- =REMark

Issue 5 1979

Official magazine for users of Heath computer equipment.

~

HUG MATERIALS AVAILABLE
TO HUG MEMBERS

HERE IS A COMPLETE LIST OF MATERIALS AVAILABLE
TO MEMBERS TO DATE.

HUG BINDER 885-4 3 4.00
HUG TEE S 885-1100 $ 4.50
SHIRTS M 885-1101 $ 4.50

L 885-1102 $ 4.50
SOFTWARE TAPE 1 885-1009 $ 7.00
SOFTWARE VOLUME I 885-1008 $ 9.00
ADVENTURE (H8) (disk) 885-1010 $10.00
HDOS PROGRAMMING GUIDE 885-1018 $ 5.00
HDOS DEVICE DRIVER 885-1019 $10.00

NOTE: Always place your orders on the green order form
and include payment plus shipping and handling.

on the stack

T

HTT1/H27 Test Drive i s vsesmiisise sei v 5iva 3
Jin Blake

TheBASIC Idea ;o iimmiisaiuson sy s 6
Sam Cox

H8 Front-Panel Timing Effects 7

D. E. Hamilton

Introducing the ETA-3400
Microprocessor Training Accessory 9
Lou Frenzel

The ‘Intelligent’ Disassembler 11
Jim Warner

Cassette Interface Becomes “AT:"covvn.. 18
Two Ports for the Price of One Jim Buszkiewicz
HA0 Modification . ..o sses e s sves i 19

Carroll Hennick
H8-2&4/5-- Or How to Use Your H8 and H9 Via

BIBE2 s s S e s e i s e 21
Jim Buszkiewicz
Curing Single-Drive HASL'scoviviun.. 28

\]ohn Beetem)

“REMark"” is a HUG membership magazine
published quarterly. A subscription cannot
be purchased separately without member-
ship. The following membership rates ap-
ply.

U.S. (Canada &
Domestic Mexico Internat’'l

Initial $14 $16 $24

Renewal $11 $13 $18

Membership in England, France, Germany,
Belgium, Holland, Sweden and Switzerland
is acquired through the local distributor at
the prevailing rate.

Send payment to: Heath User's Group, Hill-
top Road, St. Joseph, MI 49085. Back issues
that are available cost $2.50 postpaid to U.S.
destinations. Request for magazines mailed
to foreign countries should specify mailing
method and add the appropriate cost.

Although it is a policy to check material
placed in REMark for accuracy, HUG offers
no warranty, either expressed or implied,
and is not responsible for any losses due to
the use of any material in this magazine.

Articles submitted by users and published in
REMark, which describe hardware modifica-
tions, are not supported by Heathkit Elec-
tronic Centers or technical consultants.

HUG Manager and Editor....... Jim Blake
Graphics Ron Hungerford

Copyright © 1979, Heath User's Group

=REMark

=REMark = Issue 51979

HT11/H27 TEST DRIVE:]B:

This magazine is 32 pages in length and the system manual for
HT11 is almost two inches thick, so we aren't going to cover
much here, but perhaps it will be interesting for some — so let's
power up, insert the system diskette in the left drive, a scratch
diskette in the right hand drive and close the doors. Type ‘DX’
and let HT11 do some housekeeping and check things over.

See opening HT11 dialogue on page 10.

That dot indicates that we are in the Keyboard Monitor Com-
mand mode. From here we can:

1) Reassigndrives (give one a new name) although it would be
rare to need to.

2) Run programs with .SAV extention. Programs with .SAV
extention are HT11 executable programs such as BASIC,
PIP, EDIT. User programs that have been properly prepared
by the EDITOR, EXPANDER and ASSEMBLER etc..

3) Change or read the DATE;

4) Change or read the TIME of day if the LTC is turned on.

The LTC (line time clock) is enabled by removing a jumper wire
on the power supply board. (very shortly there will be a mod kit
available to allow you to switch the LTC from the front panel of
the H11). Also, you can Examine memory locations, Deposit new
values in memory, GET memory images programs, SAVE them,
LOAD device handlers and many other things (15 in all) plus all
the SET options.

From here we can run PIP, for instance, and if you already are
operating HT11 and have been storing your programs on paper
tape, here’s how toretrieve those programs and put them on disk.

R PIP

“FNAME.EXT=PR:/A This assumes you are retrieving ASCI
files such as BASIC or SOURCE code. After the file has
been read in ‘close’ the file by typing control ‘D’.

Then, of course, any modifications necessary to the program can
best be made using 'EDIT". To exit PIP, type control ‘C’.

There's our keyboard monitor prompt again. If you want to go
back to PIP, type ‘RE’ (reenter PIP). Let's use the
EDITOR. N

S#REMark « Issue 5 « 1979

.R EDIT

* That is the prompt for HT11 EDITOR. All commands are
terminated by the escape key and a ‘$’ is echoed. To load
your program for editing do this.

*EBFNAME.EXT$R$$ This tells the editor you want to load
your program, but leave it on disk as FNAME.BAK for
‘backup’. Therefore, when you have finished you will
have both your original program, plus the edited ver-
sion. After you are satisfied with your new version then
you can ‘delete’ FNAME.BAK.

The HT11 Editor is both line oriented and character oriented.
And you may ‘build’ a mini-macro to be repeatedly executed. For
instance, let's say you are modifying a paper tape program to
write to the disk instead of the paper punch and you wanted to
change all the ‘PRINT #1:" statements to ‘PRINT #2:". (crude
example.) Here is how you could do that. Write a macro.

*MIG#1:$=C#2:$V$/$$ Thissays..G get #1: Cchangeto #2:V
and verify each line as it is done. To execute the macro,
type

*EM$$ The change would be made one time. To execute NN
times, type NNEM$$ — If he comes back and says
‘Macro search failed’ you know that all the #1's had
been changed to #2’s, neat!?

Other editor commands are:

‘A’ Advance the pointer + or — N lines.

‘" move the pointer + or — N characters

‘D' delete N characters

‘K' kill N lines

‘C' change characters

‘X’ exchange ‘string’

‘B$’ move the pointer to the beginning of the text

/A’ move the pointer to the end of text.

‘L’ List N lines

‘G’ get ‘string’

‘S’ save N lines of text in an invisable buffer

‘U’ unsavethose same lines and insert them at the current
line pointer

‘I' insert text

And many of these commands can be combined on one line. Here
is a ridiculous example, with explanation.

