N. Campbell, M.D.
Abstract -

An MBASIC program for creating a mailing list with
optional field (allowing for 3 OR 4 lines of name and
address), AND with optional field for phone number or
OTHER data is presented and discussed. A printer
label program for outputting to continuous form labels
(one to four across) is given. Some basic string
handling techniques are discussed. In addition, for the
new MBASIC programmer, [will try to explain how
each program works, and 1 will explain in detail how I
actually went about writing these programs. These
programs may also be suitable for use with data other
than mailing lists, if appropriately modified.

Many mailing list programs 1 have examined are
deficient in some important areas. Frequently one
needs more than one line for the "street address"
portion of the name and address. When printed out,
the name and address will occupy 3 OR 4 lines for
each label. Did you ever receive mail that had a
label on it with your name, then a blank Iine,
followed by 2 lines of address? 1 know I frequently
get this type of labeled mail. The blank line usually
means that there was an optional line of address
allowed for in the computer program that produced
the label, but that the programmer didn't take the
time to remedy the blank line! Also, many times one
desires to include data information in the records
which are not part of the actual name and address.
An example would be a phone number. And, some
folks desire to print out to continuous form labels
which are 1, 2, 3, or 4 across the carrier paper. |
will discuss programs which "automatically" handle
these features. | previously presented (REM issues 10
and 11) "bare bones" programs for a mailing list.
Now, we will elaborate on some of the issues. The
material in this article is presented using sequential
file handling techniques. I will show how to change
these sequential programs to random file programs,
and discuss how to transfer data created by
MAKESEQ.BAS to random access data files in a later
article, These programs were written using CP/M
version 2,2 and MBASIC version 5.2. Actually, they
will work fine with HDOS MBASIC version 4.82 with
very minor and minimal changes,

HRERREERERR R LR RN LT RE R RN TN

FOR HDOS and MBASIC version 4.82 MAKE THESE
CHANGES: In MAKSEQ.BAS, line 60 should read

60 CLEAR 2500.

To alter LABEL.BAS for HDOS MBASIC, change line
100 as just mentioned above. Then, change all
"LPRINT" statements throughout the program to
"PRINT #2,". This is most easily done as you enter
the program. Next, add line 255:

¥-REMark - Issue 30 * 1982

255 OPEN "O",2,"LP:"
Last, add line 445:
445 IF 1-1=-1 THEN 680

To alter PRDATA.BAS for HDOS MBASIC, change the
"LPRINT" to "PRINT #2," and add a line --> 25
OPEN "O",2,"LP:"

Don't forget to LOAD LP: before you load MBASIC
into memory with HDOS.

I I I I I3 30 e

From here on | assume only that you know how to
load MBASIC into memory (from the monitor prompt
type MBASIC<cr>); that you know how to load a
preexisting MBASIC program Einto memory (LOAD
"FNAME<er>) (ALWAYS USE UPPER CASE LETTERS
when loading or saving programs in CP/M MBASIC);
that you know how to save an MBASIC program
(SAVE "FNAME<cr>); that you exit from MBASIC to
the system monitor by typing SYSTEM<er>; and that
whenever you see "<cr>" in an article that I write, it
means you hit the RETURN key on your terminal
keyboard. You should also know that with CP/M
MBASIC you list the program by typing LIST, and you
list the program to your printer by typing LLIST.
And, you do NOT have to CLEAR any memory string
space for string variables in CP/M MBASIC as it is
done dynamically for you. Also with CP/M MBASIC
you reference drives as A: B:, etc., rather than SY0O:,
SY1:, ete. Last, both HDOS and CP/M MBASIC use an
apostrophe (') OR REM to indicate that whatever
follows is a comment and not to be acted upon as a
program statement. The programs that [will present
have numerous "REMarks" and you should NOT leave
out the apostrophes that are present in the program
listings when you enter the programs.

I urge the newcomer to take his or her time when
reading this text and to actually enter the program
lines as 1 will outline. Also it would be to the
reader's advantage to reference his MBASIC manual to
clear up any points that [have failed to clarify
sufficiently.

When writing these programs, I began by creating a
test data file using an editor. (I used PIE from
Software Toolworks.) This test data file is shown in
Figure A. Note that this data file consists of several
records (each record is one line and each record,
therefore, is separated from the next record by a
<er>. (<er> means "carriage return".) Each line is
composed of numerous items, and these items are
logically associated with each other. The items are
termed "fields". Each field is separated from the next
field by a "delimiter", and | used a reverse slash (\)
as a delimiter. Summarizing this, a sequential data
file consists of one or more records, each record

being separated from the next by a delimiter ({cr> in
our example); each record consists of one or more
fields, and each field is separated from the next field
by a delimiter (\ in our example.) Now, examine
figure A. Note that the first line contains 7 fields (6
delimiters). Note that the second line has 6 fields (5
delimiters). Note also in the second line that this
record has a "null" field (\\). This means, as you will
see later, that there was NO optional line of address
entered. Note that all the records (all the lines)
except records 2 and 3 have a phone number in the
last field. Last, note that the city/town and the 2
letter abbreviation for state, and the 5 digit zip
codes are NOT separated from each other with
delimiters. Here, no delimiters are necessary as there
are ALWAYS 2 letters for state and ALWAYS 5 digits
for zip code. Finally, | intentionally kept all the
names and addresses very short, so that 1 could test
the output on standard (9 1/2 inch wide) continuous
form paper. In actual use the "LABEL" program
should accept and print out any line lengths,
maximum length being determined only by label width
and the capability of the printer. I suggest that you
now use your editor and create the data file shown in
Figure A. Name the file DATA.

So, with the above in mind, 1 wrote the program
LABEL.BAS. 1 wished to allow for correct printout of
name and address, regardless of whether the output
labels were 1, 2, 3, or 4 across the page. The correct
printout should allow for 3 OR 4 lines for EACH
name and address. And, of course, the phone numbers
should NOT be printed on the labels if they were
going to be used for mailing purposes. On the other
hand, we might wish to have the phone numbers print
out for our own use, so allowance would have to be

made for this contingency. Also, | wished to be able
to EASILY alter all the necessary parameters for
appropriate label output. Now, for a preview of the
output of LABEL.BAS examine Figure B. Note that
the output assumed the user desired to print his
labels three across (3 horizontal labels on the paper).
Note that when there were only 3 lines total for a
name and address, that there is NO blank line where
the optional line had not been entered and was a
"null". Note also that the phone numbers were NOT
printed out. We also note that there are NO
restrictions on whether or not the user desired upper
or lower case output. Last, note that NO delimiters
were printed out.

[decided to write LABEL.BAS using the following
approach:

I would first write and test the program "module"
that dissected any record into its component parts.
Then, I would use a FOR-NEXT loop to input the
desired number of records into an ARRAY. Next, |
would use more FOR-NEXT loops to output to each
horizontal row of labels. 1 would have to set certain
parameters such as the beginning left margin and tabs
for the output early in the program. Also, 1 would
have to OPEN the data file, and CLOSE it when
done, using an EOF(n) statement to trigger the
CLOSEing. Last, it would be nice to have the
program tell us how many labels had been printed out
when we were finished. Let us see how these
objectives were carried out.

LABEL.BAS

The heart of the program, and the most intimidating

CAMPBELL\JOE\MR\BOX 957\123 SMITHS ROAD\GLENSIDEPA98765\459-1234

JONES\SAM\MS\2 SECOND AVENUE\\CHESTERPA19013

IPES\JOHN\MR\BOX 999\4 FOURTH LANE\ASTONPA19024
igMS\éHARL\ES\MR\5 FIFTH BLV’D\\CHESTERPA19013\(666}/247—9999
STRALL\JACK\MR\BOX 66\8 NEXT STREET\PHILAPA19209\444-4444
JULIAN\JOHN\MR\10 LAST STREET\\LEIPERSPA19012\666-6666
Fink\Glen\Mr\That Lane\Box 123\TownvilleDE12345\999-9999
Johns\Helen\Mrs\lst Street\\CitytownPA12345\214/123-4559

Figure A. This data file is named DATA. I
MBASIC program MAKESEQ.BAS can produce thi
error-free manner.

MS SAM JONES
2 SECOND AVENUE
CHESTER PA 19013

MR JOE CAMPBELL
BOX 957

123 SMITHS ROAD
GLENSIDE PA 98765

MR JACK STRALL
BOX 66

8 NEXT STREET
PHILA PA 19209

MR CHARLES ADAMS
5 FIFTH BLVD
CHESTER PA 19013

Mrs Helen Johns
lst Street
Citytown PA 12345

Mr Glen Fink

That Lane

Box 123

Townville DE 12345

Figure B.]
file shown in Figure

It was created by using an editor,
s and similar files in a more elegant and

although

MR JOHN CRIPES
BOX 999

4 FOURTH LANE
ASTON PA 19024

MR JOHN JULIAN
10 LAST STREET
LEIPERS PA 19012

This is the printed output for labels (3 across), produced from the DATA
A by the program LABEL.BAS (see text).

¥eREMark - Issue 30 + 1982

for the newcomer, are lines 300 to 410. I suggest
that the newcomer ENTER LINES 300 THROUGH 410

NOW. IN ADDITION, ADD THE FOLLOWING LINES
for test purposes. We will delete them later.

200 X$="LAST\FIRST\MR\STREET\OPT ADDRESS\CITYTOWNPA12345\(11ll) 123-4567"

500 PRINT A;B;C;D;E;F

505 STOP

507 PRINT XS$

508 PRINT LEN(XS$)

510 PRINT AS$(0) ,LEN(AS$(0))
520 PRINT B$(0) ,LEN(BS$(0))
530 PRINT C$(0) ,LEN(CS$(0))
540 PRINT D$(0),LEN(DS$(0))
550 PRINT ES$(0) ,LEN(ES(0))
560 PRINT F$(0),LEN(F$(0))
570 PRINT G$(0) ,LEN(GS$(0))
580 PRINT HS$(0),LEN(HS$(0))
590 PRINT F1$(0).LEN(F1$(0))

Now, type RUN and <cr>. The program should print 6
numbers on the screen and stop.

If you do NOT get the results I describe, then either
I have made a typographical error in this article, or
you have made one when entering the lines described
above! Lets double check! A frequent error is to
enter the letter O when you meant a zero (D), and
vice versa. Another error is to forget to enter an
apostrophe where a REMark was intended. Also, it is
easy to overlook a following semicolon (to prevent a
<er> or return after a PRINT or LPRINT statement
respectively). And don't forget that each statement,
on a multistatement line, is separated from the next
statement by a colon (:).

Next, look up the INSTR function in your MBASIC
manual and read it carefully. You will find that this
function is actually a "match" function. In fact, some
BASICs call the function MATCH. Note that there are
3 items in each INSTR function, separated by
commas. The first is the starting position, the second
is the string in which we are looking for a match,
and the third is the character(s) you desire to use for
matching purposes. The second and third items can be
either strings enclosed in quotes ("this string","is") or
string variables such as X$,Y$. In our use in this
program, we put our name and address in X$, and
then we used "\" as the third item in the INSTR
function. You could use the INSTR function by saying
PRINT INSTR(1,X$,"\") etc., but for our purposes we
will put them in variables A through F (look at lines
300 and 310.) For A, we will start with position 1
(the first character in our name and address string
(eg. the first character in X$).

In the screen printout you got when you ran the
program, the first number should have been 5. Now,
beginning at the left, count 5 characters (line 200).
You will see that the S5th character is a reverse
slash., THIS IS HOW THE INSTR FUNCTION
OPERATES. IF it can find a match, it returns the
position in the string to be searched of the string we
are searching for; in our use here, we are looking for
a "\" in the name and address string. So, that is why
the first number in the printout was 5!

Now examine line 300 again and look for our next use
of the INSTR function. This time we are putting the
results in variable B, and, we begin our search with
A+1l. We do this because we found one "\" and we
don't want to find it again. We are looking for the

¥REMark - Issue 30 + 1982

location of the NEXT "\". So, we begin with A+l. In
our example, A+l=6. Examine the next number on the
screen and you see that it is 11! Sure enough, when
we examine line 200 again, we note that the 1llth
character in the string X$ is another "\". And so on,
with C, D, E, and F. Check them out. Make sure you
understand what we are doing. We are simply locating
each delimiter (\) in the string X$. What do you
suppose the INSTR function would return if there was
NO match in the string. Well, to find out, type
PRINT INSTR(F+1,X$,"\")<cr> and see what is
returned. You are correct. It returned a 0 (zero). We
began THIS matching procedure just AFTER the last
"\" in our string that we placed in X$ in line 200,
and there are NO more "\" characters in the string.
The INSTR function is a very powerful function, and
you should make sure you understand the function!

Now, remove line 505 (just type 505<cr> and it is
gone). Type RUN<cr>. You should be rewarded with a
screen printout of the numerical values you just
studied, a printout of the contents of X$, a number
representing the length of the string contained in
string variable X$, AND the contents of array string
variables A$(0) through F1$(0), and the length of each
individual string variable.

Let us see just how the program did this.

In line 508 we simply determined if X$ did indeed
contain all the characters, including delimiters, that
we placed into it in line 200. This is how to
determine the length of a string. Look up the LEN
function now. As you can see it is not difficult. It
simply returns the total number of characters in the
string used in the argument.

Next, examine line 340. Do not be concerned about
the array subscript (I) at this time. I will explain that
later. What we are concerned with here first is the
LEFT$ function. Look this up in your manual and
carefully read about it. This function lets you '"grab"
out any given number of characters from a string
beginning with THE FIRST CHARACTER. It has 2
arguments. The first is the "string" or a string
variable. The second is a numerical value which states
just how many characters, including the first
character you want to grab. This second argument
may be an actual number or it may be a variable, or
a combination such as we used in line 340. The
LEFT$ function that we used, says to take that
portion of the string contents of X$, beginning with
the 1st character, for a TOTAL of A-1 characters

and place those characters in a string variable named
A$(1). Since A is the position of the first "\" in X§,
A-1 tells MBASIC to place the first 4 (5-1) characters
of X$ into the named string variable, This is exactly
what happened as you should see on your screen. The
printout should have been LAST 4, LAST is what
variable A$(I) contained and 4 equals the length of
this variable. All is how it should be so far.

Continuing with line 340 we come to the MID$
function. We could have used this instead of the
LEFT$ function just mentioned, but I wanted to use
LEFT$ to show how it worked. Read up on the MID$
function in your manual. This is probably the most
important of all string handling functions, for you can
isolate ANY part of a string with it. The MID$
function requires 3 arguments usually. (As we will see
later, sometimes we can use only 2.) The first is the
"string" or string variable such as we have used. The
second argument is the position of the starting
character (that we wish to extract) in the string. And
the third is how many characters total we desire to
extract. So, on line 340 in our example, the program
tells MBASIC to use X$ as the 'string", begin with
the A+l character (6th character in our string in X$)
and continue for a TOTAL of B-1-A characters. You
may have to think about this for a little bit. (I know
1 always have to!) B-1-A simply states that B-1 is the
last character we wish to "grab" and if we subtract
all of the characters from the beginning of the string
to the start of what we wish to extract, then the
difference is the total number of characters we wish
to extract. Think about it and you will agree. Then,
MBASIC (using this MID$ function) puts the Edesired
string in string variable B$(I). We see that it has done
what we wanted when we examine the screen printout
and see that the contents of B$(I) is indeed FIRST,
and its length is 5, Again, all is going well.

Hopefully you now understand the MID$ function and
if so, you will see that lines 350 and 360 use
EXACTLY the same reasoning as for the way we just
used the MID$ function on line 340. This brings us to
lines 370 through 390. Here the program is going to
go after 3 strings within one string, and there are NO
delimiters WITHIN this particular string.

The string 1 refer to is in X$ and consists of
"CITYTOWNPA12345". Now, we didn't put any
delimiters within this string since we did not need to,
and since not putting in 2 delimiters within this string
saves 2 bytes of space per record, both in memory
AND on disk. The program is able to separate these 3
items since the last 5 characters are ALWAYS the 5
digit zip, and the 2 previous characters are ALWAYS
the 2 letter abbreviation for state. So, line 370 says,
examine string X$, and using MID$, extract from X$
the string beginning at E+1 (E is the position of "\"
just BEFORE the C of CITYTOWN) and include
everything to the position of the next "\" LESS the
delimiter itself and the previous 7 characters. The
previous 7 characters, of course, are the 2 letter
state abbreviation and the 5 digit zip code. 2 + 5 = 7
and 7 + 1 (the delimiter) = 8. That's where that 8
came from. And, we now subtract this from the
position of the delimiter following this desired string
(F) to obtain the total number of characters in the
"eity field". And, if you examine the screen printout
you should see CITYTOWN 8 which is as it should be.
The 8 of course represents the length of string
variable F$(I). 1 believe you will be able to figure out

how the next 2 MID$ functions operate, since we

know in advance exactly how long each string will be
(2 and 5 respectively).

This brings us to line 400. Here, we simply
concatenate (add together) the city field, the state
field, and the zip code field and separate each from
the other by a space. (You can vary the number of
spaces as you desire.) The result of the concatenation
is placed in string variable F1$(I).

Line 410. This is the program line which fixes up our
printout and which allows us to have either 3 or 4
lines total on our label output. This line says that if
the length of the contents of string variable E$(I) is 0
(IF the contents of E$(I) are a null), THEN we will
move the last line (city-state-zip) up from F1$ and
put its contents into E$(I). THEN, we will make the
contents of F1$(I) (which originally had the
city-state-zip as its contents) a "null" (F1$=""). If we
did not have this line, and if there was no optional
line of address (E$(I) was a null), our printout would
have a blank line between "STREET ADDRESS" and
"CITY STATE ZIP™

Let's go back and examine line 320. The purpose of
this line is to add a "\" to X$ (by concatenation) IF
(and only if) there were ONLY a total of 5 delimiters
within X$. Now, the example we used in line 200
contains 6 delimiters (6 "\" characters) and therefore
line 320 was not called into play. However, if
variable F contained a zero, then the line WOULD be
called into play. And, variable F would contain a zero
ONLY if there were no phone number as part of any
given individual record. See figure A again and
examine the listings of the records without phone
numbers. This line also puts the correct position of
the added delimiter into F (F=LEN(X$)+1). 1 suggest
that you now change the string contents of X$ in line
200 by deleting the LAST delimiter (\) and ALL
characters from this delimiter up to (but not
including) the quote (") mark. Then RUN the program
and examine the screen printout. The first time you
run it you might want to add line 505 just to make
sure that F really does contain a zero under these
circumstances. The screen printout should verify all
that we have discussed.

We have finished with the hard part of this program.
Lets continue with the easier parts. | assume you
have used your editor and entered the test DATA file
as shown in Figure A, and that it is on disk and has
the name "DATA".

Whenever you access any data file there are almost
always 3 things that you must do. First, you must
OPEN the file. Second, you usually either read from,
or write to, the file. Third, you CLOSE the file. So,
refer to the program LABEL.BAS and enter the
following lines 240, 250, 280, and 700. Delete line 200
(and also 505, if it is still present). Now, type
RUN<cr>. When you are asked to enter a file name,
enter DATA<cr>. When the program stops, you should
be rewarded with a printout of the name and address
record which is the first line in FIGURE A. Line 240
asks us to give the name of the data file (DATA in
this instance) and places our response in string
variable Y$. Then, line 250 opens Y$ for input as file
number 1. Line 280 then uses the LINE INPUT
statement to input the first record (the first line) of
our data file, AND it places the input into string

¥eREMark « Issue 30 - 1982

variable X$. Then all the string manipulation that we
previously discussed takes place, and lines 507 through
590 print out on our screen the information that we
previously discussed in detail. Finally, line 700 closed
the file using the CLOSE statement.

Assuming you have a printer that uses "“standard"
continuous form paper (9 and 1/2 inch wide including
the punched strips on each side), refer again to
program LABEL.BAS and add lines 120 through line
220 inclusive, These lines set certain parameters
which we will discuss later. Next, add lines 260 and
270. Next, add line 420. Now, delete lines 500
through 590 inclusive.