*B$2GBLAKES=|$DS$$IF$ +4A$+5]$LEVES

This says: Move the line pointer to the beginning of the next

(BS)

— Get the second occurrence of the string ‘BLAKE’
(2G)

— Back the pointer up to the beginning of the string
‘BLAKE’(=]$)

— Delete one character from the string ‘BLAKE’ (D$)

— Back the pointer up one (—1]$)

— Insert 'F' (IF$)

— Advance the line pointer 4 lines (+4A8$)

— Advance the character pointer into the line 5
characters (+5]$)

— List the line from that point only (L$)

— and finally, verify the entire line (V$).

After editing is complete, you exit the edit like so.

*EX$$ And your new FNAME is written to disk — don't type
control ‘C’ at any time while in the editor — all text is
lost!

And finally, to originate a new text —
*EWNEW.EXT$$ (EDIT WRITE NEWFILE.EXT)

Back to the keyboard monitor — let’s run XBASIC and play
with string arithmetic and ‘print using’.(It may be named
CBASIC in a few early releases.)

The PRINT USING statement gives you much greater control
over the placement and form of numbers and strings in your
output. The following examples illustrate the greater control
available to you with PRINT USING.

10 A =225
20 B=15
30 C=37

40 D = 123.47

45 A$ = “SS### ##"
50 PRINT USING A$,A
60 PRINT USING A$,B
70 PRINT USING AS$,C
80 PRINT USING A$.D

The output from this program is:

$ 22.50
$ 150
$ 37.00
$ 123.47

These examples only deal with output to your console terminal.
You can also use PRINT USING for output to files, but the exam-
ples in the remainder of this section will only use output to your
console.

The standard form of a PRINT USING statement is:
PRINT USING string, list

That is, the words “PRINT USING” start the statement. The
string that follows specifies where and how the data is to be
printed. The list is the same as a normal BASIC PRINT list.

The characters shown in the table below are used in format
specifications.

FORMAT SPECIFICATION CHARACTERS

Numeric field allocation.
Decimal point location.
Use commas every three digits.
Use leading asterisks.
$$ Use leading dollar sign.
— Use trailing minus sign.
+ Use scientific notation.
Start a string field.

For our purposes now, we will say that any occurrence of one of
these characters is part of a specification. Any other character is
not part of a specification and will be printed as is. This is a
simplification of the actual situation, but it helps introduce the
ideas of PRINT USING.

Note that the single quote (') is used as a specification character.
It cannot be used to delimit a constant string. You must use
double quotes to delimit constant format strings on PRINT
USING statements.

The following example demonstrates how to print commas bet-
ween every three digits in an output number. Note the comma
within the string of number signs. It is only necessary to use one
comma, but at least one number sign must preceed it.

PRINT USING "“# #########", 123456789
123,457,000

PRINT USING WITH STRINGS

PRINT USING can be used on strings as well as on numbers. A
field for a string is always started with a single quote (*) charac-
ter. The field can be extended with an unbroken string of L'S,
R’s,C’s, or E's. The letter specifies how the string is to be printed
in the field.

The following program illustrates some of these features.

10 A$="HT11"
20 PRINT USING "LEFT AD] +'LLLLLLLLLLLLL+",A$
30 PRINT USING “CENTER +'CCCCCCCCCCCCC+",A$
40 PRINT USING “RIGHT AD] +'RRRRRRRRRRRRR+",A$
RUNNH
LEFT ADJ + HT11 +
CENTER + HT11 +
RIGHT AD] + HT11 +

H-REMark « Issue 5 » 1979

The program below demonstrated what happens when the
string is larger than the field. BASIC will simply print what it
can, and discard the rest of the string. The “E" fields are "ex-
tendable”, so the entire string is to be printed.

10 A$="BIG, FAT STRING."”
20 PRINT USING * ‘LLLLLL", A$
30 PRINT USING * ‘CCCCCC”, A%
40 PRINT USING " ‘RRRRRR", A%
50 PRINT USING " 'EEEEEE", A%
RUNNH

BIG, FA

BIG, FA

BIG, FA

BIG, FAT STRING.

STRING ARITHMETIC

BASICisidentical totheregular HT11 BASIC, except it includes
a PRINT USING statement and STRING ARITHMETIC. The de-
tails of these features will be described shortly. Note that BASIC
does not need the EIS/FIS extended arithmetic chip, and will not
take advantage of it if your H11 has one of these chips.

The normal arithmetic that is used on an H11 is only capable of
about six and a half digits of accuracy. In addition, BASIC will
only print six digits on output, BASIC extends this accuracy by
using string arithmetic.

The following example illustrates most of the features of string
arithmetic. Note, however, that string arithmetic and ordinary
arithmetic cannot be mixed. You have to be certain to use quotes
when you want BASIC to use string arithmetic.

A$="123456789.987654321"
B$='-987654321.123456789’
PRINT A% + B$

PRINT A% — B$

PRINT -A$ * B$

PRINT B$/-B$

BASIC also has some other neat features not found with the
paper tape version.

CHAIN — While running one program, you can ‘chain’ to
another and begin execution at any line within that
program. This conserves memory.

OVERLAY — Unlike the chain command, you may ‘overlay’ or
merge programs with variables in tact.

VIRTUAL ARRAY FILES — This gives you random access to
disk files.

BASIC

To exit BASIC, type control 'C’ twice — you may reenter BASIC
without losing your program.

HREMark « Issue 5 - 1979

ASSEMBLY TOYS

For assembly language programmers, you will find 46 'pro-
grammed requests’ or MACROS at your disposal which prevents
having to ‘re-invent’ the wheel so often — Also, there's a libra-
rian to keep track of things for you and your own user written
MACROS.

Some of the MACROS allow you to read and write to the disk or
the outside world — Get time and date — Print text — Get
character — Write character chain — Define registers — Set
memory limits — And fetch handlers to name a few.

Speaking of MACROS — There is a routine on page 29 that will
give you some experience with the system and one that is also
useful. When you get it all done it will give you system status
when you type RUN CONFIG — have fun.

Jusl received this note which may interest you — :JB:

Dear Jim:

Due to rapid expansion of our computer line, we have several
openings which some of your readers might be interested in.

COMPUTER TECHNICIANS

Associates degree or equivalent military training.

COMPUTER DESIGN ENGINEERS

BS Computer Engineering or equivalent, with minimum
of three years experience in designing computer systems
hardware.

SOFTWARE DOCUMENTATION WRITER

BS Degree in Liberal Arts or Computer Engineering Ser-
vice, strong hobby computer interest a must.

COMPUTER MANAGEMENT ENGINEER

Three to five years experience in operating systems. Must
have BSCS or BSEE degree and/or strong technical and
computer background.

All these positions, Jim, are located in Southwest Michi-
gan and I'm sure you've heard that liberal salaries and
outstanding benefits are all part of the “‘way’ here at
Heath.