Since we want to be able to output to a maximum of
4 horizontal labels, and since we must print all the
names for each of the 4 labels BEFORE we print the
correct corresponding lst line of each address under
each name, etc., it becomes obvious that we MUST
have a maximum of 4 records in memory before we
start any printout. A convenient way of doing this is
to use a string ARRAY. All that this means is that
we can use a numerical (or variable) SUBSCRIPT
(enclosed within parentheses) immediately after our
string variable. Look up and read about arrays in your
MBASIC manual at this time. After gaining some
concept about what arrays are, look at lines 260 and
420, These demonstrate a FOR-NEXT loop. And, all
that this does is to execute the lines BETWEEN the
FOR statement and the NEXT statement a given
number of times. For example, a "WOR [=1 to 2"
statement, followed by any number of lines, followed
by a NEXT 1 statement, would execute all the
statements between the "FOR I=1 to 2" statement and
the "NEXT [" statement 2 times. The first time
MBASIC executes the FOR statement (in this
example), | becomes SET to 1 (from =zero). The
following statements are then executed until MBASIC
gets to the "NEXT I" statement which increments I
by one (I+1=2). I now equals 2. The NEXT statement
also returns E to the statements immediately after the
FOR statement and executes them for the second
time. This time the "NEXT I" statement increments I
by 1 and I NOW equals 3. This is one more than the
number of times we specified in the "FOR I=1 to 2"
statement. MBASIC then realizes that this
"FOR-NEXT" loop is finished, and immediately goes to
the statement immediately FOLLOWING the "NEXT I"
statement. The "FOR-NEXT" loop just described,
therefore, executes all the statements between the
FOR and the NEXT statements two times, The first
time through the loop, I=1 and the second time
through 1=2. 1=3 when we left that loop. This last is
IMPORTANT, as different BASICs differ in this
regard. In both HDOS and CP/M MBASIC, you exit a
"FOR-NEXT" loop with the variable (I in the above
example), always one more than the maximum given
in the FOR statement. (Note that we are using the
default STEP of +1. See your manual. You can
increment by more than one using the STEP part of
the FOR statement each time the variable is
incremented, and you can also use descending
increments, "WOR T = 10 TO 0 STEP -2", for
example.) You should study "FOR-NEXT" loops in your
MBASIC manual now, unless you are already familiar
with them.

We can utilize a "FOR-NEXT" loop in setting up our

string array. And, that is exactly what we have done
in our program. Line 260 says that the first time

X REMark « Issue 30 » 1982

through the loop, I=0. The next time through the loop,
I=1. The next time through the loop, [=2. (The next
time through the loop I would = 3, assuming that the
program went through the loop 4 times if N=4). Note
our use of "N-1" in line 260. By varying the value of
N we can control the number of times we go through
the loop. If we want to go through the loop 3 times,
then we simply set N to 3, and if you refer to line
120 of our program, that is precisely what we have
done. Why do we say "N-1" in line 2607 Well, we are
beginning with 0 (zero), NOT 1. 0,1,2 will give us 3
times through the loop. (Incidentally, upon exit from
this loop and with the values given, I will = 3.) (I did
not set N to 4 in the program listing, as 4 across
would print the 4th name and address partly OFF
standard width paper.)

Here we come to the crux of the matter. The first
time through the loop, [=0. And, in lines 340 through
410, each array variable subscript is assigned the
value 0 (since we are using | as the subscript). This
means that after the first time through the loop, if
we entered PRINT A$(0)<cr> for example, the
appropriate last name would be displayed on the
screen. (If we entered PRINT A$(l)<cr> at this time
NOTHING would be displayed as nothing is all that is
in this subscripted string variable until AFTER the
next time through the loop!) Now, each time through
the loop, I is incremented by the "FOR-NEXT"
routine, and each time we are finished the "FOR I
NEXT 1" loop, the contents of 3 records are contained
in the subscripted string variables. I suggest you run
the program now, and when it stops, enter some
random PRINT subscripted string variable statements
and <cr> and see what is displayed. For example
PRINT C$(0)<er>, PRINT C$(1)<er>, PRINT
H$(0)<er>, ETC.. Do NOT, by the way enter PRINT
C$(M)<er>, for example. Remember, that [is always
incremented by 1 on exit from a "FOR-NEXT" laop,
and therefore NOTHING was placed in it! You can of
course type 1=0, and then PRINT C$(I) etc..

Now that we have our array filled with 3 names and
addresses, we will print them on 3 labels (when N=3,
as in our example). Obviously, we must print the first
name on label 1, the second name on label 2, and the
third name on label 3 BEFORE we print the first line
of address for each of the 3 labels. We will do this
using several "FOR NEXT" loops.

Add lines 430 through 490 inclusive to the program.
This is the first loop which prints out 3 names on the
first 3 labels. Here is an explanation of these lines.

We set LM to 5 back in line 130. This represents our
left margin (on my printer). CP/M MBASIC has a
"bug" (a "feature") so that it ALWAYS TABs one
space LESS than [think it should. For example, if
you "TAB(5)", you actually only tab 4 spaces! So, line
150 remedies that situation by adding 1. (This problem
is NOT present in HDOS MBASIC version 4.82.) Next,
we determined (by trial and error, actually) that there
were 20 spaces from the first printing character of
the first label to the first printing character of the
second (and from second to third, ete.) and we
assigned 20 to our TAB. T = our TAB on line 140.
Note that we also store the value of T into memory
variable R in line 160. The value of T will change as
we TAB from one label to the next, but the value of
R will never change. So, line 430 sets up the value of
the second TAB (T=R+LM). Then, we LPRINT our left

9

margin distance (LM), by tabbing. Line 440 is the
FOR part of our next loop,

Why do we use "I-1"? Well, recall that when we left
the "FOR 1 NEXT 1" loop that | was one more than
the value represented by N. Hence we deduct 1 from
1 by saying "FOR J=0 to I-1". Think about that for a
moment and you will realize that we will be printing
(in this example) our 3 names. The FIRST time line
450 is utilized, we print the name (etc.) on label 1.
Also, line 450 then TABs to the next label (TAB(T)).
Note that semicolon (;) at the end of the line which
prevents the printer from doing a return! Line 470
then increments the value of T by R! (We add on the
TAB value to take us to the third label (after the
second name, etc. are printed)). Line 480 takes us
back to line 440, where J is incremented by one.
Note that throughout this loop, we use the different
values of J to reference the subscripts in our array.
The first time through the loop J was 0, the second
time through the loop, J will be 1, etc. This second
time through this loop prints the second name on
label 2. And, exactly the same thing applies for the
third time through the loop.

Now, the loop is ended and we drop to line 490. We
must do a return here. Remember that the line that
printed the name, etc. ended with a "". Line 490
remedies this situation by telling the printer to do a
return (LPRINT). Lets now explain line 460. S in this
program is used as a counter. Whenever you type
RUNC<er> all variables are set to 0. Line 460 is the
first time in this program that S is referenced, and
the first time through the loop shown from lines
440-480, S is incremented by 1. Since S=0 when line
460 is first used, S=1 after line 460 is executed by
MBASIC. The second time through the loop (we are
printing the SECOND name, etec.) S is again
incremented by 1 to 2. Do you see now why we call
S a counter? Incidentally, there was nothing magical
about selecting S as a counter. This was the last
thing 1 added to this program. All the other variables
(A,B,C, etc.) seemed to have been used, | didn't see
any S in the program so I used it! And this line is
the only time S is used in this program (until line 710
when the program if almost done, and the value of S
is printed out for the users inspection on his terminal
screen S of course tells the user how many labels he
used!) Type RUNC<er> and be sure your printer is
turned on. You should be rewarded by one row of
names across one line.

We are almost done explaining this program, for
LINES 500 660 are simply more "FOR J=0 TO I-1
NEXT J" loops which print out (1 line of 1 label for
each execution of each loop) with identical logic as
to that just discussed. And, this program, whether
each name and address are 3 or 4 lines long, outputs
a total of 4 lines (although the 4th line is a null if
the unit is only 3 lines long watch your printer.)
ENTER ALL THE REST OF THE PROGRAM LINES
NOW. WATCH OUT FOR THE SEMICOLONS (;)!

Line 665 (if you removed the REM) would print out
the phone number field if you so desired; remember
also to remove the REM from line 415 to do this.

After the 4th line of each label has been printed out
by lines 630 to 660 FOR-NEXT loop, we fall to line
670, which does three RETURNs on the printer
spacing (on our labels) to the correct position for the

10

next horizontal row of labels.

Then, line 690 RETURNS us to line 260 which is the
start of the whole process of gathering data from the
next 3 records and printing them out.

SUMMARY

The program initially sets up some parameters which
the user can modify before running the program.
Then, after opening the file, we used a "FOR [=0 to
N-1 NEXT I" loop to place the first three names and
addresses in an array in memory. Next, using a series
of almost identical "FOR-NEXT" loops (one for each
horizontal line for 3 horizontal labels), we printed out
the name, etc. fields, then the 1st line of address,
then the 2nd line of address, then the city/state, 2
letter abbreviation for state, and zip. (If there were
only 3 lines of total name and address in any unit we
had previously moved the 4th line of that UNIT up to
the 3rd, so that the 4th line was a null.) Then line
670 was responsible for spacing down to the next
horizontal row of labels. Then, line 690 returns us to
line 260 to repeat the whole process all over again.

But, you may ask, what happens when we run out of
names and addresses to input? (We have reached end
of file (EOF)!) Line 270 is called into play! This first
statement in the "FOR I = 0 TO N-1 NEXT I" loop
takes care of this. Here is what happens.

Whenever you use LINE INPUT to input records from
a sequential data file, you almost always include an
"EOF(n)" statement just BEFORE your line input
statement. You should now read about EOF in your
MBASIC manual if you are not familiar with it. It
will automatically determine the end of your data file
for you. And, you always go back to the EOF(n)
statement (instead of the line input statement)
whenever you desire to LINE INPUT the next record.
(The "n" just after the EOF(n) is which file number
was opened in the OPEN statement). Whenever EOF(1)
(in our program) occurs, the IF part of line 270
becomes true for the first time and then we
immediately set a numerical variable (which I
arbitrarily called FLAG) to -1. (Note that this is NOT
a special variable. I could have used F or BE or JB
or KIT or anything else NOT used elsewhere in the
program as my variable. BUT, since I intended to use
THIS variable as a "flag" [simply named it "FLAG".)
Also, note that the value -1 was simply picked out of
the air. I could have used 99 or 66 or 123 or
whatever. But, -1 has a nice computer "feel" to it.)

Now, up until EOF(1) was reached, FLAG=0. Note
that immediately after EOF(l) was reached we set
the variable FLAG to a value of -1. Then we
immediately branched to line 430. At this time, the
value of | indicates the number of names and address
units in our array that we were inputting, and which
as yet have NOT been printed out. The value of I at
this time could have been from 0 to 2 (with N set to
3)., Then from line 430 on, using the J "FOR-NEXT"
loops, we printed out the present last group of array
names and addresses.

(Note that if 1=0 when we reached EOF (1) in line 270,
then in line 440 and the other J loops, I-1 would =
-1. (0 minus 1=-1.) Now, under these circumstances
CP/M MBASIC version 5.2 skips the loops. However,
HDOS MBASIC version 4.82, makes one pass through

¥-REMark -+ Issue 30 - 1982

EACH loop and will print out whatever was in the
array subscript (0) from the PREVIOUS array (0).
Hence, we must add line 445 if we run this program
under HDOS. 1 am in the debt of Mark Rausher for
uncovering this problem!)

When we reach line 680, which the program had
passed through many times before (with a sizable
mailing list), it intercepts our FLAG for the first
time. Always before, FLAG = 0. But THIS time FLAG
= -1 (BECAUSE the program set it to -1 in line 270!.)
So the IF statement in line 680 is TRUE and we
branch to line 700 which closes the file, prints out
how many labels we printed and ENDs!

If you have an H/Z19 or H/ZB9 then use line 740
instead of the present contents of line 730 as shown
in the program listing. This simply clears the screen
in one fell swoop. In other words -> 730 PRINT
CHR$(27)+"E":RETURN

Line 110 in the program makes ALL numerical
variable values in our program integers. We are doing
no 'number crunching" in our program, so this is
legitimate for our purposes. Doing this speeds up the
execution of our program.

You may have noticed that we did not need to use a
DIM statement in this program, to declare the
maximum number of subscripts in our array. You do
not need to DIMension an array if there are under 11
total subscripts. See your manual for further details
on the DIM statement.

I promised earlier to explain how the MID$ statement
can be used without 3 items in it. Examine line 415.
Note that only the first TWO items are used and that
the last item (which tells MBASIC how many
characters are in the string) is not used. When used
in this way (it IS legal see your manual), MBASIC
returns ALL of the characters to the END of the
string, beginning with the character position given in
the 2nd item. That is what happens in line 415.

We are now finished with program LABEL.BAS. Let us
examine program MAKESEQ.BAS which will allow us
to create our data file in a more elegant fashion than
just using an editor.

Here was my approach. I strongly believe that any
interactive program such as this MUST be "user
friendly". By this, I mean that if the user DOES make
a mistake in entering data (creating the records), he
should have an opportunity to CORRECT these
mistakes BEFORE any given record is actually written
to disk. And, any such correction must be easily made
and not require the user to type ALL of any given
data record ALL over again.

Next, we should remember that the ONLY way to
append new records to a sequential data file, is to
first input (record by record) and immediately output
(record by record) to a TEMPORARY file. This must
be done for ALL the previous records., After EOF(n),
then we can append the desired records, CLOSE the
file and REName the file to the original name.
Whenever we deal with multiple files such as this, we
SHOULD protect the user, and (as far as is possible)
prevent the deletion of the original file or any new
files. And, as you shall see, we will find MBASIC's
error handling routines to be of much value in this

¥REMark - Issue 30 - 1982

particular program.

I suggest that you now enter program MAKESEQ.BAS
in its entirety. Take your time, Watch out for the
apostrophe (') meaning a REMark; also watch out for
semicolons (;). RUN this program (RUN<cr>). If it
doesn't run either you or I have made one or more
typographical errors. Double check! When the program
does run to your satisfaction, then proceed with the
following explanations.

MAKESEQ.BAS is a relatively straightforward program
and 1 will begin the explanation at line 70 which
simply GOSUBs to line 950 which clears the terminal
screen and then returns (in this case to line 80). The
program GOSUBs to line 950 several times in this
program to clear the screen. [will defer the
discussion of the error handling until later. Line 90
defines all numeric variables as integers, just as in
the label program. I stored 19 in memory variable T
in line 100. This was an arbitrarily small value, and
used for demonstration purposes., A more realistic
value would be 25 to 30, depending on your label
width and also on your printer's capability. Line 120
prompts the user as to how the file name should be
entered. Line 130 further prompts with an input
statement and the user enters his file name which is
accepted and stored in string variable T$. ELine 140
Esimply spaces, then lines 150, 160, and 170 all
return the user to start again IF any of the 3
conditions tested for exist. 150 and 160 force user to
enter ONLY capital letters A through Z (into T$).
And, line 170 ensures that user did not enter a "." as
part of file name (which he might have done if he
typed "filename.ext" we will be providing our own
extension of ".OLD" for a preexisting file in line 210).

Line 180 opens the named file (T$) if it exists, for
Input ("I"), and 190 opens file named "TEMP" for
output ("O"). Line 200 informs user that he should
wait (we have to input all records from old file to
TEMP file). Line 220 line inputs each record into
string variable X$, then line 230 immediately outputs
the record to the TEMP file (and we use S as a
counter just like we did in LABEL.BAS). Line 240
then returns for another line input of the next record,
and note that 240 goes to the EOF(1) statement just
BEFORE the line input statement of 220. This loop
continues until end of file is reached (all the
preexisting records are now in file TEMP, but please
note that we do NOT close the TEMP file at this
time for we desire to append one or more NEW
records onto the end of the file BEFORE closing it.)
When line 210 detects EOF(1), it then closes T$ (the
preexisting file), deletes any preexisting file that
might be present called T$+".OLD", and then names
T$ (the preexisting file we have been working with)
as T$+".OLD". Now, what this does is to delete an
"OLD" file created by a PREVIOUS session with this
program, then names the CURRENT preexisting file
to have an extension of ".OLD".

For example, if our file is called DATA, we would
have entered DATA at line 130, The program would
have transferred all the records in DATA, into TEMP.
Then, after closing file DATA, DATA is renamed to
DATA.OLD. This provides the user with some measure
of security, since if a "erash" occurred, the original
data file is now closed, and hopefully would have
survived the "crash". Then, the program goes to line
250 where the user begins to enter new data (new

11

records), appending them onto file TEMP (which

contains all the original records).

Let us pause for a moment and consider what would
happen at line 180 IF there was NO preexisting file
named DATA (for example) on disk. MBASIC can NOT
open for INPUT a NONEXISTENT file. What do you
think would happen? EWell, of course, MBASIC would
stop and print a message to user that the file didn't
exist. And, we would have to start over again. This is
where the error routines come into play. Here is what
you do. Near the beginning of your program you place
a statement such as we did on line 80. We told
MBASIC, with this line, that any time MBASIC
detected an error and would ordinarily stop the
program and inform us of the error, that INSTEAD
we wanted MBASIC to go to a particular line (in this
case B60). Why did 1 say 8607 Well, when I wrote the
program 1 did not know where I wanted it to go so I
said line 5000. When the program was almost finished
I RENUMbered it with the RENUM command, and 860
is what showed up! At this point look at lines 860,
890, and 900. Look in your manual for a discussion of
ERRORs and ERROR codes. The codes are in
Appendix J in my CP/M MBASIC manual. [will
discuss line B860. This statement says that [F the
ERRor was number 53 (and appendix J says that error
53 is "File not found") AND IF the error occurred
on line 180 then MBASIC should prompt the user and
ask him if he is opening a new file, OR (assuming
that the error was not 53 or line number was not
180, THEN (ELSE) MBASIC is to proceed ta line 890
to see if whatever error is present is to be found
there or on following lines.

Now, in the case under discussion, assuming that the
error DID occur on line 180 and that the error WAS
"file not found", then OUR program will ask user for
a Y/N answer to the "new file" prompt. If the user
replies in the affirmative, line 870 opens file TEMP,
and then (since there is no preexisting file) RESUMEs
the program at line 250. That is an example of how
the error handling routines work in MBASIC. If the
error occurred later in the program on lines 800 or
210 AND the error was again 'file not found' (53) on
either lines 800 or 210, then lines 890 or 900
respectively would have simply resumed operation on
the next line (lines 810 or 220 respectively). (RESUME
NEXT means "goto NEXT line after the error"
occurred.) Finally IF there was an error occurring
NOT covered by lines 860, 890 or 900 of this
program, then | desired to have MBASIC print out the
error and STOP operation. That is what line 910
provides.

In general, you should always use the "ON ERROR
GOTO 0" statement as the last line of MBASIC's
error handling routines. An example of the latter is if
the error would be "ERROR IN SYNTAX" (Heaven
forbid). This should only occur during program
development, but you DO want to be notified of such
an error by MBASIC since MBASIC tells you the line
number where the problem exists! If there were such
an error, MBASIC would stop and print out its usual
syntax error message. You should study the error
handling as given in your manual, and the error codes
also, at this time. If you desire to see just what
happens in line 180 when a nonexistent file if
referenced, just RUN<cr> this program, and type in a
nonexistent file name and see what happens! End of
our digression. Back to rest of the program which is

12

easier to understand than the error handling routines!

So, we now are at line 250, having been sent there
by EOF(l) if there was a preexisting file, or, if no
file existed, line B70 would have sent us there (unless
user was negative and entered "N" or "n" to the
prompt of line 860 in which case the program ENDs.)
Line 250 clears the screen, then prints a message for
the wuser. Then follow a series of line input
statements which accept the wuser's entries into
different string variables beginning with A$ (lines 260
through 360). These are easy to understand if you just
RUN the program and follow the prompts and refer
to the actual lines doing the prompting. Note that
line 270 provides the way for the user to terminate
all his entries for any particular session with the
computer. Note also that lines 340 and 350 force the
user to enter only 2 characters for the state, and 5
characters for the zip, respectively. (If you are
entering data and do NOT know the zip, you could
enter 5 spaces, and "fool" the IF statement.)

Lines 380 through 510 provide a display of all the
data that the user has entered for any given one
particular record. Note that line 420, 440, 460, and
500 each test any given line of the potential record
as to that lines length, and if the length exceeds the
value of T (line 100), then, using GOSUB calls, the
user is also informed of this fact and prompted to
enter again and abbreviate! ENote that each prompt
is preceded by an identifying number (from 1 through
9).

Here is how the input routine for editing works. We
give the user the option of entering digits 1 through
9 for editing purposes, or 0 (zero) if ALL is OK. Line
540 uses the INPUT$() statement. You put the number
of characters to be entered, before the statement
"takes off", between the parentheses. Usually you use
1 as we have done. Whenever ANY active key on the
keyboard is depressed, then MBASIC immediately
proceeds to the next statement AND the user did
NOT have to depress the return key. All automatic!
Note that the INPUT$() statement also puts the
character into a string variable, here Z$. BUT, there
are some precautions that we can take to force the
user to only enter a numerical value from 0 to 9. On
line 540, we use an IF statement to return to line
540 IF the user depressed the ESC key (see any ASCII
chart). Lines 550 and and 560 also return the user to
540 if the character entered is not one of the desired
digits. (Note that this also would take care of the
ESC key, but 1 wanted to show you specifically how
you might use it in another program.)

Line 570 prints whatever key the user depressed on
the screen, as the INPUT$ statement does no printing.
Then we change the string digit to a numerical value
and place it in numerical variable Z in line 580. Look
up the VAL function in your manual now. Line 590
checks to see if the digit entered was a zero (in
which case we are finished checking and editing and
proceed to line 730 if so.) If NOT a zero, then we
use the "ON GOSUB" statement of line 630 to go to
the selected statement. (Lines 600 and 610 put
informative strings into W$ and CO$ respectively.)
Since lines 640 through 720 are repetitious, the only
differences being the string Evariable selected, lets
just go through one selection.

Suppose that there was an error in the "Last Name'.

MREMark « Issue 30 - 1982

The user depresses the 3 digit on the keyboard and 3
is put in Z$ in line 540. Then after changing Z$ to Z
(line 580), line 630 says ON 3 GOSUB etc.) What this
ON statement does is to select the THIRD (in this
instance) line number following the GOSUB. (If the
user had selected 1, then it would be the first line
number, etc.) So, in this example, the third line
number is 660. The "ON GOSUB" statement then
branches to line 660 and executes it, Line 660 prints
the contents of string variable W$ followed by the
contents of C$. If we look back at line 410, we see
that C$ contains the "Last Name"! Then, continuing
with line 660, we have printed out for us the
contents of CO$ which prompts us to enter the
"Corrected entry", and then accepts our corrected
entry into string variable C$ (through the line input
statement), and so we have replaced the old contents
of C$ (in error) with the corrected value. We then
RETURN to the first statement after the ON-GOSUB
statement which is at the end of line 630, namely
GOTO 380. Line 380 now prints out the entire list of
entries again for us, only now the "Last Name" has
been corrected!

The above routine has looped, and would continue to
loop as described, until the user is satisfied that ALL
is correct and enters a zero, in which case line 590
branches to line 730. Line 750 concatenates most of
the variables, in the desired order, into X$, inserting
the desired delimiters (\) at the proper places. Line
760 checks to see if P$ was or was not a null, If NO
phone number was entered, then the LEN of P$ is
zero and we branch to line 770. IF there was data
stored in string variable P$ (a phone number was
entered), then the LEN of P$ is NOT zero and line
760 adds a delimiter and then P$ onto the present
contents of X$. (X$=X$+"\"+P$). Hence, we now have
the entire contents of the present record, properly
formatted, as the contents of X$. Now, line 770
writes the contents of X$ to file TEMP on disk. In
line 780 we have another counter, this one called S1,
and you can see that this keeps a running total of
the number of NEW records added at this particular
time. Line 790 then loops back to line 250 where we
are all ready for the next unit to be entered.

The above loop continues until the user types "DONE"
in response to the prompt at line 250, in which case,
"DONE" is stored in string variable A$ at line 260.
Line 270, which checks each entry here, now finds its
IF statement to be TRUE and we branch to line 800
which is the beginning of the END! Line 800 CLOSEs
file TEMP, then renames it to T$. Lines 820 through
840 display for the user the results of our record
counting, and then END.

In both of the above programs, there are many lines

devoted to remarks. And, many times, for the sake of
clarity, I made NO attempt to combine statements on
fewer lines. Obviously, with some care, the above 2
programs can be shortened considerably. To show you
it IS possible for me to write a short program that
does do something, | give the 3rd and last program. It
is called PRDATA.BAS, and like the other 2
programs, is written in CP/M MBASIC. HDOS users
can alter it as explained previously, but then it will
have to take up one more line! The program simply
prints out from a disk file, data which has been
produced by MAKESEQ.BAS or an editor, and prefaces
each record with a number which IS the absolute
position of that record in the data file.

Last, I would like to add a few brief remarks on
troubleshooting MBASIC programs. What do you do
when MBASIC comes up with an ERROR message, and
you haven't the vaguest idea of why? The easiest and
fastest way to find out why (in the vast majority of
such problems) is the judicious use of the STOP
statement. Simply put a temporary line number with
the statement STOP just BEFORE the line (if the line
in question is the target of a GOTO or a GOSUB, put
STOP: at the beginning of the line in question) that
seems to be causing the difficulty, Then, when the
program stops (remember now, it will stop just before
the problem), you can question MBASIC as to the
contents of the various numerical and/or string
variables that are present on the problem line. You
simply type PRINT X<cr>, or print X$<cr>, etc,
depending on whatever variables are there.

Many times you will find a value within the named
variable that couldn't possibly work. This may well
lead you elsewhere in your program to see just how
such a value got in the variable. And, you may then
have to take corrective action by wusing other
statements, or by using an "IF THEN" statement to
eliminate a possible offender. In any event, once you
know WHY you are getting an error, it then becomes
much easier to fix the problem. You should also
check the manual and reread about the statement
causing the problem. You may find that what is being
attempted is just not feasible. So, from my own
experience, | urge you to try this method of
troubleshooting.

I will cover CP/M MBASIC random files in my last
article of this series on "GETTING STARTED with
CP/M",

CP/M is a registered trademark of Digital Research

MBASIC refers to "Microsoft Basic-80", a product of
Microsoft, Inc.

10 'LABEL BAS CP/M MBASIC pgm for printing labels, 1 or 2 or 3 or 4 up
20 Also shows how to handle optional line of address

30
40
50 ° (0" = zero; O =

See text for changes for HDOS MBASIC
Copyright 1982 (c) by William N. Campbell, M.D.
‘OH')

60 'Assume data file consists of records each containing 6 OR 7 "fields".
70 'Each field is delineated by a reverse slash. A typical record might look

90

80 'like this -> LAST\FIRST\MR\STREET\OPTIONAL ADDRESS\CITYSTATEZIP\PHONE NUMBER
L]

100 REM CLEAR 2500:' remove 'REM' from this line if HDOS MBASIC & see text!

110 DEFINT A-Z:'All numeric values defined as integers.

120 N=3:' Set N to number of labels across you are printing (1, 2, 3, or 4).

130 LM=5:' Set LM to number of spaces before lst printing character of lst label

¥REMark - Issue 30 - 1982

13

140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
415
420
430
440
445
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
665
670
680
690
700
710
720
730
740

10
20
30
40
50

14

T=20:"' Set T to number of characters from LM first label to LM 2nd label.

LM=LM+1:' fix CP/M MBASIC 'bug'; delete this line for HDOS MBASIC-see text

R=T:' Here, we save original value of T in variable R

' **IMP** -> Set printer's width to MINIMUM of LM + T*N + 1. (Ex. 5+60+1=66)

Note - width can be ANYTHING greater than minimum value.

IMP -> Program creating data file MUST disallow maximum line length
greater than T=-1l. Ex. If T=20 then NO label line's length
should be greater than 19 (else TABS thrown out of kilter).
See program MAKESEQ.BAS which does this for you.

GOSUB 730:' clear screen

PRINT:INPUT "Name of file to be printed (use UPPER CASE)... ";Y$:PRINT

QOPEN "I",1,YS$:' open this seq data file for input

FOR I=0 TO N-l:' N = number of labels across printout paper

IF EOF(l) THEN FLAG=-1:GOTO 430

LINE INPUT #1,X$

'find location of each delimiter, then place in separate variables A,B,etc

A=INSTR(1l,XS$,"\") :B=INSTR(A+1,X$,"\") :C=INSTR(B+1,X$,"\")

D=INSTR(C+1,X$,"\") :E=INSTR(D+1,X$,"\") :F=INSTR(E+1,XS$,"\")

IF F=0 THEN F=LEN(X$)+1:X$=X$+"\":' need total of & '\'s - see text

‘isolate each field and assign to subscripted variables (I= the subscript)

AS$(I)=LEFTS(XS$,A-1) :B$(I)=MIDS$(X$,A+l, (B-1)-A):"'last name, first name

CS$(I)=MID$ (X$,B+1,(C-1)-B) :D$(I)=MIDS(X$,C+l,(D-1)-C):"salut., street add

ES$(I)=MIDS(X$,D+1l, (E-1)-D):'optional 2nd line of address

F$(I)=MID$(XS$,E+1,F-E-8):'town or city

GS$ (I)=MIDS (X$,F-7,2):'2 letter abbreviation of state

HS$ (I)=MIDS(X$,F-5,5):'5 digit zip code

F1$(I)=FS(I)+" "+GS(I)+" "+HS$(I):' F1$(I) now contains city, state, zip

IF LEN(E$(I))=0 THEN ES$(I)=Fl$(I):F1$(I)="":'if NO opt address then this

REM PS(I)=MIDS(XS,F+l):' remove REMs from this line & 665 to print phone #

NEXT I

T=R+LM:LPRINT TAB(LM) ;

FOR J=0 TO I-1

REM IF I-1=-1 THEN 680:' Remove REM from this line if HDOS MBASIC-see text

LPRINT CS(J)+" "+BS$(J)+" "+AS$(J);TAB(T);:'print salut, lst & last name, N up

S=S+1:' increment counter by 1

T=T+R

NEXT J

LPRINT

T=R+LM:LPRINT TAB(LM) ;

FOR J=0 TO I-1

LPRINT DS (J) ;TAB(T);:'print 1lst line street address N up

T=T+R

NEXT J

LPRINT

T=R+LM:LPRINT TAB(LM) ;

FOR J=0 TO I-1)

LPRINT E$(J);TAB(T);:' print opt line address, else city, state, zip N up

T=T+R

NEXT J

LPRINT

T=R+LM:LPRINT TAB(LM) ;

FOR J=0 TO I-1

LPRINT F1$(J);TAB(T);:'print city, state, zip; if NO opt then null, N up

T=T+R

NEXT J _

REM T=R+LM:LPRINT TAB(LM) ; :FOR J=0 TO I-1:LPRINT P$(J);TAB(T) ;:T=T+R:NEXT J

LPRINT : LPRINT :LPRINT:' vary # of LPRINTs to get to next row of labels

IF FLAG=-1 THEN 700

GOTO 260

CLOSE .

PRINT:PRINT "There were a total of";S"labels printed.”

EN

Fog K=1 TO 24:PRINT:NEXT K:RETURN:'clear screen .

' H19/89 users substitute PRINT CHRS (27) +"E" :RETURN for above line.

. m to create or add to mailing list; allows for 3
uMAKESEQ'BAS S; ?B??ﬁgsp%or name and address, and oPtional EhOn? number.
Program also demonstrates ‘error handling routines’ .
Copyright 1982 (c) by William N. Campbell, M.D.

(0 = zero; O = 'OH")

MREMark - Issue 30 - 1982

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740

REM CLEAR 2500:' remove 'REM' from this line if HDOS MBASIC
GOSUB 950:' clear screen
ON ERROR GOTO 860:' see text for discussion of the Error Handling Routines
DEFINT A-Z:PRINT

T=19:' ****** Change T to maximum length any label line can be. *****%*

; *kkx*** (Not including left or right margins of label printout) *¥****%*
PRINT "Do NOT use '.EXT' in naming file. Ex. Use DATA, NOT DATA.DAT!" :PRINT

INPUT "Sequential file name (Ex. DATA)... ";T$

PRINT

IF LEFTS$(TS$,1)<"A"™ THEN PRINT "Illegal Entry - Enter again -":GOTO 90

IF LEFTS$(T$,1)>"2" THEN PRINT "USE UPPER CASE - Enter again - ":GOTO 90
IF INSTR(1l,T$,".")<>0 THEN PRINT "No extensions - Enter again -":GOTO 90

OPEN "I",1,TS$:'open a pre-existing data file

OPEN "O",2,"TEMP":'if pre-existing file we put it in TEMP file
PRINT:PRINT "Please wait for next message....... ":PRINT

IF EOF(l) THEN CLOSE #1:KILL TS$+".OLD":NAME T$ AS T$+".OLD":GOTO 250
LINE INPUT #1,X$

PRINT #2,X$:S=S+1:' S=counter for number of preexisting records.
GOTO 210

GOSUB 950:PRINT:PRINT "If done, type DONE & hit RETURN key":PRINT

LINE INPUT "'Salutation (Mr Mrs Ms)'.... ";AS$
IF A$="done" OR AS$="DONE" THEN 800
LINE INPUT "First Name & Middle Initial.... ";BS

LINE INPUT "Last Name... ";C$

PRINT :PRINT "You may type 1 or 2 lines of address, PLUS City, State, Zip
PRINT:LINE INPUT "lst line of address... ";D$

LINE INPUT "Opt 2nd line address, OR just RETURN.. ";ES$

LINE INPUT "Town or City.... ";F$

LINE INPUT "State (2 letter abbreviation)... ";G$:IF LEN(G$)<>2 THEN 340
LINE INPUT "Zip Code (5 digit)... ";H$:IF LEN(HS$)<>5 THEN 350

LINE INPUT "Opt phone number, OR just RETURN.. ";P$

' Let user correct any mistakes in entries, tell user if any lines too long.
GOSUB 950:PRINT "Here are your entries =":PRINT:' clear screen, print msg
PRINT "1 SalutatioN....cs.se.. smsarines TPAS

PRINT "2 First Name & Middle Initial.... ";BS$S

PRINT "3 Last Name....cevevessaveancssaas "3CS

M=LEN (A$) +LEN (B$) +LEN (C$) +2: IF M>T THEN GOSUB 930 :PRINT CHRS$ (7);

PRINT "4 First line of addresS.......... ";D$

M=LEN (D$) : IF M>T THEN GOSUB 940:PRINT CHRS (7);

PRINT "5 Optional 2nd line of address... ";E$

M=LEN(E$) : IF M>T THEN GOSUB 940 :PRINT CHRS$(7);

PRINT "6 Town Or Cit¥.seosweuns oaaserae wow PES

PRINT "7 State (2 letter abbrev.)....... ";GS$

PRINT "8 Zip Code (5 digits)............ ";H$

M=LEN (F$) +LEN (GS$) +LEN (HS$) +2:IF M>T THEN GOSUB 930 :PRINT CHRS$(7);

PRINT "9 Optional phone number.......... ";P$

PRINT:' See text for explanation of following input routine

PRINT "Type number at left to correct individual item, 0 if all OK... ";
Z$=INPUTS$ (1) :IF 2$=CHRS$(27) THEN 540

IF Z$<"0" THEN 540

IF Z$>"9" THEN 540

PRINT Z$

Z=VAL(ZS)

IF Z=0 THEN 730:' If Z=0 then ALL current entries OK

W$="Current entry =------ -

CO$="Corrected entry----- > "

PRINT

ON Z GOSUB 640,650,660,670,680,690,700,710,720:GOTO 380

PRINT WS$;AS:PRINT:PRINT COS$;:LINE INPUT AS:RETURN

PRINT WS$;B$:PRINT:PRINT CO$;:LINE INPUT BS:RETURN

PRINT W$;CS$:PRINT:PRINT CO$;:LINE INPUT C$:RETURN

PRINT W$;D$:PRINT:PRINT CO$;:LINE INPUT D$:RETURN

PRINT W$;E$:PRINT:PRINT CO$;:LINE INPUT ES$:RETURN

PRINT W$;F$:PRINT:PRINT CO$;:LINE INPUT F$:RETURN

PRINT W$;GS$:PRINT:PRINT CO$;:LINE INPUT G$:IF LEN(G$)=2 THEN RETURN ELSE 700
PRINT W$;H$:PRINT:PRINT CO$;:LINE INPUT HS$:IF LEN(HS$)=5 THEN RETURN ELSE 710
PRINT WS$;P$:PRINT:PRINT CO$;:LINE INPUT P$:RETURN

' Now we put ALL fields into X$ by concatenation and we separate

' each field with a '\' as a delimiter.

Vectored to page 27

MREMark - Issue 30 - 1982

15

New HUG Software

SOFT-SECTORED DISKS NOW AVAILABLE FROM HUG

In a continuing effort to offer the
lastest in software to the membership of
the Heath Users' Group, HUG now has
available several selected products in 40
track single-sided soft-sectored format.
These products will operate with CP/M by
Digital Research when used with the Z-89-
37 soft-sectored controller card and
either the H77, 287 or the Z37.

The HUG part numbers remain the same for
these new disks with the addition of the
"_37" after the regular HUG number (e.qg.
885-1211-37). 1If you are using the H/Z89
or the %90 with only the soft-sectored
controller, order all of the disks you
select being sure to place the -37 after
your selection to ensure that you receive
the correct product.

The following disks are available in soft-
sectored format:

885-1206-37 885-1210-37 885-1214-37
885-1207-37 885-1211-37 885-1215-37
885-1208-37 885-1212-37 885-1217-37
885-1209-37 885-1213-37

**NOTE: Check the HUG parts list for a
description of these products. Watch for
the expansion of this list in the near
future.

885-1118 $60.00

HUG Payroll (HDOS)
Introduction: The HUG Payroll Package
consists of documentation and one disk.
The programs may be subdivided onto other
disks depending on the type, and how many
drives you have available. The Payroll
Package can handle 30 emplques on a
single low density drive while maintaining
up to 100 employees on two low density
drives such as those used in the H77, 287
or H-17.

Hardware Requirements (HDOS) : The HDOS
version of the HUG Payroll Package
requires the use of a 64K H/%89 (or 290)
or a 64K H8 using the H/Z19 terminal. A
printer that can be interfaced yith.your
computer is a must. The H/225 is highly
recommended since the Payroll Package was
developed using this printer.

software Regquirements (HDOS): The HUG
Payroll Package operating under the Heath

16

Dis{ Operating System (version 2.0)
requires only MicroSoft BASIC (version
4.82) and an appropriate LP.DVD for your
printer to obtain proper results.

Disk Contents:

PAYNEW .BAS PAYCHECK.BAS PAYCLOSE.BAS
PAYMENU .BAS PAYDEDUC.BAS PAYDELET.BAS
PAYADD .BAS PAYDISPL.BAS PAYTABLE.BAS
PAYDAY .BAS PAYCHANG.BAS PAYSORT .BAS
PAYCAL .BAS PAYREPOR.BAS TABLES .TAX
** NOTE: The HDOS version of the HUG

Payroll contains a PROLOGUE.SYS for
automatic startup during normal use.

Program Features: The HUG Payroll Package
contains several powerful features that
allow for user friendly operation
including a startup routine for entering
new data. The program automatically
checks for previously entered information
so that you are ensured of proper results
as you proceed. A Master Menu is used and
linked to several sub-menus for ease of
operation. Complete instructions are
supplied with each disk. As suggested by
some of the program names, the HUG Payroll
allows the user to track an employee using
several pay methods including: hourly, bi-
monthly, monthly, etc. Also included is a
program that will allow you to change
information on a given employee. You have
available the standard deductions along
with several variable deduction areas for
items such as credit unions, United Fund,
employee contributions, etc.