If you could, Jim, ask any interested readers to contact me
either with a resume or by phone for considerations or
further information. My address is:

J. K. Bartley

Professional & Technical Recruiter
Heath Company

Benton Harbor, Michigan 49022

Telephone: (616) 982-3673

Thanks Jim, for passing this information to your readers and
keep up the super work on REMARK.

]J. K. Bartley

5

THE BASIC IDEA

By: Sam Cox

Here are a couple of short programs that
should prove useful to members using ex-
tended BASIC.

The first is a BASIC TIMER. Using the H8
real-time clock, the program allows the
user to determine the execution time (in
milliseconds) of single BASIC statements
or multiple-line routines.

The second is a DIRECTORY program.
Inspired by the PUT/GET article in RE-
Mark issue 3, DIRECTORY implements a
VERIFY ** " command via the POKE func-
tion. The program will do an ‘auto-verify’
on all or part of a cassette. By jotting down
the tape counter settings as individual
files are located, the user will have a di-
rectory of the entire tape. I have found it
convenient to DUMP the DIRECTORY
program as the first file on each side of a
new cassette.

BASIC TIMER

Purpose: To determine the execution
time (in milliseconds) of single
statements and multiple-line
routines.

Procedure:

1. Enter statements to be timed in
the available space between
lines 202 and 297.

2. Enter any preconditions (eg.
DIM statements) in the space be-
tween lines 101 and 197.

3. RUN

Adjustments and Modifications:

The statements to be timed are executed
100 times. If the total execution time for
100 passes is greater than 131 seconds,
then reduce the number of repetitions.

With lines 202 to 297 left blank, the time
for 100 passes should be zero, plus or
minus 2ms. (NOTE: 2ms represents 1
count of TICCNT). If your system doesn’t
return 0ms, 2ms, or 131070ms, then ad-
justthe initialization of TICCNT in line 25
until it does. LISTING:

6

10
15
20
25
30
35
40
45
50
55
60

REM — BASIC TIMER

CNTL 4,0

PRINT “TESTED STATEMENTS";: LIST 202,297
POKE 8220,255: POKE 8219,65

GOSUB 100

CNTRL4,1: GOSUB 200: CNTRL 4,0

L=PEEK(8219)

H=PEEK(8220)

PRINT “TIME — 100 PASSES:"”;2%(256*H+L);"MS";
CNTRL 4,1: END

100 REM — PRECONDITIONS FOR TIMED STATEMENTS

198
199
200
201
298
299

RETURN

REM — TIMED STATEMENTS / LINES 202,297
FOR Z = 1 TO 100

NEXT

RETURN

DIRECTORY

Purpose: Locate and identify tape files.

‘Auto-verify’ an entire cassette.

LISTING:
10 REM — DIRECTORY PROGRAM
15 PRINT: PRINT “TAPE DIRECTORY"
20 PRINT ** INSERT AND REWIND CASSETTE"
25 PRINT ** SET RECORDER FOR PLAYBACK"
30 INPUT *“ HOW MANY FILES 7 ':F
35 :IF F<1 or INT(F)<>F GOTO 30
40 PRINT * 'ESCAPE’' KEY LETS YOU ABORT"
45 PRINT * AFTER THE CURRENT FILE!"
50 PRINT “HIT ‘ RETURN’ OR ‘ESCAPE’ *;
55 : PAUSE: Z=PIN(250)
60 :IF Z=155 GOTO 135
65 :IF Z<>141 THEN PRINT CHR$(7);: GOTO 55
70 REM — BEGIN DIRECTORY
75 PRINT
80 :FORI=1toF
85 :IF PIN(250)=155 GOTO 135
90 : GOSUB 110: STOP
95 :NEXTI)
100 : PRINT: PRINT “DIRECTORY COMPLETE";: END
105
110 REM — ‘VERIFY' / ‘CONTINUE' COMMANDS
115 POKE 8302,86:POKE 8303,69:POKE 8304,34:POKE 8305,34:POKE 8306,13
120 POKE 8307,67:POKE 8308,79:POKE 8309,78:POKE 8310,13:POKE 8301,9
125 RETURN
130 :
135 REM — ABORT MESSAGE
140 PRINT: PRINT "DIRECTORY ABORTED!";
145 STOP EOF

JrREMark « Issue 5 - 1979

H8 FRONT-PANEL TIMING EFFECTS

By: D. E. Hamilton
1952 Baird Rd.
Penfield, NY 14526

H8 front-panel operation is supported by timing and indicator
circuits that reward detailed attention.

A key circuit assures proper lighting of LED display digits,
preventing overheating and burnout. This protective-blanking
circuit can be outside tolerance without immediate visible
symptoms, however. Fortunately, there are easy ways to check
the circuit. Correction is by simple resistor substitution.

Other, harmless timing phenomena show up in the individual
front-panel indicator LEDs. Exploring how these indicators re-
flect internal processing conditions is highly informative. When
understood, the indicators can provide clues to
hardware/software malfunctions and special program situa-
tions. One indicator, RUN, is mediated by a timing circuit that
also can be manually adjusted.

The subtle interdependence of front panel, 8080A processor,
and PAM-8 monitor also poses some requirements on H8 prog-
ramming. Appendices cover program usage of the display LEDs
and discourage potentially-dangerous HASL-8 practices.

INTRODUCTION

Several timing signals important to operation of your H8 com-
puter originate on the front-panel control circuit board:

L 1000 Hz square waves provide H8's distincitve
“beep".

® 500 Hz square waves trigger the regular, two-
millisecond-apart monitor interrupts that PAM-8
requires for front-panel coordination and software
time-keeping purposes.

These regular frequencies are divisions of the 2.048 MHz, crys-
tal- controlled 02 bus signal originated on the CPU circuit board.
The H8 will not function properly in the absence of these pre
cisely-timed signals-especially 02 and its derivative 500 Hz
“clock”. Less evident under typical usage of an H8 are two
timing signals for front-panel lighting control: protective blank-
ing and RUN indication. The H8 can appear to operate normally
even when the important protective-blanking circuit is outside
of tolerance. RUN indication is less critical, although one can
learn some interesting things about H8 behavior by experiment-
ing with RUN- influencing programs.

s=REMark « Issue 51979

PROTECTIVE BLANKING

Front-panel LED digits are switched by PAM-8 on every 2 ms
timer click. Refresh software presents only one of the nine digits
each click, taking nine clicks to cycle through a complete dis-
play. That way, a digit segment is actually illuminated less than
2 ms oul of every 18. The resulting 55 Hz flickering of each digit
is not discernable with normal human vision. (Change seen in
display values is actually the result of sampling actual data at
32-click intervals—about 15 times a second.) LED displays re-
quire just such intermittent operation when maximum bright-
ness is desired. Illumination at high power for longer periods
damages sensitive LED elements by preventing adequate heat
dissipation. Polling through the digits (usually termed “multip-
lexing”) is also electronically simpler.