Printing of reports is a very important
feature of any software package. The HUG
Payroll Package allows you to print a
quarterly report, yearly report, checks,
W-2 forms, etc. When using the H/Z25, you
will be able to reproduce the H19/HB9
screen on paper. This unique feature
decreases the confusion that sometimes
accompanies the transition from computer
to hardcopy. The HUG Payroll allows
sorting of your employee list to ensure
continual accuracy as you build your
records.

Comments: As with any business package,
the HUG Payroll will have its limitations.
However, the software in this case is very
solid. Problem areas, such as changing
tax deductions or using the tax table have
been simplified using specific programs
that can be updated as necessary. This
particular piece of software has been used
by several companies for tests to ensure
the best results with minimal problems.

COMING SOON: The HUG Payroll Package will
be available shortly under the CP/M
Operating System by Digital Research.
This package will have the same features
as presented here for HDOS.

Vectored to page 25

¥cREMark - Issue 30 + 1982

Percom’s Double-Density Disk Controller...
You Even Get a Bonus
Parallel Printer Port.

$249.95

Expect more from Percom.

Percom'’s double-density Z Controller for the H-89 is
now available. Besides its many outstanding drive
control features, the Z Controller includes a bonus
parallel port that lets you directly connect your com-
puter to a standard, off-the-shelf Epson MX-80, Oki-
data Microline 80 or other low-cost printer.

@ Controls up to four single- or double-headed mini-disk drives.
e Handles 35-, 40-, 77- and 80-track drives, and other standard
track densities. ® Formatted data storage capacity of 80-track dis-
kettes is over 368 Kbytes. Forty-track diskettes store over 184
Kbytes. Capacities for other track densities are proportional. A Z
system with four double-headed, 80-track drives provides almost
3 megabytes of on-line data. ® The Z Controller co-resides with
your H-89 disk drive controller. Your software can select either,
and you don’t have to move drives around when switching be-
tween systems. ® The Z Controller includes Percom's proven dig-
ital data separator circuit and a dependable write-precompensation
circuit. Expect reliable disk operation for a long, long time under ‘2’
control. ® The Percom Z Controller is priced at only $249.95, com-
plete with HDOS-compatible disk drivers on diskette, internal inter-
connecting cable and comprehensive users manual.

System requirements — H-89 Computer with 24 Kbytes memo-
ry {min), Replacement ROM Kit H-88-7 and HDOS 2.0,

PERCOM

PERCOM DATA COMPANY, INC.
11220 PAGEMILL RD. DALLAS. TX 75243
(214) 340-7081
Toll-Free Order Number. 1-800-527-1222
i 1981 PERCOM DATA COMPANY. Inc

PERCOM. ZFD-40 and ZFD-B0 are trademarks of Percom Dala Company
CP/M is a trademark of Dhgital Research Corporation.

¥REMark « Issue 30 - 1982

You won’t be disappointed.

Add-On Z Drives for H-89, H-8 Computers

® Forty- and eighty-track densities in either 1- or 2-drive modules.
® All drives are rated for single- and double-density operation. With
a Z Controller, an 80-track drive can store over 364 Kbytes (for-
matted, one-side), a 40-track drive can store over 1 Kbytes.
® Some models permit “flippy’* storage, letting you flip a diskette
and store files on the second side. ® Z drives are fully tested, includ-
ing a 48-hour operating burn-in to prevent shipment of drives with
latent defects. ® Assembled and tested one-drive units from only
$399, two-drive units from only $795.

System requirements — H-89 or H-8 computer with 16-Kbyte
RAM, Heath first-drive floppy disk system, HDOS and drives inter-
connecting cable. (Two-drive interconnecting cable optionally
available from Percom)

FRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

SERRI RN RO RN RRRRIRRONRES

17

Software From

|

FAST ACTION GRAPHIC
GAMES
Featuring graphics like you've never
seen on your Heath/Zenith com-
puter. These machine language
games challenge your reflexes and
skill while inspiring your imagina-
tion. Available on Dual Format

(HDOS-CP/M) disk.

Exterminator

A UFO hasbeenspotted overthe United
States and objects were seen falling out
of it. Intelligence sources reveal these
falling objects to be deadly spacebugs.
Your mission is to destroy these crea-
tures before they become carnivorous
and devour the world. This alien en-
counter gets you involved in firing a
remote controlled bug blaster, flying
helicopters and running for your life. But
what is hidden in the mysterious twin
towers? Find out when you become the
EXTERMINATOR!

Exterminator (48K)

Space Odyssey |

The year is 2033. Most of the Milky Way
galaxy has been charted, but several
sectors on the outer reaches of the Orion
cluster remain a mystery. Being the
adventurous and daring person that
you are, you have volunteered tohyper-
warp into this area to explore it and
retrieve data collecting probes.

Looking out the front window of your
spaceship you see a variety of natural
and unnatural objects as they come at
you in 3-D space. Use the navigational
computer to find your heading and
distance to the nearest probe. Vary your
warp velocity to maximize fuel effi-
ciency. Maneuver your ship around
asteroids or vaporize them before they
damage your shield. Butdon't vary too
far off course or youmaybelostinspace
forever!

Space Odyssey | (48K)

Galactic Warrior
The deadly Evils have launched a
massive attack against your home
galaxy. You are the best warrior in the

$21.50

galaxy and the lasthopefor the Galactic
Empire. Your mission asthe GALACTIC
WARRIOR is to stop waves of Evil
attackers and destroy their space
station. Your ship is armed with deep
space missiles, a powerful short range
laser and a force field to shield you from
all enemy weapons in emergencies.

Galactic Warrior (48K) $19.50

Y-Wing Fighter
Flying just above the ground, you will
meet some of the hostile inhabitants of
a strange planet. They will do their best
to prevent you from reaching the
enemy's home base. Control the speed
and altitude of your Y-WING FIGHTER
to out maneuver them and use powerful
front and rear phasers when they
become too aggressive. Your Y-WING
FIGHTER may become damaged as
you encounter the local meanies. When
this happens, youmay beableto survive
by gliding toa safelanding. Ifsuccessful,
you can make repairs and take off to
countinue the mission.
Y-Wing Fighter (48K)
Missile Control

You are under attack by a powerful
enemy. He has many long range guided
missiles and bombers all aimed at your
cities. You can launch missiles from
either (or both) of your launch pads to
protect your cities from the onslaught
of this menace. If you ever wanted to
know what it feels like to be responsible
for millions of {electronic) lives, now is
your chance.

Missile Control (32K)

$19.50

Invasion
After months of defending against the
space INVASION, earth is down to its

Available on 5" hard sector disk for the H/Z83 and H8/H19 systems at many
Heath/Zenith retailers or order direct from EVRYWARE

°

Ca. orders please add sales tax.

THE FUTURE IS EVRYWARE

last three missile launchers. These
launchers have been put under your
command in a last ditch attempt to save
earth. The INVASION will do their best
to blow you to smithereensbydropping
bombs that slither down to earth. You
must also watch out for radioactive
fallout when you hit one ofthe Invaders.

Invasion (32K) $17.50

INTERACTIVE FICTION
Interactive Fiction puts you in a
literary setting—a narrated story
in which you are a character. What
you say and do determines if you
live or die, achieve fameand fortune,
or disgrace. They require Microsoft
Basic, 48K and two disk drives. Both
HDOS and CP/M versions are
available.

Six Micro-Stories
A good introduction to Interactive
Fiction. You take partinsixshortstories,
each with many outcomes. Be a spy in
Hitler's Third Reich, the pilot of a
doomed 747, and more.
Six Micro-Stories

Dragons of Hong Kong

The story begins as you walk into Big
Al's bar to meet Professor Goodman
who has justdiscovered aterriblesecret.
This secret takes you to the Far East
where you have a chance to free the
world of an age-old blight, clear your
name of a despicable crime, and finish
the story in the arms of the woman of
your dreams.

Dragons of Hong Kong

EVRYWARE
P. 0. BOX 60802

SUNNYVALE, CA 94088

CP/M is a registered trademark of Digital Research, Inc

18

MREMark - Issue 30 -« 1982

64K MEMORY i H8"

* HB is a Registered Trademark of the Heath Company

-

-0 500
Model M-H8 Sold I
® Single Card Design First

Uses 4116
Dynamic
RAM

Year!

® Sophisticated Design
Features Transparent Refresh

® Internal Refresh Clock Holds
Memory Data During Processor Halt

NEW PRICES : SPECIALS !

Assembled - Kit - 64K Kit -
Without IC Sockets . :
IC Sockets Included ';\h;;gut Meiiory Chips
500 415 64K
$ $ 64K Assembled -
440 360 48K . .
Without Memory Chips
380 305 32K (Sockets Installed
320 250 16K for Memory Chips)
$ 300
16K Memory Expansion Kit - $ 60
(Memory Chips, Sockets, Capacitors) Printed Circuit Board -
With Documentation
Set of 8 Tested Memory Chips - $ 50 $ 50

Guaranteed To Work With Any Existing or New Heath H8 Products
— Upgrade Modification Instructions Will Be Issued As Required

Call or Write For Free Brochure e Call 714-830-2092 Ask For Bill Perry
Get On Our Mailing List For New H8 Product Announcements

TRIONYX ELECTRONICS, INC.
P.0. BOX 5131, SANTA ANA, CA 92704

YvREMark « Issue 30 - 1982 19

DG IS Heath/Zeni
OQOWith the

H8 PRODUCTS -

The Most Extensive Line of Hardware Support for The H8®
*DG-80/FP8

Z80® based CPU including the powerful FP8 monitor—Both only $249.00. The acclaimed FP8 monitor
package is now included with the DG-80 CPU!

*DG-64D/64K RAM Board
Reliable, Low Power, High Capacity Bank-selectable RAM
Priced from $333.00 (0K) to $399.00 (64K)
*DG-64D5 64K/5 volt only RAM Board
SUPER low power, Reliable, High Capacity, Bank Selectable RAM from $333.00 (OK) to $499.00 (64K)
*DG-32D/32K RAM Board
Low cost, Dependable RAM for the H8 32K Version Only $179.00.
*DG-ADP4
H17-4 MHz disk adaptor—$19.95

THE DG STATIC 64

IF YO STILL BELIEVE YOU WOULD RATHER USE STATIC MEMORY...OR IF YOU NEED A PROM/EPROM
BOARD...

OR IF YOU NEED MORE ROOM ON YOUR H8 MOTHER BOARD...

OR IF YOU HAVE BEEN WAITING FOR STATIC MEMORY FOR THE H8 TO BECOME REASONABLY PRICED.
WE HAVE THE ANSWER—THE STATIC 64 RAM BOARD

FULLY STATIC.

SUPER LOW POWER—Power dissipation typically less than 4 watts (less than any memory board available for the
Heath H8). Uses Single Supply 5-Volt memory devices.

CAPACITY—Up to 64K RAM OR Up to 64K EPROM (type 2716/2516) OR any combination of RAM and EPROM up to 64K.
SPEED—4MHz with NO wait states.

Compatible with the OLIVER ADVANCED ENGINEERING PROM Programmer Model #PP-2716.

Bank-select fully compatible with the DG-64D—Hardware selectable in 8K increments/software selectable in 16K
increments.

Bank-select port addressable to any of the available 256 /O ports using solderless jumpers.

On-board ROM-disable port for use with the DG-FP8 Monitor Package

Fully assembled and tested. Priced from $299.00 (OK) to $599.00 (64K). 16K Chip Sets: $125.00.

H8/H89 Software
Software Support for HDOS 2.0

* Disk Management Utility Package
Includes “Universal Dump”, Intelligent Disk Dump Utility; “Universal Dup”, Disk Copy Utility; and “BAD", Bad Disk
Recovery Utility. $39.95 (Source: add $40.00)

* Archive
Space saving diskette back-up utility. For use with 5%4" or 8" disk systems. $39.95 (Source: add $40.00)

* SYSCMD/plus
A must for the serious HDOS user. Enhanced HDOS 2.0 system command processor provides extended com-
mands and capabilities. $39.95 (Source: add $30.00)

* Preload
Support utility for systems using multiple, bank selectable memory boards. $29.95 (Source: add $20.00)

* Advanced H17/H77 Driver
Software driver for operation of double-sided and/or double-track double density drives with the H-17 and H-77 54"
disk systems. Low cost alternative to high priced double density disk controllers. $19.95 (Source included).

Heath®, H8*, H17®, and H89* are regi d of Heath Corporation, Berton Harbor, Michigan.
ZB0*® is the reqg: d trad rk of Zilog Corporation. AMDS511 is a trademark ol Advanced Micro Devices.

 Computer Support

uture Built-In

SUPER 89

TURN YOUR H/Z 88/89 INTO A PROFESSIONAL QUALITY COMPUTER
HIGHER RELIABILITY NOW — MORE EXPANDABILITY FOR THE FUTURE

FEATURES DG-SUPER 89 H/Z 88/89

USER MEMORY 64K-256K 16K-64K

The DG Super 89 comes standard with 64K of user RAM

"“on-board”. This configuration can be increased up to 256K of bank

selectable/write protectable RAM. _

@ ORIGIN MODIFICATION NOT NECESSARY ADD-ON

No further modification, such as required on the H/Z-89, is

necessary to operate in either a standard Heath/Zenith CP/M or

HDOS 2.0 Operating System environment. .

CP/M-HDOS COMPATIBLE YES REQUIRES
MODIFICATION

PERIPHERAL EXPANSION SLOTS 6 3

DG Electronics has made provision in the design of the unit not only

for compatibility with the standard factory expansion slots, but also

for future expansion by doubling the number of available expansion

slots on the unit to 6 instead of the standard 3. _

ON-BOARD AMD9511 YES NO

For those users who perform large amounts of arithmetic PURCHASE

computations the DG Super 89 has provision on-board for use of éEpARATE[_Y)

the AMD 9511 arithmetic processor.

CPU CLOCK FREQ. 4MHz + 2.048MHz

The CPU in the DG Super 89 operates at twice the speed of the

‘standard H/Z-89. .

MULTI-USER CAPABILITY YES NO

With up to 256K of bank selectable RAM on board the DG Super 89

offers the option of MULTI-USER CONFIGURATIONS of up to 4

users.

ENHANCED MONITOR YES NO

Enhanced monitor supports the advanced features of the Super 89.

REAL TIME CLOCK YES NO

The DG Super 89 comes standard with an on-board real time clock. —

PARITY CHECK ON RAM YES NO

For those who are sticklers for accuracy, the DG Super 89 has parity

check to make the user aware of errors occuring in the RAM during

use.

SERIAL PORTS ON BOARD 2 1

The DG Super 89 offers an additional serial VO port for greater
convenience and flexibility.

Now you can have all of the features in your H/Z-89 that you have always wanted. High speed and greater expandability are
only the beginning of what our NEW DG SUPER 89 has to offer. DG Electronic Developments Co. has given the “89"
capabilities of fast number crunching and data verification through parity. We have incorporated into the DG SUPER 89
such necessary items as 64K of user RAM, a powerful Keyboard monitor, and CP/M compatibility, items others require you
to "add-on”. Add to these features an extra serial port, a realtime clock, three more peripheral expansion slots, and
multi-user capability and you have the computer that you really wanted to begin with; for a lot less than you would think.

Compatible with all currently available Heath/Zenith hardware devices.

.

ELECTRONIC
DEVELOPMENTS CO.

Ordering Informetion: Products listed available from DG
Electronic Developments Co., 700 South Armstrong,
Denison, Tx. 75020. Check, Money Order, VISA or
MasterCard accepted. Phone orders (charge only) cali (214)
465-7B05. Freight prepaid. Allow 3 weeks for personal checks
to clear. Texas residents add 5%. Foreign orders add 30%.
Prices subject to change without notice.

SMASH THE "89’s
64K RAM LIMIT!

128K RAM BOARD 8595
wderno 77318
Now have 176K of fast dynamic RAM at your
disposal in your Heath/Zenith '88, ‘89, or '90.
Featuring:
*128K of 200nSec Dynamic BRAM, added to the
48K on your CPU board, for a total of 176K.
eFull compatability is retained for MMS and
Zenith CP/M® [B4K], as well as HDOS (56K].
*Versatile bank switching technique supports
three full MP/M II® compatible banks.
*112K "'Electronic Disk'' BIOS module for MMS
CP/M included, complete with source code.
e Ultimeth Corp. supplies HDOS support.
Delivery beginning March 15, 1982

VIDEO OUTRPUT 879

orderng 77319

Add an industry standard video output to allow
reproduction of the CRT image on another monitor or
projection TV system to enhance the usefulness of
your terminal in classroom and other educational ap-
plications. Allows simultaneous viewing of the display
in group situations.

The auxillary display unit should be capable of high
resolution for satisfactory performance.
Delvery beginning March 15, 1982.

MAGNOLIAK
MICROSYSTEMS

2264-15th Avenue W. ¢ Seattle, WA 88118
(206) 285-7266 (800) 426-2841

LOWER PRICE! 16K RAM 8s125

orderna 7731
Magnolia’'s 16K Add-On RAM board has been so
popular we lowered the price.

DOUBLE DENSITY

DISK CONTROLLER 8595

order no 77316

Complete hardware and software support for
FOUR 8" single or double sided drives and FOUR 5"
Single or Double sided, 48tpi (40 track] or S6tpi (80
track] drives, in addition to the three 5" drives sup-
ported by your Heath/Zenith controller.

Plus, the obvious advantage of being able to use
Single Density B" media for program and data inter-
change.

Full compatability is retained with MMS support of
the 'B8s built-in 5" floppy, as well as several Win-
chester hard disk subsystems.

The package includes:
*Double Density Controller Card.
*Cables for both 5" and 8" disk drives
*CP/M 2.2 on both 5" and 8" media

*New |/0 Decoder and Monitor PROMs

 Uitimeth Corp. supplies HDOS support.

If your '89 isn't ORG-0 CP/M compatible yet, our
madification is available for $50 additional.

DOUBLE DENSITY SUBSYSTEMS

Dual 8" DS 4Btpi (2.4M] orderno DEDS $26385
SS 48tpi [1.2M] orderno DBSS $1995
Single 5" SS 48tpi [162K] orderno ssaoss § 845
DS 48tpi [343K] order no S54008 1085
DS gatpl {700"(] order no. S5800S $1 295
Dual 5" DS 86tpi [1.4M] oerno 0ssons $1995

COMPLETE SYSTEMS

As well as manufacturing enhancements for the
‘88 [also '88 and '80], we are a Zenith Data Systems
OEM, and have all of their hardware and software
products available as well. We can provide a com-
pletely integrated system, combining the best Zenith
products with our own to provide the exact system
capabilities to best satisfy your requirements.

ORDERING INFORMATION

Our products are available from many Heathkit
Electronic Centers and independent computer stores
throughout the United States. If your local dealer
doesn't stock our products, you may order direct or
request further information by calling our Sales
Department on our toll-free number,
(800) 426-2841.

CP/M and MP/M |l are registered trademarks of Digtal Researcn, Pachic Grove, CA

22

Y REMark - Issue 30 - 1982

LIVINGSTON LOGIC
LABS

BIOS-80

Now you can get up to 392K storage on a single hard-
sectored 5 disk while still maintaining complete com-
patibility, and WITHOUT buying an expensive double
density disk controller. BIOS-80® is a specially
modified Heath/Zenith CP/M 2.2X03 BIOS which
supports any combination of 40 and 80 track single-
and double-sided 5’ drives using the Heath H-17 con-
troller. BIOS-80 allows booting from any disk, as well
as reading of 40 track disks in 80 track drives. BIOS-80
does for CP/M what the Ultimeth “SY.DVD” does for
HDOS. Requires H-8 or H-89 and CP/M 2.2X03.