Notice that PAM-8's display-refresh cycle serves two purposes:
snapshotting of desired data and assuring that each digit is
actually off (blank) most of the time, keeping the display “'cool”.

HANG-UP PROTECTION

Unfortunately, refreshing is disrupted in many ways. In particu-
lar, the front panel display can “‘hang" if interrupts become
permanently suppressed or if the 2 ms timer interrupt is dis-
armed.

Because any LED segment illuminated at the time of a hangup is
damagable by the sustained current, front-panel circuits au-
tomatically blank any digit left on at the time of disruption. This
isaccomplished by turning off any currently-selected digit prior
to the next scheduled click of the 2 ms timer. (The timer con-
tinues to click whether or not the computer is paying attention.)
If all is well, PAM-8 is about to present a different digit on the
new click anyhow. If something is amiss, the current digit will
blank out and stay out, effectively blanking the entire front-
panel display. The protective blanking circuit is, in essence, a
man switch!

An interesting wrinkle in the front-panel design is routing of
blanking to the MON indicator. Although MON (LED113) indi-
cation is initiated by software, it will be blanked along with any
current display digit, requiring refresh to sustain the indicator.
Having MON extinguish on a hangup is certainly appropriate,
since software control is decidedly lost.

DUTY-CYCLE CONTROL

Although hangups arerare, automatic blanking also contributes
another protective operation: display duty-cycle control.

If PAM-8 presents a digit immediately after a timer click, with
blanking immediately before the next one, the maximum il-
lumination time is 2 ms out of every 18, or 11.1%. That is easily
too much! Transistor circuits for feeding lighted digit segments
operate near the peak of acceptable LED current drive. It is
imperative to preserving display LED operating life that such
current be present in very brief pulses.

The protective blanking circuit controls duty cycle (percentage
of “on’" time) by confining the time before blanking to less than 2
ms. The design valueis 1.5 ms or less, reducing the duty cycle to
a maximum of 8.3% with the PAM-8 refresh procedure.

Another way to look at this is by saying that the protective
blanker must operate at least .5 ms before the next 2 ms timer
click. The sooner that blanking takes place, the lower the power
stress (and the longer the life) of the LEDs. Brightness di-
minishes too, but not enough to seriously impair visibility.

Presence of generous blanking pulses can be determined visu-
ally once you know what tolook for, Because the MON (LED113)
indicator is also blanked, its brightness is governed by the pro-
tective circuit. A generous blanking pulse is present when MON
lights but is slightly dimmer than either ION (LED114) or PWR
(LED111). Comparison with the RUN indicator is inappropriate,
for reasons presented later.

I've adjusted my blanking circuit so that the circumference of
the MON indicator is visibly but just slightly darker than that of
ION and PWR. The overall display is adequate although notice-
ably fainter than on H8's with too-short or completely- absent
blanking pulses.

BLANKING CIRCUIT TROUBLESHOOTING
AND ADJUSTMENT

The pulse diagram in Figure 1 illustrates the 2 ms timing signal,
TICK, and its synchronized blanking signal, BLNK. BLNK, the
complement of BLNK, is actually used since circuits to be
triggered respond directly to complemented (low) logic levels,

5

1 441-90 R103
' 171
e ® L 1.5ms U
L] |
TICK ; cio1
P

BLNK

74123/2

Figure 1

TICK is developed on the front panel as part of the free-running
2 ms timer circuit. It is generated at IC109 pin 2 (IC109-2) and
routed to the blanking circuit at IC107-10. BLNK is derived at
IC107-5. A correctly-adjusted BLNK will be a flipped-over ver-
sion of the BLNK signal shown. (BLNK is itself available at
unused output pin 1C107-12.) To verify generation of blanking,
make the easiest tests first:

@ Visually check the MON indicator after initially
turning on H8 power

° If there's any doubt, check IC107-5 with a logic
probe. There should be ample evidence of pulsing
even though the BLNK signal is predominately
high.

. Probe IC107-10 to confirm presence of TICK pulses
by equally- bright high and low level indications.
1C107-5 output can be adjusted by comparison with
1C107-10 probing.

L] For precise verification and adjustment, use a dual-
trace oscill oscope triggered on rise of TICK. This is
the only safe way to confirm pulse duration signals
on [C107 pins 6 and 7.

® If IC107-5 is constantly low or high, check the pulse
duration circuitry. Also check the traces originating
at 1C107 for possible bridges, especially at socket
connections.

Pulse duration of BLNK is controlled by the connection of R103
and C101 to pins 6 and 7. C101 is a good quality, .15 mfd
capacitor that should not be replaced unless it is inoperative.
R103 is nominally a 40 kohm, 1% resistor. Blanking time is in
creased (BLNK decreased) by decreasing this resistance to as
little as 10 k. The easiest way to check pulse duration is by
temporarily placing selected resistors in parallel with R103
until de finite pulsing is produced at IC107-5. Permanently
connect the resistor value that results in generous blanking
without excessively dim display lighting.

If TICK, pulse duration, and power connections check out to no
avail, replace the 74123 at IC107 (Heath part 443-90: Radio
Shack package 276-1817).

Ims

r.,_

TICK

Inn
" |—_ L

k- 55

Vectored to Page 24

REMark « Issue 5+ 1979

INTRODUCING THE ETA-3400
MICROPROCESSOR TRAINER ACCESSORY

Microprocessor Trainer to Personal Computer in one easy Step

Convert your ET-3400 Microprocessor Trainer into a full blown
personal computer with this neat new product.

By: Lou Frenzel
Director, Educational Products

What do you do with an ET-3400 Micro-
processar Trainer after you've completed
the Heath Microprocessor Course? That’s
the question we kept getting from those
student/customers who purchased the
Heath Microprocessor Course. The ET-
3400 6800 microprocessor-based trainer
providesa means of implementing a wide
variety of interfacing and programming
experiments that teach microprocessor
operation and application. But once the
course is over, does this $190 investment
become obsolete? The answer, of course,
is NO. While you can always use the
trainer as a miniature breadboard and de-
velopment system, now you can convert
it into a complete digital computer. The
trainer is a minimum computer as it
stands, but it is missing mass storage,
higher level programming languages and
an IO port to a terminal. Now all this is
available in a low cost new accessory
from Heath.

Introducing the ETA-3400

The ETA-3400 Accessory allows the
trainer to be converted into a full blown
microcomputer. Specifically, it gives you
an additional 4K of random access mem-
ory, a new monitor in ROM, a tiny BASIC
interpreter in ROM, an audio cassette in-
terface, and a serial interface port to a
video terminal.

=REMark » Issue 5 1979

Audio Cassette Interface

You get two levels of usefulness with this
accessory, At the first level, the unit sim-
ply provides more random access mem-
ory and an audio cassette interface. With
the trainer, you enter programs in
machine code via the hexadecimal
keyboard and display. This is not too dif-
ficult for short learning programs, but
when larger more useful programs are
developed, manually loading them over
and over again is time consuming, tedi-
ous and error prone. The audio cassette
interface helps to minimize this problem.
Once a program is entered, it can be
stored on audio cassette tapes. The built
in interface allows the program to be
stored and played back on any standard
audio cassette player/recorder. We re-
commend the GE unit EC-3801. Then the
next time you want the program, vou load
it automatically from the cassette unit.

Additional RAM

The Trainer Accessory also provides ad-
ditional random access memory. The
trainer comes with 256 bytes of RAM and
an additional 256 bytes is added in the
course. While this amount of memory is
useful for short educational programs, it
is not sufficient for longer more elaborate
application programs. The Trainer Ac-
cessory allows you to expand the trainer
memory to 4K (4096] bytes. 1K bytes of
memory is supplied with the Trainer Ac-
cessory. An additional 3K bytes of mem-
ory isavailable at slight additional cost in
the ETA-3400-1 chip set.

Terminal Interface

The second level of usefulness of the
ETA-3400 is achieved when you attach
the trainer and itsaccessory to an external
terminal such as the H9 or H36. A serial
IO port provided in the trainer accessory
handles all of the interfacing. Actually
almost any terminal can be used. Either
video or hard copy types are suitable. The
data transfer baud rate is fully programm-
able and either 20 ma or EIA interface
signals can be used.

New Software

When using the accessory with a termi-
nal, new software is required. This is fur-
nished with the Trainer Accessory in two
forms. First, there is a new
monitor/debugger program provided in
ROM. It has the same basic functional
capabilities as the ROM monitor in the
trainer itself. However, these functions
are implemented through the terminal
keyboard and CRT display rather than on
the trainer keyboard and hex LED display.
The monitor program allows the user to
enter, debug and run machine language
programs. Memory locations or registers
can be examined or changed, programs
can be executed, and break points can be
initiated for program debugging.

The BASIC Language

BASIC is the most widely used higher
level programming language in personal
computing. It is powerful and easy to
learn. With this language you can quickly
writemany useful applications programs.

A tiny BASIC interpreter in ROM is
supplied with each ETA-3400. This is an
enhanced version of the popular tiny
BASIC programming language originally
developed by Tom Pittman for the 6800. It
is widely known throughout the personal
computing field. This allows you to prog-
ram the trainer and its accessory using
BASIC. Provision for storing and reload-
ing BASIC programs is also provided for
through the audio cassette interface.

Availability, price and specifications are
in the winter catalog.

EOF

HFIF

*¥5Yi/L

2E-JdAN-7?

MONITR.SYS 43 24-NOV-78
TT +8Y8 2 24-NOV-78
PP «SYS 2 24-NOV-78
Fhi GYS 2 Da-NOV-78
LF +SYS 2 24-NOV-7B
ROOTUF.SYS 14 24-NOVY-78
aopT +OBd ? 24-NOV-78
SYSMAC . GHML 20 24-NOV-78
FLF +SAV 12 24-NOV-78
EDIT .85AV 14 Z4-NOV-78
LINK . 5AV 21 24-NOV-78
ASEMEL ., 5AY 24 24-NOV-78
CREF .SAV S 24-NOV-/B
EXFanD. SayV 12 24-NOV-78
SROCOM, SAvV 11 24-NOV-78
noMe ,5AV 3 24-NOV-78
ILLTER .S5AV 15 24-NOV-78
FATCH . 5AY 9 24-NOV-78
HASIC .5aAV 346 Z24-NOV-78
BASIC FIS 35 24-NOV-78
LCEASIC.5AV 44 24-NOV-78
SAMPLE . MAC 2 24-NOV-78
ATE WDAT 1 24-JAN-77

10 EOF

H-27/HT11 TEST DRIVE DEMO

1730006

BLX
HT-11 HO1A-3
WELGOME TO HT-11. BOOTUF 209.00.00

HT-11 ALLODWS YOU TO "ERASE® A TYFING
KEY. [F YOU HAVE A CRT TERMINAL»y
CHARAT TER . HOWEWERy IT NL: D5 TO BE
A BACKSPACE .,

HT-11 WILL

FRESS THE RETURN KEY TF YOU WANT SET TTY

TYFE ANYTHING ANTI FREGS RETURN FOR HARD-COFY.

HT=-11 RECORDS THE CURRENT DATE WHENEVER IT CAN TO HELP YOU KEEF [RACK OF
WHEN YU DYU THTNGS. HOWEVEKy YOU HAVE T0 ENTER THE DATE EACH TIME YOU
BONT- UrF ITHLS FROGRAM WILL KEEP & COPY OF THE DATE., S50 YOU WILL ONLY HAVE
T VERIFY THAT THE DATE 1S CORRECT: (K CHANGE WHAT HAS CHANGED.
WHAL 15 THE DAY OF THE MONTH?
IENTER & MUMBER BETHEEN 1 ANMD 31, BE SURE TO FOLLOW IT WETH RETURN.
Tié
WHAT 18 THE MONMIHY
HT=11 OMLY LAVES THE FIRST THikkD. LETTERS OF THE HONTH.
1 EXIurs EXACTLY THREE LETTERS.
e
WHAT J5 THIZ vEAGTY
1T 01 ONLY EXPECTS MHE LAST TWO DIGITSy AND
PHEY SHOULE BE i THECN 78 ANIT 99,
rve
THE, o TIal YOU RUN THIS FROGRAM» THE DATE WILL BE READ BACK FROM
Wik ULSk AnND 0ISPLAYELD FOR YOU. IT WwiLl BLC SHOWN IN THE FORM:
Dlr=MmM-¥ ¢
IF I7 16 CORKECT: STMPLY PRESS RETURN. OTHERWISE: TYPE A8 MUCH OF THE DATE AS

NLIPDE CHANGING. 1POR
WE WYILL RUM THROWGH

PRACTLCE » AND TO CHECE T
TH1G FROCEDURE NOW.