8" Disk Controllers

THE low cost way to add HDOS and CP/M compatible 8”
drives to the H-8 and H-89 computers! These controllers
support up to four single- or double-sided single-density 8”
drives for up to 2 Megabytes of FAST on-line storage. They
provide complete CP/M and H-47 compatibility. Requires
either H-89 or H-8 with Z-80 CPU (any model). Heath/
Zenith CP/M 2.2X03 BIOS supplied at no charge. HDOS 2.0
device driver is available for $35. Monitor ROMs to allow
booting from 8” drives are available; write or call for
further information.

FDC-Z8—$%225 FDC-Z89—$200

ALSO AVAILABLE

HDOS 2.0 device driver for CDR Systems FDC-880H double-density
disk controller, allowing use of any 5" and B” formats with com-
plete H-47 and H-37 compatibility. Permits use of single-density
disks in double-density drives, and includes automatic detection of
track and recording densities. CDRDVD —$40

CP/M 2.2X03 support software for Magnolia 128K RAM expansion
for the H/Z-89. Allows use of additional memory capacity as
either a “solid-state disk” or cache memory, with dramatically

BIOS-80—$35 reduced execution and loading times. CACHE22—$40
L L L ORDERING INFORMATION —Send oll orders 1o Livingston Legic Labs,
OG P.O. Box 5334, Posodeno, CA 91107, Poyment by personal check or money
IVINGSTON ICLABS order. No cash, please. Add $2 per order for shipping and handling, $5 for
overseas orders. California residents add 6% tax. Please ollow 2-4 weeks
Po Box 5334‘ Pumdann. CA 91101 for delivery. Write for free catalog.
(213) 792-4763

CONTROLLER

NOW12 MEGABYTE (cor-1om $3195

and 6 MEGABYTE (corsm $2495

WINCHESTER SYSTEM
For the Heath/Zenith Computer

Systems complete with software case, power supply &
signal cable.
Runs with CP/M, on the H/Z89, Z90 & H8 (with Z80 card).

e Switching power supply e Hard disk utillities
e Expansion for backup e Formatting program

installations e 1 year parts & workman-
e Auto attach BIOS ship warranty

CP/M is a trademark of Digital Research. Heath, H8, H89 are trademarks of Heath
Corporation. Zenith, Z89, Z90 are trademarks of Zenith Data Systems.

5-20 day delivery-pay by check, C.0.D., Visa, or M/C.
Contact:
C.D.R. Systems Inc.
7667 Vickers St Suite C

San Diego. CA 92111
Tel. (7T14) 275-1272

& 5.25”
DRIVES

Now be able to run standard 8" Shugart compatible drives
and 5.25" drives (including the H37 type) in double and
single density, automatically with one controller.

Your hard sectored 5.25" disks can be reformatted and
used as soft sectored double density disks. The FDC-880H
operates with orwithout the Heath hard sectored controller.

NEW PRICE $495

includes controller board CP/M boot

prom, I/O decoder prom, hardware/soft-

ware manuals BIOS source listing.

5-20 day delivery- pay by check, C.0.D., Visa, or M/C.
Contact:

C.D.R. Systems Inc.
7667 Vickers St. Suite C

San Diego, CA 92111

Tel. (714) 275-1272

¥REMark - Issue 30 + 1982

23

MONEY$§WORTH

Provides a methad of categorizing
and summarizing expense and income
transactions. Easy for the user since
it's designed to minimize keystrokes.
Additional flexibility is obtained by
allowing the user to set-up category
definitions in parameter files. Also
provided is report generation cap-
ability for any range of months, and
to any user-specified device. In-
cluded is a unique budget fore-
casting feature which provides the
user with a 'spread-sheet' like dis-
play. The forecasting display can
give the user an overview of the
financial picture. Requires 48K RAM
for HDOS, 56K RAM for CP/M and
Microsoft Basic. PRICE $35.

qulk-ref

Rapidly creates a sorted cross-ref-
erence for Microsoft Basic appli-
cation programs. It outputs state-
ment number references, variables
and all user-defined function refer-
ences in a paginated report. Vari-
ables and function names will be
displayed up to a maximum of 16
characters. Supplied in binary for-
mat and operates under HDOS ver-
sion 1.6 or 2.0, The output may be
directed to any HDOS supported de-
vice. Currently, 200 variables may
be cross-referenced along with 2000
statement references. Requirements
are 32K RAM and an HB or HB9
computer. PRICE $19.95

(313)-645-5365

GOMPAGTA

A system allowing one to store an
entire disk of files in a single file,
thereby conserving disk space on
high capacity drives. Perfect for
backing-up data from a 5" disk to a

higher capacity disk drive, such as

dual-headed, 80 track units. COM-

PACTA allows this kind of back-up
storage to be done easily and effi-
ciently. An added advantage is that
files from several different disks
with identical names, can be stored
on one disk without any chance of
a name conflict. Requirements are
32K of RAM, HDOS 2.0 and an H8
or H89 computer. PRICE $24.95

The Universal Dump Utility Manipu-
lation Program (UDUMP) modifies
files using its own built-in screen
editor. Totally menu driven for ease
of operation. Editing may be done
in ASCII, HEX or OCTAL formats,
(track/sector or file basis) with all
changes shown in reverse video. A
'Search Function' allows you to
quickly find a specific string of
characters. Any combination of
flags, even locked ones may be
removed. Also included is a program
that will assist you in recovering
files from a corrupted disk. Re-
quires HDOS 2.0 with 48K RAM and
an HB/H19 or HB89. PRICE $34.

cmem OF THE DDOMVIED

A fun-packed adventure game with
moving graphics and voice output!
It operates in a REAL-TIME mode
and leads you into 30 different cav-
erns each with a dangerous little
creature lurking about. You'll also
run Into such things as pits, spear
traps, ghosts, flying boomerangs and
even poison arrows. And, if you own
a Type 'N Talk synthesizer, the
program will automatically 'talk' to
you during your journey about im-
pending dangers. A non-talking ver-
sion is also included. Requirements
are 48K for non-talking, 56K RAM
for talking version, HDOS 1.6 or
2.0. PRICE $22.95-requires MBasic).

TERMINAL

A menu-driven, intelligent screen-
oriented communication interface for

linking to remote computers while
retaining control to many of HDOS's
commands! Some options available
are: mounting, dismounting, and re-
seting disks, renaming and displaying
files, directory listings and even
deleting files. An AUTOLOG feature
is built-in which allows 16 unique
command lines to be stored, for
sending remote systems a specific
sequence of commands in order to
logon. Perfect for user's with Hayes
Smartmodems. Linking to a remote
system can be as simple as selecting
the proper Autolog! TERMINAL also
provides a TRACE function which
selectively directs output to your
hard-copy device with just one key-
stroke. When communicating to a
remote computer, you may control
what is transmitted or received with
one keystroke, while the 25th line
of the H19/H89 displays the status
of TERMINAL. Requires an HB8/H19
or HB9 with 48K RAM. PRICE $25.

N

As a Zenith dealer, we stock many
of the original hardware and soft-
ware products offered by Heath &
Zenith, all at reduced prices. A
sample of some of the items include
CP/M, Despoolers, Microsoft Basic,
16K expansion boards, DataStar,
Supersort, Z25 printers, Pascal, Sup-
ercalc, CBASIC, Fortran, Z19 term-
inals, Wordstar, Magic Wand, Z90's
and more. We also carry some
selected non-Zenith software and
hardware, such as the Spellbinder
word processing system, Spellguard,
Supervyz menu generator for CP/M,
Type 'N Talk synthesizers, House-
master voice recognition boards and
low cost 8" disk controllers for the
HB8 and HB9. We stock Tandon 48 &
96 track per inch, single or dual-
sided 5" and B" disk drives and
enclosures - at great prices with
full support! Give us a call to
check all of our current prices.

i Keyboard Studio, Inc. has been dedicated to bringing'HeathfZen_ith computer
S:J;;c;?'slzzzl,itlh:oftw);re and hard:vare products at reasonable prices. Qur reputation has been
built on fast delivery, low prices & good service. For a complete listing of all our software

and hardware, please call or write for our free 16 page .catalug. Our softw.'are may be pur-

chased from your local Heathkit Electronic Center or direct from us. Registration forms
are included with all software products, so that we may keep you informed of any up-
dates made to the products. Payment may be in the form of check or money
order (in order to keep our prices as low as possible, we do not ac-
cept credit cards). Please add $2.00 shipping and insurance
on orders under $100 in the continenental United States
Orders over $100, please add $5 shipping. C.0.D. or-
ders are available for a $2 additional charge (phone
orders welcome). Foreign orders please call or
write for shipping charges. We ship most items
within 24 hours upon receipt of your order.

125 -ﬁ.dpen, lgftmfnfﬁam, M/ 48009

inc

24 Y¥REMark « Issue 30 - 1982

Vectored from page 16

885-8007 EZI-TRANSfer $30.00
Introduction: EZI-TRANSfer is a multi-
function utility that makes the transfer
of individual files from a source disk to
a destination disk an easier task. With
the use of the Alternate Keypad Mode and
the Special Function Keys, copying of
files, file deletion, mounting, and
remounting functions are moved above the
operating system level for fast user
friendly characteristics.

Author: Dale Grundon

Hardware Requirements: EZI~-TRANSfer
requires the use of the H/Z8Y9 or the
H8/H19 with at least 32K of random access
memory installed. Further, this program
will support a system with any combination
of two disk drives (H17, H77, Z87, etc.).
The program has been tested on hardware
modified to operate at 4MHz.

Software Requirements: EZI-TRANSfer
requires the Heath Disk Operating System
(HDOS version 2.0). An HDOS version 1.6
disk may be used with EZI-TRANSfer, as
long as the program was entered using HDOS
version 2.0.

Operating Overview: EZI-TRANSfer can
operate in stand-alone mode when drive
SY0: is used as the source or the
destination drive. You may select the use
of the "default drives", SY0: and S¥Yl:, or
any other valid set of drives you choose
for the use of the program. Any disks
currently mounted on the drives to be used
will be dismounted by EZI-TRANSfer.

The two disks to be used are inserted and
mounted, and the directory of the source
drive containing the files to be
transferred is displayed on the screen in
brief format. You are then allowed to
move the block cursor to the file to be
operated on using the appropriate keys of
the Alternate Keypad. While the cursor is
located at the selected file, you may
either copy or delete that file by
pressing the appropriate Special Function
Key. During a transfer, error checking is
done on the destination disk to ensure
that a file of the same name does not
already exist, or that the disk is not
full. Deletion of a file from the source
disk will not occur without verification
by the user. On-screen prompts inform you
about actions occurring during both the
copying and deletion process, and during
disk changes.

Comments: Dale has used extensive
graphics to indicate the operations of his
EZI-TRANSfer program. His use of the
Special Function Keys and the Alternate
Keypad Mode make EZI-TRANSfer easy to use

¥REMark « Issue 30 « 1982

even for the beginner. EZI-TRANSfer is a
fully documented product, with easy to
follow instructions included with the
disk. Dale has obviously put much thought
into the program and the results of his
efforts are excellent.

885-8008 Farm Accounting System $45.00
Introduction: The Farm Accounting System
provides the farmer with timely and
accurate management information. The
system has most of the advantages of a
full double entry accounting system
without the confusing use of debits,
credits and journal entries. Management
reports are generated for cash receipts,
cash expenses, capital purchases and
liabilities, and an income statement. The
reports show both a monthly and year-to-
date figure along with the budget figures.
Author: Danny Jones

Hardware Requirements: The Farm
Accounting System Requires the H/Z89 or
the H8/H19 with at least 48k of random
access memory installed. A line printer
capable of 132 characters/line, or an 80
character/line printer capable of
compressed print, is necessary to obtain
proper results. Two disk drives are
required if your system is comprised of
the lower density drives such as the H77,
H87 or H17.

Software Requirements: The Farm
Accounting System makes use of the Heath
Disk Operating System (HDOS version 2.0)
and Microsoft BASIC (MBASIC version 4.82).
The appropriate LP.DVD is necessary for
your choice of line printers.

How the System Works: The heart of the
system is a code file maintained on the
diskette. There is an entry in this code
file for each expense, income, capital
purchase and liability item for which the
farmer wishes to collect data. The code
file is tailored to fit the individual
farmers operation. Each entry in the code
file is identified by a unique five digit
code number. The code number is generic
in that each of the digits in the code
number represents something. Associated
with the code number is a user assigned
description and the amount budgeted for
that item for the year, if you have
entered an amount for the budget.

Transactions from the checkbook and the
deposit slips are recorded on the

transaction register forms. These
transactions are entered into the system
on a monthly basis through the cash entry
program. There is an option in the cash
entry program to Print a Report listing
the cash receipts, cash expenses and non-
cash transactions.

25

The Report Print program will print a 885-1032 Disk V HB/HB89 $18.00 8

cashflow report showing all the cash 885-1044 Disk VI H8/H89 $18.00
receipts with the month-to-date and the 885-1064 Disk IX H8/HB9 $18.00
year-to-date figqures along with year-to- 885-1066 Disk X HB8 /H89 $18.00 10
date budgets. A similiar report is 885-1069 Disk XIII Misc HB8/HB89 $18.00
available for the cash expenses. Totals
are printed by major and minor categories GAMES
based on the type of code number. The
major category is controlled by the first 885-1010 Adventure Disk HB8/H89 $10.00 4
digit of the code number and the minor 885-1029 Disk II Games 1 HB/H89 $18.00 8
category is controlled by the second digit 885-1030 Disk III Games 2 H8/H89 $18.00 8
in the code number. Also available is a 885-1031 Music 8 & 89 HB/H19 and HB89 $20.00 25
status report of all the capital purchases B85-1067 Disk XI Graphic Games $18.00 12
and liabilities as well as an income .ABS and B H BASIC (H19/H89)
statement report. 885-1068 Graphic Games (H19/H89) * $18.00 10
885-1088 Graphic Games (H19/HB89) ¥ $20.00 14
Comments: The Farm Accounting System by 885-1093 Dungeons and Dragons Game ¥ $20.00 16
Danny Jones is a fine example of a DBMS or Requires H89 or HB/H19
Data Base Management System. Danny has 885-1096 Action Games (H19/H89) * $20.00 18
done an excellent job of documenting his 885-1103 Sea Battle Game (H19/H89) $20.00 20
work with a complete instruction manual 885-1111 HDOS MBASIC Graphic Games * $20.00 23
included with the disk. His documentation 885-1112 HDOS Graphic Games $20.00 23
steps the user through the programs 885-1113 HDOS Fast Action Games $20.00 23

available and even includes the typical 885-1114 Color Raiders and Goop (HA-8-3) $20.00 23
error messages and their meanings. The

Farm Accounting System has been tested in UTILITIES

actual operation and appears to be a very

solid well written software package. 885-1019 Device Drivers (HDOS 1.6) $10.00 6
885-1022 HUG Editor (ED) Disk HB/H89 $15.00 20
H 885-1025 Runoff Disk HB/HB8Y $35.00
HUG Product List 885-1050 M.C.S. Modem for H8/H89 $18.00
885-1060 Disk VII HB8/HB9 $18.00
NOTE: The number in the REM # column refers to SUBMIT, CLIST, FDUMP, ABSDUMP, etc.
the issue of REMark containing a description of 885-1061 TMI Cassette to Disk H8 only $18.00
the software. Usually, it refers to the "New HUG 885-1062 Disk VIII H8/H89 (2 disks) $25.00
Sofware" column, but it may refer to an article. MEMTEST, DUP, DUMP, DSM
X 885-1063 Floating Point Disk H8/HB89 $18.00
Part numbers shown in bold print are available in 885-1065 Fixed Point Package HB/H89 $18.00 10
soft sector 5.25-inch format. Add -37 to the part 885-1075 HDOS Support Package H8/H89 $60.00
number to order soft sector. For example, to 885-1077 TXTCON/BASCON H8/H89 $18.00
order 885-1206 in soft sector, use 885-1206-37. 885-1079 HDOS Page Editor $25.00 15
§85-1080 EDITX H8/H19/HB9 $20.00
e s mm e s mm—— eSS eSS SS S 885-1082 Programs for Printers H8/HB9 $20.00
Part Selling REM gg5_1083 Disk XVI RECOVER, etc. $20.00 11
Number Description Price # 885-1089 MACRO, CTOH, and misc Utilities $20.00 20
-------- -—— e e 885-1090 Misc. HDOS Utilities $20.00 22
CCAT, HPLINK, AH, MBSORT, etc.
CASSETTE SOFTWARE (H8 and H88) 885-1092 RDT Debugging Tool HB/HBY $30.00 14
885-1095 HUG SY: Device Driver HDOS 2.0 $30.00 18
885-1008 Volume I Documentation and $ 9.00 885-1098 HB8/HA-8-3 Color .ABS/.ASM $20.00 19
Program Listings (some for H11) 885-1099 HB8/HA-8-3 Color in Tiny Pascal $20.00 19
885-1009 Tape I Cassette $ 7.00 885-1105 HDOS 2.0 Device Drivers $20.00 24
885-1013 Volume II Documentation and $12.00 MX-80, Paper Tiger, Clock, etc.
Program Listings 885-1116 HDOS Z80 Debugging Tool $20.00 27
885-1014 Tape II ASM Cassette H8 Only $ 9.00 885-1119 B H BASIC Support H8/H19 or H89 $20.00 29
885-1015 Volume III Documentation and $12.00 885-8001 SE UCSD-Style Screen Editor $25.00 28
Program Listings 885-8003 B H BASIC to MBASIC Converter $25.00 28
885-1026 Tape III Cassette $ 9.00 885-8004 UDUMP and FAKEMNT $35.00 28
885-1036 Tape IV Cassette $ 9.00 8 Disk Manipulation Utilities
885-1037 Volume IV Documentation and $12.00 8 885-8005 MAPLE Modem Program $35.00 29
Program Listings 885-8007 EZI-TRANSfer $30.00 30
885-1039 WISE on Cassette HB Only $ 9.00
885-1057 Tape V Cassette $ 9.00 PROGRAMMING LANGUAGES
885-1058 Volume V Documentation and $12.00
Program Listings 885-1038 WISE on Disk HB8/H89 $18.00
885-1042 PILOT H8/H89 $19.00
HDOS SOFTWARE (H8/H17 or H89 -- S-inch only) 885-1059 FOCAL-8 H8/HB9 $25.00 13
885-1078 HDOS Z80 Assembler $25.00 21
MISCELLANEOUS COLLECTIONS 885-1085 PILOT Documentation $ 9.00
885-1086 Tiny Pascal H8/H89 $20.00 13
885-1024 Disk I HB /HBY $18.00 6 8B5.1094 HUG Fig-Forth H8/H89 2 Disks $40.00 18

26 MREMark - Issue 30 + 1982

BUSINESS,

885-1047
885-1048
885-1049
885-1055
885-1056
885-1070
885-1071

885-1091
885-1097

885-1118

FINANCE AND EDUCATION

Stocks H8/H89

Personal Account H8/H89
Income Tax Records H8/H89
Inventory H8/H89

Mail List H8/H89

Disk XIV Home Finance H8/H89
SmBusPkg III 3 Disks
HB8/H19 or HB9

Grade and Score Keeping
Educational Quiz Disk

H89 or HB8/H19

Payroll

DATA BASE MANAGEMENT SYSTEMS (DBMS)

885-1107
885-1108
885-1109
885-1110
885-1115
885-8008

Amateur Radio Logbook and TMS
Telephone/Mail Info. System
Retriever (2 disks)

Autofile

Aircraft Navigation H8/H89
Farm Accounting System

AMATEUR RADIO

885-1023
885-1106

RITY Disk H8 Only
Morse-89 H8/H19 or H89

* Means MBASIC is required

H11 SOFTWARE

885-1008

885-1033
885-1053

Volume I Documentation and

Program Listings (some for H11)

HT=-11 Disk I
H11/H19 Support Package
EXEC Modem Software, etc.