THE FREVIOUS Dol Was Hh AN VY

CHARGE ™

I LTk
IHAT
Ehir-) Wi
REANY

T PERTELT YOUR 10
YOS FHG Y FTLEES ON
WL NOW LG
1 RECEIVE YOUR FILECS.

NISK HS
D1SK.

11 SYSTEM
IHE OTHER

IFRE:

CEEIHREN" O VROCELD.

THE LELFT HAND

THE

OTSK DRIVE 15 NaMED
THESE ARl HAaRTWARE NarlEs FOR THE DLSKS,
FUOR THE OLYISs ANDD THESE WLLL BE DYSTLS
THE CGRIVE YOu BOQUTED (N (X031 15 CALLED

"TXGL " AND

"5Y

THE SCRATEH DISK IN HT=11 (4
SECONT URITVE. HIWEVERs HT-11

CalLLED
DOES NOT 00

THLYS FEOUFAM WILL MARKE THE ASSTONMENTE ALL
SASSLNM TN SN

B

H1=41 HO1A--3

WELCOME FATEK T Hi-11. ROOTUFP 209.00.
SOET UGK NOSWar

THE BREVIOUS DATE WAS 2éH—JaN- 79

L HANGE™

LASEIGN DXL =DK

ERROR BY FRESSING

(NOT THE ONE
O vou THROUGH THE FROCEDURE OF GETTING

"D AND SHOULD BE ALGSIGNED
THYS AUTOMATICALLY FOR YOU.
YOuU HAVE TO

SCOFE

HE DATE YOU 2ust

MUCH A5 NOSSIBLEY WE
YOu BOOTED

THE RIGHT HAND ONE

" AND LS

oo 18

o0

=REMark «Issue 5 « 1979

THE DELETE OR RUBOUT
BACKSFACE AND REMOVE THE

TOLD THAT YOUR TERMINAL CAN RESFOND TO

ENTEREL

RECOHMMENLD

THIS OTHER DISK

"OXLit.

THERE ARE ALGO0 SOF TWARE NAMES
D MOKRE LATER IN THE TEXT.
THE. SYSTEM DISK.

TO DXLiy

T FRESS

THE ‘INTELLIGENT’ DISASSEMBLER

By:]im Warner
10121 Hyway 55
Plymouth MA 55441

OK, somaybe we don’t need another 8080 disassembler. It’s true
that the second issue of REMark contained a disassembler pro-
gram which could serve us very well. But frankly, I've been
intrigued with the concept of a disassembler almost since the
day I first keyed in and successfully ran the Heath initial test
routine.

Irememberthat event very clearly. It took place at 4:00 a.m. after
working ‘round the clock’ completing the front panel board.
What a thrill to realize for the first time that here was my very
own computer — and it was actually doing something! My
excitement increased as each new Heath distribution tape was
loaded and run. Now my computer was not only doing some-
thing, but it was doing something useful. Of course, that realiza-
tion brought a flood of questions, mostly of the ""wow, how does
it do that?" variety.

Not being one to leave such questions unanswered, I set about to
create a disassembler, in assembly language no less. Believe me,
there’s no better way to learn a new computer language than to
tackle such a project. After several weeks, I had my first version
up and “sometimes’ running. It was a modest beginning. This
disassembler was only capable of absolute disassembly. There
were no provisions for symbolic labels and I frequently encoun-
tered the situation where data was being misinterpreted as in-
structions. Wouldn't it be nice, I thought, if the disassembler
could make that distinction. I mean if I was able to apply stan-
dards of reasonableness to what [watched being disassembled,
why couldn't he? That way he'd know that at a particular mem-
ory location was an ASCII “"1", not a load stack pointer im-
mediate instruction.

The 8080 instruction set contains a mere 245 separate instruc-
tions. Thus, of the 256 different bit configurations possibleinan
8-bit byte, only 11 combinations constitute a non-instruction.
And even those non-instructions could be valid as the second or
third byte of a multi-byte instruction. So, we have a situation
where virtually any random memory location would generate
what looked like a valid 8080 instruction. Yet we know that a
good portion of a computer program is really data — tables and
literals.

At last, here was a project worthy of my attention — a clearly
impossible task! I would create an “intelligent’ disassembler,
one which was capable of distinguishing between object pro-
gram logic (instructions) and object program data. It would
assign default labels to program and data segments plus provide
for user designated labels as well. It’s output would be accepta-
ble input to the text editor (TED-8) for potential modification as
well as the assembler (HASL-8) for re-assembly.

HREMark « Issue 5+1979

After investing many weeks in pursuit of this glorious hunk of
software, it began to appear as though the task was indeed
impossible. Version after longer, more patched version crashed
and proved very difficult to debug. The need for frequent revi-
sions along with the subsequent lengthly assemblies clearly
suggested flaws in my original design. And these flaws pre-
vented me from ever actually testing my key algorithms — those
dealing with symbol table manipulation and access. My dream
was slipping away! What I desperately needed was a means to
make program modifications quickly and painlessly. I also
needed a powerful run-time package which could monitor or
alter program activity on the fly. Hey, wait a minute. What I
needed was the Extended Benton Harbor BASIC interpreter!

Though I remain the type of person who likes the informal title
of "assembly language programmer”’, my BASIC interpreter will
never again be thought of in terms of last resort. Rather, it will be
thought of as perhaps the best means of prototyping any com-
plex task. I, therefore, offer this BASIC program as a permanent
reminder to me, and a suggestion to other readers, of the power
and flexibility of this sometimes snubbed high level language.
And, I might add as an example of the latest Extended BASIC
with data base capabilities.

So, before get back to HASL-8 with this BASIC prototype to use
as a model in developing my faster, more efficient assembly
language version, let me share with you its inner workings. I
think you’ll find that this is not just another disassembler.

GENERAL BACKGROUND

The “intelligent” disassembler is designed to run under Ex-
tended Benton Harbor BASIC version 10.02.01. It consists of
program textand a data base. The program text occupies approx-
imately 6500 bytes of memory, but can be reduced to less than
5000 by deleting the REMark statements, all of which are dis-
pensible without additional modification. The data base will
occupy additional memory, but its size is variable — more on
that later.

After an FLOAD, the CONTINUE command will result in an
identification heading followed by a “START?" prompt. This
invites the disassembly start address. All disassembler addres-
ses are in offset octal format and require a full 6 digits, including
leading zeros. The same is true of the “END?"” prompt which
follows a valid start designation.

Afterthe disassembly range has been established, the “"MODE?”
prompt is printed. There are two distinct modes of operation
under this disassembler (*SYMBOLIC” and “ABSOLUTE") and
these are the only valid responses.

11

ABSOLUTE MODE

When this mode is specified, the next prompt is “FLAG?". Any
single character input at this point will be used to alert you
when disassembly has or might become suspect — when in-
structions are encountered which may signal a data area instead.
For a description of such instruction types (in this case types
#3-6), see Table 1.

The final prompt will bean invitation to configure your terminal
and type Return. In the absolute mode the disassembler formats
the print line so as to take advantage of Heath’s H9 Short Form
provision. In this way a larger area of memory can be displayed
at any given time.

Each disassembled line is preceeded by the octal representation
of the low order byte of the current memory location. In some
cases this prefix will also display your designated “flag.” When
page boundries change (the high order byte of the current mem-
ory location)an additional line will be generated to so indicate.

At any point during the disassembly range, a CTL-B will result
inatermination of the current process and the ""P="" prompt will
be printed. This is an invitation to alter the disassembler's cur-
rent memory pointer (again in offset octal format) so as to ad-
vance or back up the disassembly process. This can be a conve-
nient way to investigage a subroutine following a “CALL" in-
struction. When you wish to resume the abandoned memory
location, another CTL-B followed by the new address will ac-
complish it.

SYMBOLIC MODE

When this mode is specified, the next prompt following the
mode designation is “VALID LO '/* HI?". We'll discuss the
reason for this later. For now suffice it to say that this requires
two offset octal addresses separated by a slash (/). Depending on
the length of your disassembly, the next prompt could be some
time is arriving. However, here's what you will see at the termi-
nal, at varying times of course.

PASS ONE IN PROGRESS . ..
SYMBOL TABLE EVALUATION IN PROGRESS. . . .

SYMBOL TABLE LABEL ASSIGNMENT IN PRO-
GRESS . ..

FINAL PASS BEGINNING. CONFIGURE TERMINAL.
TYPE CR:"

Since we will talk about each phase in detail, at this point let me
just briefly cover the symbolic CTL-B options.

By typing CTL-B just prior to the final pass, the disassembler
will print the symbol table, including addresses and labels, for
you to review. A second CTL-B while such a review is in prog-
ress will terminate the printout and return you to the configure
terminal prompt. This process can be repeated unendingly if
you desire.

12

DATA BASE (DRIVING TABLES)

The intelligent disassembler data base consists of several items
— minus the symbol table. It is up to each user to dimension the
symbol table to whatever size memory will support. This is
accomplished by using the “DIM S$(xxx)"” in the command
mode. Care must be taken to leave room for the growth of the
symbol table entries also. Thereafter, assuming the program is
saved at this point (FDUMP), the data base would consist of
T$(255), T(4), N$, S$(xxx).

The string variable N§ is simply an error note. Its value can
easily be changed in the command mode. To find out how it's
used, you might try a “SYMBOLIC" disassembly with a start of
000256 and an end of 000264. For this experiment you may
specify any “VALID LO */* HI" addresses.

The small numeric array T is used only during symbol table
evaluation. Its elements are zero at this point.

The large string array T$ represents the primary disassembler
table. Unlike the other members of the data base, it is crucial to
both disassembly modes.

This table enables the disassembler to produce octal values,
determine instruction lengths and types and print the
mnemonic operation codes. It consists of variable length entries
which contain the following information:

LEFT$(T$(x),3) = Octal equivalent of x
MID$(T$(x),4,1) = 8080 instruction length
MID$(T$(x),5,1) = Disassembler instruction.type

MID$(T$(x),6) = 8080 operation code

Thus the entry for T$(205) would appear literally as
“31531CALL” while the entry for T$(1) would lock like
“00132LXI B."

This should be fairly self-explanatory and its need vary appa-
rent. Fora more thorough review of the primary table, you might
wish to issue the following immediate command after you
FLOAD:

FOR =0 TO 255: PRINT LEFTS$(T$(1),3) - *
MIDS$(T$(1),4,1)

o MID$(TS(1),5,1) * ** MIDS(T$(1),6): NEXT I
Hit the Short Form buttom then Erase before you key Return, use

CTL-S & Q to govern scrolling and review the primary table ‘til
your hearts content.

+REMark «Issue 5 » 1979

THEORY OF SYMBOLIC OPERATION

We know that the CPU will execute instructions sequentially
within a given block of memory until told to do otherwise. One
way to accomplish that “‘otherwise” is through the use of a
branch type instruction. Examples of assembly language
branches would be “CALL (address)” and *')Z (address)’’. The
equivalent BASIC statements would read “GOSUB (line #)"" and
“IF Z=0 GOTO (line #)".

There is one other type of instruction which affects the sequen-
tial nature of program execution. This is the instruction through
which processing cannot pass.]MP, RET and PCHL fall into this
category and constitute the only such instructions in the 8080
instruction set. As far as the CPU is concerned, the only way
processing could proceed beyond these points is if the address
was reached through a branch instruction found elsewhere in
the object program.

A disassembler which could assign symbolic labels to the ad-
dresses generated by these two types of instructions would have
taken a big step toward "'intelligent’’ disassembly.

PASS ONE (SYMBOL TABLE CREATION)

As we sequentially disassemble an area of memory, let's ask our
disassembler to construct a table. In its inception it will be
primarily an address table, one whose entries consist of addres-
ses. However, it will eventually become our symbol table and,
since that name sounds so much more impressive (and will later
be more accurate), you'll hear me refer to it more often as such.

This table will contain variable length entries of the format:
LEFT${S$(x),1) = Evaluation flag
MID$(S$(x),2,6) = Address
MID$(S$(x),8) = Type references/Lable

We'll insert the address of all branch objects (instruction type
#1)into this table. While we're at it, let’s also insert the address
of all load objects (instruction type #2) into our table. Although
such instructions do not affect the sequential nature of program
execution, they may give a hint of a potential data pocket.
Finally, we will take the address following those instructions
through which processing cannot pass (current location + in-
struction length), these are instruction type #4, and place it in
our table as well. These deferred impact instructions provide an
even stronger hint of potential data pockets within the disas-
sembled program.

Incidentally, the job of building this symbol table will be made
easier if the entries are always kept in ascending order with no
duplication. Such is the case with my BASIC disassembler. For
the technique used, I direct your attention to lines 55000-55900
of the BASIC listing. You'll notice that element zero, S$(0), is
used to hold the total number of entries currently in the table. It
will be incremented whenever a new address is added, whether
that address is inserted within the table or appended to the end
of the table (depending on its value). Existing entries are simply
updated with the new reference type. In this way we can main-

SEREMark « Issue 5 <1979

tain a history of how many references were made to a particular
entry and, more importantly, in what ways that address was
used in the disassembled program.