$18.00
$18.00
$18.00
$30.00
$30.00
$18.00
$75.00

$30.00
$20.00

$60.00

$30.00
$30.00
$40.00
$30.00
$20.00
$45.00

$22.00
$20.00

$ 9.00

$19.00
$20.00

885-1117 Pirate's Adventure for H11/H19 $20.00

CP/M SOFTWARE (5-inch only)

Vectored

750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960

10

' PRDATA.BAS
20 LINE INPUT

from page 15

17

14
18

30

23
23
23
23
25
30

27
28

885-1201 CP/M (TM) Volumes H1 and H2 % $21.00
885-1202 CP/M Volumes 4 and 21-C %% $21.00
885-1203 CP/M Volumes 21-A and B %% $21.00
885-1204 CP/M Volumes 26/27-A and B %% $21.00
885-1205 CP/M Volumes 26/27-C and D %% $21.00
The above CP/M products are 2 disks each.

885-1206 CP/M Games Disk * $20.00 11
885-1207 TERM and HBCOPY $20.00 26
885-1208 HUG Fig-Forth H8/HB89 2 Disks $40.00 18
885-1209 Dungeons and Dragons Game * $20.00 19
MBASIC and HB9 or H8/H19
885-1210 HUG Editor $20.00 20
885-1211 Sea Battle Game for CP/M $20.00 20
885-1212 CP/M Utilities I $20.00 21
885-1213 CP/M Disk Utilities $20.00 22
885-1214 Amateur Radio Logbook % $30.00 23
885-1215 BASIC-E $20.00 26

885-1217 HUG Disk Duplication Utilities $20.00 26

4 Means CP/M 1.43 only (ORG-4200).

%% Means CP/M 1.43 or 2.2 (Heath). MBASIC
programs on these disks are for version 4.8 or
earlier.

Other CP/M disks are for 2.2. * means MBASIC is
required.

MISCELLANEOUS

885-0017 HB8 Poster $
885-0018 H89 Poster $
885-0019 Color Graphics Poster $
885-4 HUG Binder $
885-4001 REMark VOLUME I $
885-4002 REMark VOLUME II $

CP/M 1is a registered trademark of
Digital Research Corp.

XS=CS+"\"+BS+"\"+AS+"\"+DS+"\"+ES+"\"+FS+GS+HS: "concatenate all but phone
IF LEN(P$)=0 THEN 770 ELSE X$=X$+"\"+P$:' add '\' + phone # ONLY if entry
PRINT #2,XS$:'write this name and address, all formatted, to file "TEMP"
S1=81+1l:' Sl= counter for new records added.

GOTO 250:' Go back for next name and address entries

CLOSE:NAME "TEMP" AS T$

Tell user record number status.
PRINT :PRINT "There were";S;"records in

";T$+".0LD data file."

PRINT "There were";Sl;"records just added."
PRINT "There are now";S+Sl;"records in file ";T$;". Bye-bye!":END

Error handling (see text) routines -

IF ERR=53 AND ERL=180 THEN INPUT "Opening NEW file? (Y/N)... ";N$ ELSE 890
IF N$="Y" OR N$="y" THEN OPEN "O",2,"TEMP":RESUME 250
IF N$="N" OR N$="n" THEN PRINT "NO file ";T$;"! Check and start over!":END

IF ERR=53 AND ERL=800 THEN RESUME NEXT
IF ERR=53 AND ERL=210 THEN RESUME NEXT

ON ERROR GOTO 0

'Line Length handling routines -

PRINT:PRINT"Above 3 items too long by";M-T;"chars. Abbreviate!" :PRINT:RETURN
PRINT:PRINT "Above item too long by";M-T;"chars. Abbreviate!":PRINT:RETURN

FOR K=1 TO 24:PRINT:NEXT K:RETURN:'

clear screen

' H19/B9 users substitute PRINT CHR$(27)+"E":RETURN for above line

"Enter FILE NAME....

prints DATA & prefaces each record with its absolute position
".T$:0PEN "I",1,TS$:N=1

30 IF EOF(l) THEN CLOSE:END:ELSE LINE INPUT #1,X$:LPRINT N;X$:N=N+1:GOTO 30

¥ REMark - Issue 30 - 1982

27

An Editor for BENTON HARBOR BASIC

In last month's issue of REMark, I presented a number
of improvements for Benton Harbor Disk BASIC. In
this article 1 will describe a co-resident editor for B
H BASIC that uses features of the H19 terminal or
HB89 computer. Both the editor and the programs
presented last month are available on HUG disk
885-1119. It was incorrectly stated in last month's
REMark that the programs require 48k. They will
actually run in a 32k system. Here is a review of
the programs on disk 885-1119:

BAS16.ABS and BAS20.ABS -- This is standard B H
BASIC (for HDOS 1.6 and 2.0) patched so that the
FREEZE and UNFREEZE commands save and load
programs in compressed format, to save time and disk
space,

LBASIC.ABS -- This is a preloader for B H BASIC
that allows you to load and run programs from a
single HDOS command line, and to set a memory
limit for BASIC.

EDBASIC.ABS -- This is the co-resident editor
described in this article.
BC.DVD -- This is a device driver which, when

loaded, re-defines the use of the function and keypad
keys (while activated) to produce certain BASIC
keywords with one stroke, such as PRINT or GOTO.

RENUM,ABS -- A fast renumber for B H BASIC
programs (released previously on another HUG disk).

MAP.ABS -- Generates cross references of all
variables and referenced lines in BASIC programs (also
previously released).

BASE.BAS -- A program to convert from split octal
to decimal and vice versa.

SUBS.BAS -- BASIC subroutines that allow calling
machine language routines from B H BASIC programs,
single character input without RETURN, and keyboard
scanning.

FKEYS.BAS and REFLEX.BAS -- demonstrations of
the above subroutines,

are uncomfortable working with assembly
the editor presented here
you should

If you
language and would like
along with the other things mentioned,
order disk no. B885-1119.

The Editor Programs

The assembly listings following this article make up
the .editor. BEDIT.ASM is the actual editor, and
ELOADR.ASM is a loader program that places the
editor in memory, ELOADR is a modified version of
the program RELOC by Ted Eitel, from HUG disk
885-1090. After BEDIT and ELOADR are assembled,
they should be combined into one program with PIP
as shown in the ELOADR source listing, to make the
file EDBASIC.ABS. Note that BEDIT.ASM contains an
assembly parameter that allows you to assemble it for
either HDOS 1.6 or 2.0. Be sure you set it for the

28

version you are using,

When you run EDBASIC, the loader portion locates
the highest memory area available (under the HDOS
overlays), places the editor portion there, and passes
control to it. The editor then loads BASIC.ABS from
the same disk, patches it to allow interface to the
editor, and passes control to it, BASIC then signs on
just as it does without the editor.

Using the Editor

To use the editor, BASIC.ABS and EDBASIC.ABS must
be on the same disk. To get things started, enter

>EDBASIC

at the HDOS prompt. If EDBASIC and BASIC are on
a disk other than the system, you can include a drive
designation, such as

>SY1:EDBASIC

Normally, EDBASIC will set the memory limit (the
limit to the memory used by BASIC) just below the
editor, but you can lower it more by specifying an
address in decimal in the command line, such as

>EDBASIC 40000

This would set the limit at 40000 decimal, and you
could use the area from there to the editor for user
machine language subroutines. For more information,
see REMark issue 29,

When you run EDBASIC, B H BASIC signs on
normally. You can load a program and/or enter
program lines in the usual way. When you want to
use the editor, type control-D (hold down the CTRL
key and press the D key). The prompt "Enter line to
edit:" will appear on the 25th line of your screen.
Type the number of the line that you wish to edit. If
you want to get back to BASIC without editing, type
control-D again. After you type a line number, hit
RETURN, and the line with that number will appear
on the -25 line of the screen with the cursor at the
left end of the line. You can use the left and right
arrow keys on the number keypad to the right of the
main keyboard to move the cursor anywhere along the
line. If you type a key on the main keyboard, its
character will replace the one where the cursor is,
and the cursor will move to the right. You can
replace words just by typing the new one over the old
one. If you would like to insert characters in the
line, press the IC key on the keypad. The letters IC
will appear in the upper right hand corner of the
screen, indicating that the insert mode is on. Now
any characters you type will be inserted where the
cursor is, and the cursor and the rest of the line will
move to the right. To cancel the insert mode, press
the IC key again, and the letters IC will disappear
from the screen.

To illustrate what we have covered so far, suppose

you want to change the word GOTO to GOSUB. First
you would position the cursor to the T in GOTO and

¥REMark « Issue 30 + 1982

type SU, which would replace the TO. Now to get in
the extra letter, press IC and type B. The word
GOSUB now appears in the line instead of GOTO.,

If you want to delete a character, you can position
the cursor to the character and type the DC key.
The character at the cursor will be deleted and the
rest of the line will move to the left to take its
place. You can also use the DELETE key to delete
characters. In this case, the character to the left of
the cursor is deleted, and the line and the cursor
move to the left. The BACK SPACE key will not
delete characters, but has the same effect as the left
arrow key. You can hold down the repeat key while
pressing the left arrow, right arrow, DC, DELETE, or
BACK SPACE keys for multiple movements or
deletes.

After you finish editing, hit RETURN to end the edit
and insert the edited line into your program. If there
are any syntax errors unacceptable to BASIC in the
edited line, it will not be accepted, and the old line
(before any editing) will still be in the program. If
you want to abort the edit, type control-D.

You can edit any part of a line, including the line
number, so the editor can be used to replicate lines
in a program, You can also use it to enter new lines
into the program by hitting RETURN at the "Enter
line to edit:" prompt. In this case, the 25th line will
be blank, with the cursor at the left end. Just enter
the new line (don't forget the line number) and hit
RETURN. You can use any of the editing features
described above to make changes in the line while
you are entering it.

Restrictions
exceed 80

If there are
the extra ones will "fall

The length of a line edited cannot
characters, including the line number.
more than B0 characters,

EEDIT - An Editer for B H BASIC

THIS PROGRAM PROVIDES A LINE EDITOR FOR
DISK B H BASIC. THE EDITOR 15 ENVOKED BY
TYPING CONTROL-D. THE USER WILL BE ASKED
FOR A LINE NUMBER TO EDIT. AFTER HE ENTERS
THE LINE NUMBER, THE LINE WILL BE LISTED ON
THE 25TH LINE OF THE TERMINAL. THE USER
CAN THEN EDIT THE LINE USING THE LEFT AND
RIGHT ARROW KEYS AND THE IC AND DC KEYS.

THIS PROGRAM MUST BE COMBINED WITH ELOALDR.ABS.
SEE INSTRUCTIONS IN ELOADR.ASM.

Hos N6 o ak oab sk ok ook o ok ¥ ok sk ok

BY P. SWAYNE, HUG 2-MAY-82
XTEXT
XTEXT
$TYPTX EQU
S.SYSM EQU

HOSDEF
HOSERU
31136A
A40520R

HDOSZ. @ EQU @ ASSEMBLE FOR HOOS 2.9

® MAKE THIS LINE READ "HDOSZ.@ FQU 1" IF You
® ARE USING HDOS 1.46. USE THIS PROGRAM WITH HDOS
hd 2.0 OR 1.6 ONLY!

CODE FIC POSITION INDEPENDENT CODE

HREMark - Issue 30 + 1982

off" the end and be lost. Any leading zeros in the
line number can be deleted to get in a few more
characters. You cannot put any control characters in
the line, and any in it already will be lost. Control
characters should be entered with CHR$(or a
variable. For example, if you want to beep the
terminal beeper, use CHR®$(7) or a variable assigned
to that value.

How it Works

EDBASIC makes heavy use of the editing features
built in to the H19/HB89 and routines in BASIC, and
does little of the work itself. When it loads BASIC,
it patches the routine that accepts user input so that
a control-D causes a jump to the routine that asks
you for a line number to edit. When you type in a
number, EDBASIC converts it to binary and calls part
of the LIST routine in BASIC, and the line is listed
on the 25th screen line. Then it sets the keypad to
the shift mode and enters the actual edit loop. While
in this loop, most characters you type are simply
echoed back to the terminal, which does the actual
editing. The loop checks for illegal escape sequences
and toggles the IC display as you type the IC key. It
also looks for control-D to abort the edit and
RETURN to end it.

When you type RETURN,
"transmit 25th line" sequence to the terminal and
enters a short wait loop. During this wait, the
characters being transmitted from the screen are
stored by HDOS in its type-ahead buffer. Then things
are cleaned up (shift mode off, insert mode off, IC
display cleared, etc.) and control is passed to BASIC.
BASIC sees the type-ahead buffer full of characters,
and accepts them just as if you had typed them all in
yourself. If the new line accepted has a line number
the same as one in the program, the new line
replaces the old one in the usual way, and the edit is
accomplished.

EDBASIC sends the

PS:

DW START ESTABLISH START ADDRSS
#* LOAD BASIC.ARS INTO MEMORY
START LXI H,0

DAD SP FIND STACK

MV AL

CF1 2000 HAS IT MOVED?

JZ NONUM NO, NO ARGUMENT ENTERED
GETARG MOV A, M GET A CHARACTER

INX H MOV TO NEXT ONE

CPI ’ e SPACE?

Jz GETARG SKIP SPACES

X H BACK UP TO FIRST CHARACTER

CALL DECIN CONVERT NUMEBER TO BINARY

JC NONLIM BAD NUMBER

SHLD MENMTOP SAVE USER’S MEMORY TOP
NONUM ~ LXI SP,USERFWA-2 LOWER STACK A BIT

MV1 A3

LXI B, OFFFFH

SCALL . CONSL SET FULL CONSOLE WIDTH

LXI H, NAMRET
LXI D, DEFALT
M1 A,-1
SCALL .NAME
LXI H,BASIC
LXI D, DEFALT
XRA A

POINT TO .NAME BUFFERS
USE SYSTEM CHANNEL (-1)
GET EDBASIC DEVICE NAME
FOINT TO “BASIC”

AND DEFAULTS

29

HERE

NOUSRM

EDITCH

EDIT

CURLF

30

LXI
DAD
MOV
Mv1
LXI
XRA
SCALL
CP1
JNZ
XRA
SCALL

FIX USER MEMORY LIMIT

LHLD
LDA

LHLD
SHLD

A
.CLOSE

LIMIT
MEMTOP+1
A
NOUSRM
1320
NOUSRM
B,A
LIMIT+1
B

NOUSRM
MEMTOP
S.5Y3M

OPEN FOR READ
COULDN'T DO IT
PUSH PC ONTO STACK
GET CURRENT PC
SAVE MEMORY LIMIT

SUBTRACT MEMORY START

(BC) = BUFFER SIZE
PUT BASIC.ABS HERE

READ IN BASIC.ABS
GOOD READ (MUST BE EOF)
NO

CLOSE FILE

GET MEMORY LIMIT
GET USER’S MEMORY TOP PAGE
ANYTHING ENTERED?
NO, USE LIMIT
ADDRESS TOO LOW?
YES, USE LIMIT
SAVE PAGE IN B
GET LIMIT PAGE
ADDRESS TOO HIGH?
YES, USE LIMIT
ADDRESS OK, USE IT
SET MEMORY LIMIT

FATCH BASIC TO JUMP TO EDITOR ON CONTROL-D

HV1
STA
STA
Lx1
SHLD
LXI
SHLD
IF
JMP
ELSE
JHF
ENDIF

A, 3030
77105A
771314
H,EDITCH
77106A
H, DELSPC
77132A
HDOS2. 0
112252A

112210A

JUMP INSTRUCTION

PUT IT IN BASIC

HERE ALSO

EDIT CHECK ROUTINE

PUT IT IN BASIC

GET SPACE DELETION ROUTINE
PUT IT IN BASIC

BASIC ENTRY POINT

HDOS 1.4 BASIC ENTRY POINT

CHECK USER INPUTS FOR CONTROL-D, START EDIT IF S0

SCALL
JC
CF1
JZ
JMP

.SCIN
T7076A
)

EDIT
T7112A

CHECK CONSOLE FOR ENTRY

NO ENTRY, GO BACK TO BASIC
CONTROL-D?

YES, START EDITOR

NO, RETURN TO BASIC

EDITOR ENVOKED, GET LINE TO EDIT

SCALL
JNC
LxI
XRA
SCALL
SCALL
CALL
LB
MVI
LXI
SCALL
JC
Moy
INX

.SCIN
*-2
B,S181H

A

. CONSL.
.CLRCO
$TYPTX
27,7 n’ 2000
B,4

H, CURPOS
.5CIN

-2

M,A

H

CLEAR INPUT BUFFER

SET CONSOLE TO CHAR MODE
CLEAR CONSOLE
SAVE CURSOR POSITION

SET COUNTER
PUT CURSOR POSITION HERE
GET A CHARACTER

STORE IT
INCREMENT POINTER

ELINE

GETNUM

GOTNUM

EDITLP

NODEL

CKINS

CHKEYS

PREEY

DCR
JINZ
CALL
DB

DB
SCALL
LXI
XRA
SCALL
LXI
SCALL
JC
MOV
CP1
JZ
CPI
JZ

INX
JMP
LXI
CALL
JC
PUEH
FOP

B
CURLF

$TYPTX
27, %1’

DONE?
LOOF UNTIL DONE
GO TQ ZSTH LINE

27,°Y8 Enter line no. to edit:’ 2400

.CLRCO
B, OFFH
A

. CONSL
H, BUFFER
.SCIN
*-2

M,A

120
GOTNUM

a3

ABORT

H
GETNUM
H, BUFFER
DECIN
ABORT

H

D

ENTER EDIT MODE

SCALL
CPI
JNZ
JHP
SCALL
SCALL

LX1

$TYPTX
27,'Y8

27, t +2000
510667

A

B,S181H
.CONSL
.CLRCO
.SCIN

#-2

3

ABORT

330

CKINS
1776
NODEL
$TYPTX
8,27, N’ +200Q
EDITLP
.5COUT
120
EDITLP
XMIT
.5C0UT
.SCIN

#-2

H, GOODKYS
B,S

M

PRKEY
B

H
CHKEYS
ﬁ‘ bk

. 3COUT
}e!
INSERT
‘0
EDITLP
+TYPTX
27, §' 427, n
EDITLP
$TYFTX

CLEAR CONSOLE

SET CONSOLE TO LINE MODE
PUT NUMBER HERE
GET A CHARACTER

STORE CHARACTER
END OF ENTRY?
YES

CONTROL-D?

YES, END EDIT
INCREMENT POINTER
GET MORE

CONVERT USER’S NUMBER
BAD NUMEER

(HL) = (DE) = NUMBER

CLEAR 25TH LINE

*,27,"Y8
ENTER KEYPAD SHIFTED MODE
LIST USER’S LINE

SET CONSOLE TO CHAR MODE
CLEAR CONSOLE
GET ENTRY

CONTROL-D?

IF S0, ABORT EDIT

ESCAPE?

YES, CHECK FOR INSERT/DELETE
DELETE?

NO

DELETE, BACK UP AND DELETE

CONTINUE EDITING

PRINT CHARACTER

RETURN?Y

IF NOT, CONTINUE EDITING
TRANSMIT EDITED LINE
PRINT ESCAPE

GET CHARACTER AFTER ESC

GET GOOD KEYS

ND. OF GOOD KEYS

GOT A GOOD KEY?

YES, PRINT IT

DECREMENT COUNTER
INCREMENT POINTER
CONTINUE CHECKING

BAD KEY, REPLACE W/SPACE
PRINT 1T

ENTER INSERT MOLDE?

YES

EXIT INSERT MODE?

NO, CONTINUE NORMAL LOOP
KILL "1C*

', 27, K +2000

FPRINT "IC" IN CORNER

¥REMark « Issue 30 = 1982

i) 27,7 §,27,"Y nlC’,27,"k’ 42000
JNP EDITLF
¥ TRANSMIT 25TH LINE TO BASIC
IMIT CALL $TYFTX
DE 27, 1° 42000 TRANSMIT LINE
LXI H,®
DELAY DCX H WAIT A RIT
MOV AH
ORA L
INZ DELAY
FIXSCRN XRA A
LX1 B, OFFH
SCALL . CONSL SET CONSOLE TO LINE MODE
CALL $TYPTX
UE 27,'u*,27,°0° SET KEYPAD UNSHIFTED, IC OFF
i) 27,'Yn * KILL “IC*
DB 27,'y*,* 1’ +2006 25TH LINE OFF
LXI H, CURPOS
SCALL .PRINT RESTORE CURSOR POSITION
CALL $TYPTX
OB 77, A’ +2000 MOVE CURSOR UP ONE
LXI E,0 CLEAR BC
JHP 43124A RETURN TO BASIC
ABORT SCALL .CLRCO CLEAR CONSOLE
JMP FIXSCRN FIX SCREEN, RETURN T EASIC
* DELETE TRAILING SPACES FROM COMMAND LINE
DELSFC LCX H BACK UP TO LAST CHARACTER
nex H
DELOOP MOV AM GET A CHARACTER
CPI ’ e IS IT A SPACE?
JNZ DDONE NO, FINISHED
DCX H BACK UP ONE MORE
JNP IIEL OOP TRY AGAIN
DOONE INX H MOVE PAST LAST CHARACTER
M1 M0 TERMINATE LINE
INX H FIX HL AS BEFORE
FOP D (DE) = LINE FWA
MOV AL
SUB E FIND LENGTH OF LINE
ANA A CLEAR CARRY
XCHG (HL) = FWA
RET RETURN T(1 BASIC
* CONVERT ASCI1 DECIMAL NUMEER AT ((HL)) TO BINARY
DECIN LXI n,e CLEAR DE
XCHG DE = POINTER, HL = ZERO
DLOOF LDAX D GET A DIGIT
U1 ‘g REMOVE ASCII BIAS
ANA A LESS THAN *0°7
KM IF S0, DONE
CP1 10 MORE THAN 107
CMC
RC IF 30, RETURN WITH CARRY
INX D MOVE TO NEXT DIGIT
DAD H %2
PUSH H SAVE 1T
DA H ¥4
DAD H ¥ g
POP B BC = N*2
DA B (N*2) + (N¥8) =N¥* 10
MOV C,h ALD IN LATEST DIGIT
mWi B,
DAD B
JMF DLOOF GET ANOTHER DIGIT
KEPORT ERKORS

¥ REMark - Issue 30 + 1982

ERR

GOODKYS
CURPOS
LIMIT
MEMTOP
BUFFER
NAMRET

DEFALT
BASIC

ok o N o ok % o % %

$MOVE
$ADJREL

START

LOAD

MOVE

PUSH
CALL
DB
POF
MVI
SCALL
XRA
SCALL

CONSTANTS AND BUFFERS

PSH
$TYPTX

SAVE ERROR CODE

120,7, 'ERROR -',2400

PSH
H,120
.ERROR
A
JEXIT

RESTORE ERROR CODE

END ERROR WITH NEW LINE

RETURN TO HDOS

GOOD KEYFAD KEYS
CURSOR POSITION
MEMORY LIMIT

USER’S MEMORY LIMIT
FUT BUFFER HERE

ELOADR ~ B H BASIC EDITOR LOADER

ADAPTED BY P. SWAYNE, HUG 4-MAY-82
FROM T. J. EITEL’S RELOC PROGRAM

ASSEMBLE THIS FILE TO GET ELOADR.ABS, THEN MAKE
ONE FILE FROM THIS FILE AND BEDIT.ABS AS

DB " DCRON’
DB 4 f,2000
D @

] @

EQU *

RET

bs g

DB ‘SYeABS’
DB 'BASICY @
END

FOLLOWS:

COPY EDBASIC.ABS=ELOADR.ABS,BEDIT.ABS

EGU
EQU

XTEXT
XTEXT
ATEXT

CORG

XRA
SCALL
JC
MVI
SCALL
JC
LXI
SCALL
PUSH
SCALL
JC
POP
LXI
DAD
SHLD
LXI
LAD
SHLD
M1
LXI
LXI
SCALL
JC
LXI
LHLD
LX1

30252A
33175A

HOSDEF
HOSEQU
ESVAL

USERFWA

A
.LOADOD
ERROR
A1
.LOADO
ERROR
H,~1
LZETTP
H
LSETTP
ERROR

H

D, -260H
D
LOADADR
D,-8

D
RELADDR
A, -1

B, 256
D, BUFFER
.READ
ERROR
D, BUFFER+S
LOADALK
I, 248

LOAD FIRST OVERLAY

LOAD SECOND OVERLAY

FIND MEMORY TOP
SAVE 17
SET IT

SUBTRACT EDITOR SI1ZE
SAVE AS LOAD ADDRESS
.NEGITIVE OFFSET
.SUBTRACT &

.LOAD - OFFSET
+CHANNEL -1

.ONE SECTOR

. INFUT AREA

. INPUT ONE SECTOR
.ERROR ON INFUT
.FIRST ADDR OF FROG
.PROGRAM AREA

.MOVE 243 BYTES

31

CALL $MOVE . MOVEM
XCHG .ADDIRESS TO DE
LHLD LENGTH .PROGRAM LENGTH
MOV B,H .# OF SECTORS
MvI C,0 .EVEN SECTORS
M1 A,-1 .CHANNEL -1
SCALL .READ .INPUT REST OF FILE
JC ERROR .ERROR ON INPUT
RELOC LHLD RELADDR .RELATIVE OFFSET
XCHG .OFFSET TO DE
LHLD RELINFQ .ADDR OF RELOC INFO
DAD D HL NOW ABSOLLITE
MOV C,E
MoV E,D
CALL $ADJREL
FINISH LHLD RELADDR .OFFSET
XCHG .OFFSET TO DE

LHLD STRTADR .FROUGRAM ENTRY

DAL I -MAKE ABSOLUTE
PCHL G0 TO PROGRAM

ERROR MVI H, 120 « TRAILING CHARACTER

SCALL .ERROR -DISPLAY ERROR

XRA O

SCALL .EXIT
RELADDR W @
LOADADR DW] .LOAD ADDRESS
BUFFER EQU * . INFUT AREA
LENGTH EQU BUFFER+2 -PROGRAM LENGTH
RELINFO EQU BUFFER+4 .RELOCATE INFD
STRTADR EQU BUFFER+5 .PROUGRAM ENTRY
BUFEND EQU BUFFER+25&
#*

END START

The MX-80 Once More

In last month's REMark, I presented a
patch for the HUG or Heath MXB80 device
driver for the GRAFTRAX option. This
patch was based on what I had heard, and
not on actual experience. Since then I
have obtained an MX-80 with GRAFTRAX Plus
and the 8145 Serial Interface, and found
that that patch does not work. I have
developed a patch that does work, which
should be made to either the HUG MX-80
device driver (from 885-1105) or Heath's
LPMX80.DVD if you want to use the GRAFTRAX
option. Make the patch using PATCH.ABS as
follows (what you type is in bold print):

>PATCH
PATCH Issue #50.06.00.
File Name? LPMX80.DVD

Patch ID? IFOJIC
Preregqguisite Code? IFBEIADPGEFFCF

Address? 3042

003042 = 345/311

003043 = 072/°D {control-D)
Address? 3314

003314 = 346/76

003315 = 357/3

003316 = 315/°D

Address? 4127

004127 = 033/377

004130 = 104/°D

Address? "D

Patch Check Code? EEJIAFBF

PATCH Issue #50.06.00.
File Name? “D

If you are patching the HUG version, you
will not be asked for the Patch codes, and
the file you are patching (LPMX80.DVD)
must not have the W or L flag set. Make
the patch whether you entered last month's
patch or not. After the patch is made,
your driver will support the MX-80 or MX-
100 with GRAFTRAX Plus (with an appropri-
ate serial interface).

32

The switch settings in the MX-80 or MX-100
with GRAFTRAX are different from those
shown in last month's article. The
switches on the printer board should be
set as follows:

SWl settings

1 off Normal print (uncompressed)
2 off Not used

3 off Paper out sensor active

4 off Normal print (not italic)

5 off Normal print (not emph.)

6 on Buzzer on

7 off Regular zero (not slashed)
8 on Select fixed

SW2 settings -- all off

As I stated last month, you need a serial
interface with at least a 2k buffer to use
GRAFTRAX. Epson makes at least 3 differ-
ent serial boards with 2k buffers. The
one I had access to was model 8145. The
switch settings for this board are as
follows:

SW1l settings

1 off Baud rate (4800)

2 on Baud rate

3 off Baud rate

4 off Baud rate

5 on Data ready flag control
6 on Data ready flag control
7 on Parity disabled

8 on Even parity (ignored)

SW2 settings

1 off 8-bit word length

2 on Reverse channel = Mark
3 off Reverse channel = Mark
4 on Reverse channel valid

All jumpers on the board should be at
their factory settings. Having a 2k buf-

Vectored to page 39

YREMark - Issue 30 + 1982

Oooooopppsss, | Forgot!
Orthe Missing Program

In the May 1982 issue of REMark, a program
was omitted from the article "Split Byte
Octal/Decimal Addition/Subtraction" by
Robert G. Traub. My apologies to Mr.
Traub - here is the program.)

MV LA SRVE IN L7

SHLD NEF+Z SAVE IN ANSHER BUFFER
CALL CRLF SHOW A NEW LINE
JHF SUBANS GO DO MATH

¥
® RCUTINE TO SHOW FOUR SPACES ON COWGOLE

SPACE M1 b, 6040 LOAD LOCE COUNT
i1 A, edeq LOAD A SPACE
SPACED W ooyt SHOW THE SPACE
R B SUB ONE FROM THE COUNT
NI SPACE] [0 AGRIN
FET ALL [ONE

* ROUTINE TO FRINT OUT THE ERROR MCS3ACE AND START ALL CVER

L

he ERROK LXT HL,MESSY
™ SPRINT SHOMW 1T
* SPLIT CCTAL OR DECIMAL FROM SPLIT CCTAL SUBTRACTION , JP BEGI START OVER
FROGRAM, EY R.5, TRAUR
+ + ROUTINE TO CONVERT INPUT T OCTAL EINARY NUMEERS
SCONSL EQl @de377A SET COWSOLE 40LE *
SCIN EGU 1277k TNFAT ROEIT INE OCTING PUEH BC SAVE Tl-EIBYTE
SEXIT EOR @0ai7TA EXIT SCALL MWl B,ea0 CLEAR B’
SPRINT B el Xyl STRING SCALL CALL INOCTS GET FIRST DIGIT
SCOUTOEAL 0073 CHARACTER SCALL CF1 padd
STACK EOL eAZ2e6R STACK TOMN FROM HERE Jz ERRTR
F E0Y 615 LINE FEED ﬁ b SHIFT 1T
OR g Y zeocd) THREE
N START LXT SP,5TACK SET STACK APEA :\gvﬂ ; ’ Iﬁe »
We & CLERR "4 i SAVE MEW BYTE IN ‘B’
LI B, 6412914 CONSOLE MODE WORD CALL INOCTZ GET NEXT DIGIT
™ 50ONGL SET MODE NOW gamp: B gﬁ‘IﬁIFl?S’;E .
d 1
+ 540N CPENIHG MESSAGE RAL TINES
+ RAL
BEGIN LXI HL.MES) STARTING MESSAGE KoV B.A ; SAVE NEW TOTAL
DN SPRINT Lo INDCTR GET THIRD DIGIT
G L1 M, MESSA (RA B ADD TO LAST
i SPRINT o R STURE IN B
' MW AR GET IN *A° NOW
Kz W1 Al FLAG FOR SUBTRACTION FIRST POF BC RESTORE BC
3TA FLAG EACH TIME THRU ROUTINE REY [ONE
CALL InelT READ KE“BOARD 4
Pl H ‘ M FOF HIOS! INCCTS CALL INUT GET DIGIT
J EXIT WARM REEDOT s B0 REMCVE ASCIT OFF-SET
O W MESSZ SECCND MESSAGE J ERRIR EDIT IF INCORRELT
™ SPRINT SHOW 1T . RET
4
CALL (CTING GET CCTAL MEMBER # ROUTINE T CONVERT INPUT TO DECIMAL EINARY MUMEERG
MW H, A SAVE IT .
WA GET A PERIOD N L DE$
(] SCOUT SHOM 1T LIT HL,MESSS
CALL CCTINA GET NEXT EYTE W SPRINT SHW 1T
MV LA SAVE IN 'L CALL CRLF
SHLO NBLF SAVE 1T IN RUFFER '
LXT HL,MES53 THIRL: MESZAGE ECINZ CALL INPUT
W SERINT CP1 0120 15 IT A& *RETLRN
CALL INeUT GET CHARACTER ¢, 7 Jz SAVDEC IF YE5, STORE NUMBER
3 S 1% 17 LECIMAL? e p/ Q UL 6s60 REMOVE ASCIT OFF-GET
Jz DECIN YES, GO GET s ERRUR
¥ Z 77 /\/ trl [
¥ SHOW HEATER FOR SECOND OCTAL NUMEER NOW ‘-/ 444 JMNC ERROR
' JNO gR@R. 11 e
OC77v U1 H S GET MESSAGE FOR OCTAL NUMEER DAD D
i SPRINT SHOW 17 [(]
CALL CCTINA GET FIRST BATE A0 H KL = [€ TIMES FOUR
8y H.A SAVE 1T IN H' [AD D HL = TE TIMES FIVE
w1 n’ LOAD TN A PERIOD tAD H HL = I€ TIMES TEN
I SCOT SHOW 1T MY E,A
CALL 0CTINg GET SECOND BYTE Wl L@

¥REMark - Issue 30 - 1982

33

DAD i

1CHG
JF [ECINZ
®
LINE MOV AH HIGH BYTE IN THE A’
CALL OCTOUT CONVERT 1T, SHOW IT
L ALt LOAD IN / PERIOL
L SCouT DISPLAY IT
Hov AL GET THE LOW 3YTE
CALL OCTouT CONVERT, SHOM IT
(ALL SPACE SHOW FOUF SPACES NOW
CALL [ECO! SHOW THE DECIMAL EQIV.
CALL SPACE SHOM ANOTHER FOUR SPACES
CALL BOUT SHIM THE EINGRY NUMBER
CALL CRLF TURN UP A NEW LINE
RET AND RETURN, ALL DONE.
*
SAVDEC XCHO 'OE' BACK IN 'H’
SHD NBUF+2 SAVE BUFFER
CALL CRLF SHOM A NEW LINE

¥ ROUTINE TO [0 THE SUBTRACTION
#

SURANS LDA NRUF+2 GET *LSE' OF SECOND
MU BA STORE IN *B’
LIR NEUF GET ’L3B’ OF FIRST
SUE R SURTRACT THEM
STA ANG#Z SAVE IN BUFFER
LIA NBUF+G GET 'MSE’ OF SECOND
MV BA SAVE IN ‘B’ REG,
LA NEUF+1 GET 'MSB’ OF FIRST
SEB K SUETRACT WITH BORROM
3TA A3 SAVE IN BUFFER

* ROUTINE TO ADD THE TRO NUMBERS
¥

LHLD NBUF+Z GET THE SECOND
XCHG STORE 1T IN "DE
LHLD NBUF GET THE FIRST

DAD D ADD THE TWO NUMBERS
SHLD ANS SAVE BUFFER

L]

* ROUTINE 70 DISPLAY THE ANSWER ON THE CONSOLE DEVICE
]

MW LK WL MESSA BET SCOUT MESSAGE
W SPRINT SHOW 11

DISPLY LHD NBIF GET THE FIRST
AL LINE DISPLAY IT IN THREE FORMS
(HD NBUF#2 GET THE SECOND
CALL LI DISPLAY 1T IN THREE FORMS
Wl B850 LOAD IN COUNT OF 72 DECINAL

DiSPI W1 A, LOAD IN & *~* CHARACTER
v T SHOW 17 72 TIMES
R B SUB ONE FRCH COLNY
N DISPI 1 NOT ZERD, SHOW ANOTHER
CALL CRLF
LA FLAG GET FLAG CHARACTER
I IS IT ZER0 YET?
€2 ADDANS IF YES, D0 ADDITION

]
LHLD A2 AIESHER FOR SUBTRACTION
MV AM HIGH BYTE *A’ REG
CALL OCTOUT CONVERT 2ND SHOW
Wl A, LOAD IN A PERIOD
W s HOW 17
AL GET LOW EYTE
AL T CONVERT AND SHOM
CALL SPACE SHOW THO MORE
CALL DECOUT SHN DECIMAL RESULTS
(AL SPACE SHON TR MORE
AL o SHOM IN RINARY

34

CALL
CALL
LDA
CFl
JZ
Ll
STA
Lx1
L]
P

ADDANS LHLD
SHLD

RET
#

CRLF
CRLF
FLAG

¢

BEG!

A,0

FLAG

HL, PE3S7
SPRINT
DISPLY

ANG
ANS+Z

GET FLAG
1S IT ZERD?

IF YES, EXIT NOW
SET FLAG TC ZERC
FOR ADDITION ANSHER
GET ALDITION ANSWER
SHOW [T

SHOW ADEITION ANSWER

GET ADDITION ANSHER
SAVE IN BUFFER

¥ FOUTINE TO PRINT OUT ANSHER IN BINARY FORMAT

*

BINWUT PUSH

EIN] RAL

BINZ W

INZ
PP
RET

AH
EINOUT
A, 40
scouT
AL

B

B, 8140

PaN
8,1
BINZ
8,9
SCoUT
PSW
B
BINY
3

GET HIGH BYTE

CONVERT IT T0 '1" OR '@’
GET f SPACE

SHOW 17

GET LW B“TF

SAVE THE BC REGISTERS
COUNT OF & IN B REC
SHIFT BIT INTO CARRY
SAVE MODIFIED BYTE

LOAD IN AN ASCIT "ONE'
SHW IF IT IS A "1
OTHERWISE GET AN ASCII @
SHOW 1T

GET MODIFIED BYTE
SUBTRACT ONE FROM COLNT
B0 NEXT DIGIT TF NOT ZERC
KESTORE B’

OTHERWISE ALL DOME

¥ ROUTINE TO CONVERT OCTAL BINARY TO ASCII DIGITS AND DISPLAY

WTOUT ORA
PUSH
Ml

ocT! RAL
RAC
RAL
PUSH
Al
ADI
L]
PO
[CR
JNZ
POP
RET

+

A
BC
B, 0030

PsH
@070
b600
stouT
PSW

E
o
BC

LCAD LOP CONT IN B

SHIFT IT
THREE

TIMES

SAVE N STACK

ISOLATE LS THREE BITS
ACD ON ASCI] OFFSET
SHOW 1T

BYTE EACK. NOW

SUE ONE FROM LOOP
AGRIN IF 'B* NOT ZERD
OTHERWISE ALL DCNE
SO RETURN

CONVERTS DECINAL BINARY TO ASCIT PACKED NUMEER
*

[ECOUT LHD

DECOI PUSH
L1
CALL
LxI
CALL
LXI
CALL
L
CALL
Hav
AT
W
FOP
RET

ANS+2

HL

EC, 16008
SUBTR
BC, 106D
SUBTF
EC, 163D
SUBTR
BL, 10D
SUBTR
Al

Gal
soouT

HL

GET ANGHER IN HL
SAVE ON STACK

LOAD BC' WITH 19,004
SUBTRACT AND DISPLAY
LOAD BC WITH 1,606
SUBTRACT AND DISPLAY
LUAL EC WITH 166 DECIMAL
SUBTRACT AD DISPLAY
LORD BC WITH TEN DECIMAL
SUBTRECT AND DISPLAY

RDD IN ASCII CFF-SET
SHOW ON LONSOLE

¥REMark + Issue 30 » 1982

4
* ROUTINE 70 FACK [ECIMAL NRESR
4
WETR MWD D,97
WATRL ROV AL
W

LOAD T WITH -1

SUB LOW ORDER BYTE

#

RLF - Ml A,LF GET RETURN CHARACTER
L] sCout LET HDOS LOCK AFTER 1T
RET ALL DONE

b ROUTINE TO EXIT BACK TO ADOS

KV LA PUT BACK IN 'L’ '
MY A EIT XA A
BB SURTRACT WITH BORROW W SEXIT
MU HA RESULT EACX IN H *
. INCREMENT COUNT MESSI (B #120,°FGT 2.6 :OCTAL ADD/SUB PROGRAN:',0120,2120
M SETRI 10 AGAIN IF NCT TONE WESS2 DB ENTER FIRST 16-BIT OCTAL MMBER :’,0120,2120
AL K ST DB 6120, ENTER “D° FOR DECIMAL OR "0* FOR OCTAL,2120
W A0 COUNT 70 A" REGISTER MESSA B 120,"THE RESULTS OF THE slmﬂ-mu&«ﬂm% 6178,0120
AL esdo ADD IN AGCIT OFFSET BECOCTAL DECIRAL ’,6129,212
B SCOUT SHW ON CONSOLE MSES DE 120, ENTER DECIWAL NUMEER :’,0120,2400
€7 %5Ss OB 0 EXIT HIT "K* FOR HOOS GR ANY OTHER *
‘ DB @120, KEY TO CONTINE.” 2120
* ROLTINE TC INPUT A CHARACTER MESST DB THE RESULTS OF THE ALDITION ARE :°,0120,2126
* MESSE DB 120, ENTER SECOND 1& BIT OCTAL NUMEER’,0120,2120
T W SCIN GET CHARACTER FRON HDOS MESS? DB CUOPS TRY AGRIN', 126,212 s
XN IF NOT, TRV AGRIN NBEF D6 9,0,0,0 CLEAR FOUR SPACES FOR
W17 STRIP ZARITY MG DB 6,660 CLEAR FOUR SPACES FOR ANSHERS
RET FLL DONE FLAC DB 1 FLAG STORAGE AREA
+ L]
* ROUTINE 7O SHOM A NEN LINE ON CONSOLE END TR
]
Pat’'s Patches
The .NAME Bug >PATCH

The following patch corrects the bug in
the .NAME system call processor in HDOS,
as reported in REMark issue #27, page 21.
Enter the patch using the PATCH.ABS pro-
gram supplied with HDOS. In the examples
below, what you type is shown in bold
print.

.NAME Patch for HDOS 2.0

>PATCH

PATCH Issue #50.06.00.

File Name? HDOSOVLO.SYS/DISP:12
Patch ID? IFOJIC

Prerequisite Code? IFBEIADPGEFFCF

Address? 2353

002353 = 322/341

002354 = 360/322

002355 = 002/361

002356 = 321/2

002357 = 311/341

002360 = 341/311

002361 = 021/°D (control-D)

Address? 12263

012263 = 354/355

012264 = 002/°D

Address? "D

Patch Check Code? CPMCHOMP
PATCH Issue #50.06.00.
File Name? “D

.NAME Patch for HDOS 1.6

¥ REMark - Issue 30 - 1982

PATCH Issue #50.05.00.

File Name? HDOSOVLO0.SYS/DISP:12
Patch ID? IFOJIC

Prerequisite Code? IFBEIADPGEFFCF

Address? 2305

002305 322/341
002306 = 312/322
002307 = 002/313
002310 = 321/2
002311 = 311/341
002312 = 341/311
002313 = 021/°D
Address? 11363
011363 = 306/307
011364 = 002/°D
Address? "D

Patch Check Code? FHPNOOEI
PATCH Issue #50.05.00.

File Name? "D

Another HTERM Patch

This patch is an alternate to the second
part of the HTERM patch in issue #29.
This patch allows all control characters
in incoming data except carriage returns
to be stored in HTERM's buffer. The re-
sulting file will be in HDOS format, with
only line feed characters at the end of
lines.

Vectored to page 39

35

CP/M Disk Errors

The following program is an improved ver-
sion of the ERRORS program from HUG disk
885-1212, which originally worked only
under CP/M version 2.2.02. This version
works under 2.2.02 or 2.2.03, and reports
both hard sector and soft sector 5.25-inch
disk soft (recoverable) errors if you have
CP/M version 2.2.03. It also contains a
better routine for printing binary numbers
in decimal.

;*-H FRERHF R R R R LR R R R R R R B4R

P *
¥ ERRORS 3
;I ====== 3
;-l +
+# PRINTS ¥ OF SOFT DISK ERRORS *
* SINCE LAST COLD BOOT *
It 3 *
¥
+# RUNS ON H37, HB (USES 8SeGe CODE), *
i 32K MEMORY, REQUIRES CPM 2.2, '
13 #
¥
Hio WRITTEN BY R L GRILAY ¥
;I +
Hod 17 LY 1981 ¥
H +
F R TR BN
H
3 MODIFIED BY P. SWAYNE, HUG 6-APR-82
H
i
H MISC EQUATES
3
CR EQU o
LF EQU OAH
H
CONDUT EQU 2
PSTRING EQU 9
i
BASE EQ]
BDOS EQU BASE+S

ORG BASE+106H

H
MAIN: LXI W@

WD 5P sFIND CP/M STACK

LXI SP,STACK $5ET NEW STACK

PUSH M {SAVE OLD STACK

LXI D,CRLF

Wl C,PSTRING

CALL BDOS $PRINT CR, LF

LMD BASEH sBET BI0S ADDRESS

LXI D333 J0FFSET TO VERSION NO. {.@3)

DAD D

MY AN {GET VERSION NUMBER

5TA VERS $SAVE 1T

LHD BASE+] 1GET BICS ADDRESS

LXI D,49H-3 JOFFSET TO H17 ERROR COUNT (.03)

Pl 3 {VERSION ,03?

£z VERS3 SYES

LXI D,ACH- sOFFSET TO ERROR COUNT (,02)
VERS:: DAD D

NV EN

INX H

KV DN +(DE) = H17 ERROK COUNT

36

PHERR:

EXIT:

R,.,___
8

DX:

X561

LBMEG:

STACK

ACHG
CALL
LX1

M1
CALL
LDA
CPl
Nz
LHLD

-

X1

2238

XCHG
CALL
LX1
MVI
CALL
LXI
Wi
CALL
poP
SPHL
RET

FRINT NUMBER IN (HL) IN

: PUSH

PUSH
PUSH
LXI
LXI
DAD
INX
S
Lx1
DAD
ACHG
MOV
ORA
(NZ
LU
ADl
MoV
K1
CALL
POP
FOP
FOP
RET

U]

DB
DB

DECOUT
D, M561
C,PSTRING
BIOS

VERS

3

EXIT
BASE+

D, 4BH-3
D

EN

H

DN

DECOUT
D, M562
C,PSTRING
BOOS

D, LEMSG
C,PSTRING
BIOS

H

Lol
=

F___.: m_wguw_l:w:tclw
- el i
-

DECOUT

usl:!:l:mp-mag_:-
ggp -m

{FRINT ERRORS

;POINT TO MESSAGE

sREADY TO PRINT STRING
{PRINT H17 ERRORS

;GET VERSION NUMBER
JVERSION 37

+1F NOT, FINISHED

{ELSE, GET BIOS ADDRESS
;OFFSET TO H37 ERROR COUNT

3 (DE) = H37 ERROR COUNT

iPRINT H37 ERRORS

{PRINT SOFT ERRR MESSAGE
{GET "LAST BOOT® MESSAGE

sPRINT 1T
3GET OLD STACK
1SET 1T

DECIMAL

1SAVE REGISTERS
sRADTX FOR CONVERSION
sSUBTRACTION COUNTER
1SUBTRACT 16

s INCREMENT COUNTER
;REPEAT UNTIL OVERFLOW

;ADD RADIX BACK IN ONCE
+{DE} = DIGIT, (HL) = NUMGER/1@

;DONE?
;CALL RECURSIVELY UNTIL DONE
$GET CHARACTER TO PRINT
JADD ASCIT BIAS

$PUT RESULT IN E

3PRINT DIGIT

{RESTORE REGISTERS

1SAVE VERSION NO. HERE

* H17 SOFT DISK ERRORS’,CR,LF,’$’
* H37 SOFT DISK ERRORS’ ,CR,LF,’$’
*SINCE LAST COLD BOOT.’

R, LF, "%’

b4
0

MAIN

15TACK SPACE

MWREMark -+ Issue 30 - 1982

Vectored from page 4

about the circumference. The kit comes with a sealed high access one byte laser read/write device which
can be mounted anywhere about the ecircumference. The ecircular tape, is then installed on a user supplied
windmill. Benchmark tests show that in a 98 mile an hour wind, typical load time for a 3000 line program
is inversely proportional to tensile strength times the power of the clock speed. (It's best if the clock runs
on 12 volts.) To round out the kit, 65,535 easy-to-peel-off write protect tabs are supplied. Special 'no
parity' stickers are also an option. A double density version is expected to follow.

HOW TO GET THERE

From O'Hare Airport: The hotel provides complimentary limousine service every 15 minutes from O'Hare
which is just 10 or 15 minutes away. Just call from the phone located near the baggage claim level in each
terminal building. Downtown Chicago: Kennedy Expressway West to O'Hare Field turnoff. Exit at River
Road South. It's the large bronze colored building on your left. From the North: Tri-State (1-294) south
into the Kennedy Expressway Chicago turnoff. Exit at Cumberland North and pass over the expressway and
re-enter Kennedy Expressway to the O'Hare Field turnoff. Exit at River Road South. From the South:
Tri-State north ([-294 1-190) to O'Hare Field, exiting at Mannheim Road South. Pass over the expressway to
enter Kennedy Expressway at the Chicago East sign. Exit at River Road South. From Midway Airport:
Take a cab. Or if renting a car, drive out of the airport and turn right and proceed to I-294 (about 20
minutes), right on I-294 (North bound) to O'Hare, exiting at Mannheim Road South as explained above.

If you are driving in Friday afternoon or evening from the East, South or West, you probably should pick up
the Tri-State (I-294) as soon as possible to avoid the out-going rush hour traffic. If coming in from the
East, do not use the Kennedy Expressway. Go around the South side of the city and use I-294. Saturday
morning, the traffic will be pretty light. Have a safe trip!

Just got a call from Robert Todd... He will be at the conference read i
: y to copy SIG/M and CPMUG disks
for a couple bucks each if you bring a FORMATTED diskette. (See page 15 of last months REMark.)

1JB:

WILL THIS PLACE EVER BE THE SAME? Hyatt Regency O'Hare.

¥REMark - Issue 30 - 1982

37

The Flying Huggies!!!

Alan Bose, President
Taildragger Flyers, Inc.
2514 Essex Court

Saint Joseph, Michigan 49085

The response by HUG pilots to NAVPROG-
seven has been fantasic. Comments have
come from students to commercial pilots.
One commercial pilot writes, "I am
extremely pleased with NAVPROG-seven,
and other pilots I've shown it to are
eqgually impressed." Another writes, "This
program really meets the needs of the
general aviation community. I myself
have a commercial license with
multi-engine and instrument ratings and
find your program extremely useful."
Someone even suggested forming the "Flying
Huggies" to trade data & information on
various areas of the country. 1I'm sure
when Ed Heath was out flying his Parasol
on the west side of Chicago back in the
20's, he never imagined anything like
this. Well, in the meantime, here are
the latest upgrades to make sure everyone
is flying with the most current programs.

"East is least and West is best....."
Any pilot should be able to recite that
ditty by heart. To the pilot it means
that his magnetic course is found by
taking the true course and either
subtracting easterly magnetic variation
or adding westerly variation.

Since the agonic line (zero magnetic
variation) practically runs through Benton
Harbor, we flatland Midwestern pilots
rarely have to take it into account,
But a line of programming was
inadvertantly left out of two of the
NAVPROGseven programs that could be very
mportant to Western pilots (where 10-15

degrees of easterly variation is common).
Add the following line to NAVPROG7.BAS:
625 IF V$(I)="E" THEN V(I)=-V(I)

Edit the following RNAVREF.BAS line to
remove the GOTO statement:

600 V(K)=V5:V$ (K)=V1$:
EL (K) =E5 6076616

Also add the following line to RNAVREF:
605 IF V$(K)="E" THEN V(K)=-V(K)
AIRINPUT.BAS which also uses magnetic
variation in the RNAV functions is OK

and properly takes easterly variation
into account. East coast pilots should

38

make the changes to their programs also,
in case their travels should take them
west of Benton Harbor.

If your database contains checkpoints
very closely spaced (less than a mile
apart), AUTONAV.BAS may attempt to solve
for the great circle distance between
them. When it does there's a 50-50 chance
that an Illegal Function Call will result
unless double precision is used for
variable P in lines 1630 & 1640. The
following changes to AUTONAV will solve
it:

1630 P

1640 Q=P

COS (P2/U) *COS (P4/U)
$*COS (ABS (&) /U) +
COS (ABS(Bl) /U) ~P#:IF Q...etc

The same formula is used in AIRINPUT .BAS,
NAVPROG7 .BAS and RNAVREF.BAS, but presents
no problem since it is unlikely that you
will attempt to plot a great circle route
from one end of the runway to the other.

The NAVPROGseven system as distributed
by HUG is optimized for a minimum system
with 48K of memory. 1Its index will handle
close to 250 navigational identifiers
before running out of string space.

If you have more than 4BK, you can
increase system capacity by changing the
CLEAR statements at the beginningof
AIRINPUT.BAS, AIRALPHA.BAS, AIRROUTE .BAS
and AUTONAV.BAS. With 64K, and leaving
approximately 4K free for MBASIC to use,
system capacity is increased to almost
2000 checkpoints. The change is the same
in each program, only the line numbers
are different:

In AIRINPUT edit line 20,

in AUTONAV edit line 30,

in AIRROUTE edit line 70, and

in AIRALPHA edit line 70 to read:

X=FRE(0) :CLEAR X-3000:WIDTH...etc.
Edit the following AIRROUTE line to read:

1140 PRINT...etc:CLEAR 1000 :LOAD@
"NAVPRO7.BAS", R

This automatically allocates almost all
remaining memory for string space to be
used by the index. Note that if you have
a lot of RNAV cross-references, more free
space 1is required in AIRINPUT.BAS.
Consult your MBASIC manual for the correct
use of the FRE and CLEAR commands. Note
also that NAVPROGseven searches the entire
index looking for duplicate entries;
therefore, with 2000 checkpoints on file,
access time will be slowed considerably.

The following upgrade to the AUTONAV.BAS
program allows the pilot to limit route
selection to VOR-to-VOR enroute navigation
only. It also narrows the block of
airspace to be searched for possible

¥ REMark + Issue 30 - 1982

enroute checkpoints, decreasing the amount
of time required to lay a route between
your departure & destination.

Edit the following AUTONAV line to read:

580 NEXT J:XT=XT+2:NT=NT-.5:
XN=XN+IL :NN=NN-I

Also add the following lines to AUTONAV:

515 PRINT FNC$(7,1);J1$;"VOR-to-VOR
only? (Y or N) ";:X$=INPUTS(1):
GOSUB 1870 :PRINT XS$:IF X$="N" THEN
VN=1 ELSE IF X$ >"Y" THEN
PRINT BL$:GOTO 515
590 FOR J=1 TO MD
592 IF VN=1 THEN 598
594 IF J=W(l) OR J=W(2) OR J=W(3)
THEN 650

596 IF INSTR(FAS$(J),"Vv")=0 THEN
PR(J)=3:GOTO 650

598 IF LT(J)>XT THEN 640

NAVPROGseven has been modified to operate
under CP/M and MBASIC 5.21 thanks to the
work of Glenn Hassebrock of Decatur,
Illinois and should be available soon
through HUG on soft-sectored discs. The
spouse and I took the old flying machine
down to Decatur last weekend and met with
Glenn. You CP/M pilots will be pleased
to know that he has done an excellent
job. Although you can take Glenn's CP/M
version and put it on an H-37 (which has
enough disc capacity to hold every VOR
in the country), NAVPROG-seven's file
management is still limited by how much
free memory is available to hold the index
of checkpoints.

It should be noted that NAVPROGseven was
designed primarily for the general
aviation pilot; not that he has to stick
to one region of the country, or stay
within a thousand miles of home. But
it was not really designed for the ATP
who traverses the country on a reqular
basis. That will have to wait for future
versions.

A simple solution for the time being,
since most flights tend to radiate outward
from one's "home base", is to set up
separate data discs for flights to the
east and west of home. Pre-dividing the
airspace around your home base into halves
or quadrants will probably take care of
95% of all flights. A couple of notes
for those of you who want to do this:

1) Be sure that all programs and aircraft
data files on your original data disc
are also on your duplicate, along with
DISCID.DAT.

2) However you divide your airspace up,
provide some 'overlap' towards the north.
A great circle route in this hemisphere
is always bowed toward the north pole.

¥eREMark + Issue 30 - 1982

Flying a great circle to a point 1000
miles due east or west of your home base
will take you 1-2 degrees north. How
far north depends on your latitude; a
pilot in Florida will require less overlap
than a pilot in Maine.

3) As you edit your database, delete
unneeded checkpoints before adding new
ones to make the most efficient use of
file & memory space.

Thanks to everyone for their comments
and suggestions to help make NAVPROG-
seven such a valuable piece of software
for the general aviation community. And
if you haven't earned your FAA Pilot
Proficiency Wings for this year, please
do it today -- it's well worth the
effort. We want to make the Flying
Huggies the safest pilots in the sky.
Happy landings.

AB:

Vectored from page 32

fer in the serial interface is like having
a despooler if your text is 2k or less.
You are able to continue with what you
were doing long before the printer fin-
ishes printing.

The set options on the patched driver work
like they did before, except that a GRAF-
TRAX equipped printer does not allow com-
pressed printing in the emphasized mode
(compressed printing is canceled if it was
set and you then set the emphasized mode).
When you want to print graphics, you
should set NOFORM, PAGE 0, and WIDTH 0.
The PAGE 0 and WIDTH 0 settings allow you
to print any number of successive lines or
characters on a line. NOFORM prevents the
driver from issuing a form feed when you
close it.
PS:

Vectored from page 35
>PATCH

PATCH Issue #50.06.00.

Address? 50052

050052 = 376/376
050053 = 040/15

050054 = 330/310
050055 = 167/"D

Address? "D

PATCH Issue #50.06.00.

File Name? “D

Note: The old data will be all zeros if
you have already made the other HTERM
patch.
PS:
39

The SUPER 89

Multi-User Capability * More Expansion Slots

Real Time Clock

Arithmetic Processor Provision
Fully Heath Compatible

* Twice the Computing Speed

Up to 256K of Bank Selectable RAM
Data Verification with Parity Check

BULK RATE
U.S. Postage
PAID

y H eath Heath Users’ Group
| Users’
Group

Hilltop Road
St. Joseph MI 49085

POSTMASTER: If undeliverable,
please do not return.

885-2030

	REMark_issue30_1982_Page_01
	REMark_issue30_1982_Page_02
	REMark_issue30_1982_Page_03
	REMark_issue30_1982_Page_04
	REMark_issue30_1982_Page_05
	REMark_issue30_1982_Page_06
	REMark_issue30_1982_Page_07
	REMark_issue30_1982_Page_08
	REMark_issue30_1982_Page_09
	REMark_issue30_1982_Page_10
	REMark_issue30_1982_Page_11
	REMark_issue30_1982_Page_12
	REMark_issue30_1982_Page_13
	REMark_issue30_1982_Page_14
	REMark_issue30_1982_Page_15
	REMark_issue30_1982_Page_16
	REMark_issue30_1982_Page_17
	REMark_issue30_1982_Page_18
	REMark_issue30_1982_Page_19
	REMark_issue30_1982_Page_20
	REMark_issue30_1982_Page_21
	REMark_issue30_1982_Page_22
	REMark_issue30_1982_Page_23
	REMark_issue30_1982_Page_24
	REMark_issue30_1982_Page_25
	REMark_issue30_1982_Page_26
	REMark_issue30_1982_Page_27
	REMark_issue30_1982_Page_28
	REMark_issue30_1982_Page_29
	REMark_issue30_1982_Page_30
	REMark_issue30_1982_Page_31
	REMark_issue30_1982_Page_32
	REMark_issue30_1982_Page_33
	REMark_issue30_1982_Page_34
	REMark_issue30_1982_Page_35
	REMark_issue30_1982_Page_36
	REMark_issue30_1982_Page_37
	REMark_issue30_1982_Page_38
	REMark_issue30_1982_Page_39
	REMark_issue30_1982_Page_40