Allright, we've completed the first pass. A block of memory has
been sequentially disassembled and assumed to have consisted
entirely of instructions — no data. In the process we created a
table of addresses. Have we done enough? Well, we've done
enough if all we want is the ability to assign symbolic labels to
the disassembled listing. Unfortunately, our disassembler is
still “dumb’ and would merrily treat data as instructions. We
must now ask him to analyze those table entries and, where
appropriate, re-disassemble certain object program segments. In
fact, we'll find that some areas of a program must be re-
disassembled (disassembled for a third time) if this guy is to
acquire real intelligence.

SYMBOL TABLE EVALUATION

In the evaluation phase, we can ignore all addresses in our
symbol table which are less than the disassembly start address
or greater than the disassembly end address. Such entries will be
considered “external” and we won't try to classify them as
pointing to data or instructions. Next, we can ignore all branch
object addresses. We'll assume that the author of whatever it is
we are disassembling wouldn’t have directed the CPU to exe-
cuteatable or literal pool {in other words data). Now you can see
why it's important that each entry in the symbol table also
provide an indication of how that address was used in the
disassembled program.

Having ignored what is probably the majority of entries in our
symbol table, what do we have left? We are left to consider only
those addresses which were used in a load instruction (type #2)
and those addresses generated by the disassembler because pro-
cessing could not pass through the previous instruction [types
#4& #5). Remember also that these remaini entries will fall
within the range of our disassembly, having ignored external
references.

At this point, any further disassembly will be controlled by the
addresses contained in the symbol table entries we have just
identified. For the purpose of re-disassembly we will develop a
sub-range which begins at the address contained in one symbol
table entry and extends to the address contained in the next
symbol table entry. We have already disassembled such a "'sus-
pect' program segment once. What we need now is a means to
weigh what we'll ask our disassembler to take a second look at —
re-disassemble. Thisis where the full compliment of instruction
“types’’ become important. We will also provide two additional
tools to use during this phase.

Our disassembler knows the start and end points of the re-
quested disassembly. But what if that range represented only a
portion of the complete program? A branch instruction with an
object address outside this range would appear less valid than
one whose object fell within thisrange. In thelater, we would be
inclined to consider that an instruction whereas in the former,
we might see it as data. In an effort to enhance the accuracy of
such evaluations, we will give the disassembler a “'valid” range,
which may or may not correspond to the disassembly range (the
“VALID LO '/ HI?" prompt). Now the disassembler can apply
this “valid' range to his evaluation of three-byte instructions
(types #1, 2 = 5).

13

The final tool we will provide is the means to consider any
suspect program segment in its entirety, We want to avoid
classifying any program area as data or instructions on the basis
of asingle instruction. Any such decision should be cumulative.
However, since each instruction must be considered individu-
ally we will offer an evaluation variable which can be dynami-
cally altered depending upon the instruction type and the in-
struction’s content. This evaluation variable will be subjected to
factors which combine the effect of instruction type and content.

The factors, or weights, I've chosen can be found on line 30100
of the BASIC listing. They are actually applied at lines 5700-57
900. These factors are somewhat arbitrary and you readers cer-
tainly have my permission to alter them as you see fit — we call
that “tuning”. lHowever, they seem to do the job for me. Here's
how they work.

If a branch instruction (type #1) is encountered in this re-
disassembly and, if the object address falls within the "valid"
range, the disassembler will add a positive biastothe evaluation
variable. If the object address is outside the “valid" range, a
somewhat weaker negative bias is applied to the evaluation
variable. The sameapproach is used with load instructions (type
2) but the effect on the evaluation variable is not as great. If a
suspect instruction (type #6) is found, a strong negative bias is
applied to the evaluation variable. Finally, if a non-instruction
(remember, we're still disassembling sequentially at a location
dependent upon the previous instruction’s length) is encoun-
tered, type #3, the strongest negative bias is applied to the
evaluation variable,

Once we complete thisre-disassembly, if we find that the evalu-
ation variable vields a positive result we can flag that symbal
table entry as pointing to program logic. In reality, all symbol
table entries are so flagged upon entry — innocent until proven
guilty, as it were. If our evaluation variable remained zerg, it
means we don't have enough information to make a definite
determination. We'll flag that entry as “unknown' and later,
through convention, treat the program segment as instructions.
However, if the evaluation variableis negative(alikely resultifa
non-instruction was encountered, a probable result ifany **bad”
branch or load instructions were found), we'll flag that symbol
table entry as data. We should also ask our disassembler to find
his second wind because there's more work to do with any such
program segment [remember re-re-disassembly?).

There are a couple of reasons for taking what amounts to a third
look at any “‘confirmed” data area. First, a single byte of data
may have been interpreted as a multi-byte instruction during
pass one. In such a case, we may run the risk of losing the
beginning of an otherwise valid instruction through the in-
terpretation of data bytes 2-3 as an address or value. This very
situation was clearly illustrated in the earlier REMark disassem-
bler at address 000033.

The second reason for re-examining this data arealies in the way
our symbol table was constructed. The next entry in the table
(the entry containing the ending address of this sub-range) got
there for a reason. If that reason was because of [MP instruction
(type #5) and, if that instruction now generates a “'valid’' object
address, then we owe our symbol table one more entry — one
corresponding to the beginning of that instruction. Such an
approach allows us to properly evaluate and label the JMP
instruction we find at address 000050 following the data at

14

address 000043. Our only risk in “*forcing” entries in this way is
a few extraneous labels during the final pass, with no harm
done. [prefer that to too few labels.

With the evaluation phase we find the last maintainence being
applied to our symbol table. We won’'t be adding any more
entries. [{owever, this entire process will be repeated with each
non-iranch table entry throughout the range of disassembly.

SYMBOL TABLE LABEL ASSIGNMENT

The time has come (finally?) to transform our lowly address
table into a true symbol table. The entries are now flagged as
program logic, unknown and data. These flags will control the
disassembly process (how memory is looked at) during the final
pass. But what about us, the user, and the effect symbolic label
content has on readability? Wouldn't it be nice if the labels we
develop also reflected the distinction of program logic, etc.?
Well, why not?

Let's call program logic entries ""RTN"" [for routine], un known
segments ""UNK" and data areas "DAT"". We'll call all external
labels “EXT" and we will append to each label an in dication of
where it resides within the table. Thus, our first few entries
might appear as “EXT.1", “RTN.2"", “"UNK.3" and “DAT.4". In
this way, using the CTL-B and CTL-C provisions, we could
return to command mode during symbol table review and issue
the following immediate command:

S$(2)=LEFT$(S$(2),7)+"ANYVAL"

Now we havereplaced “RTN.2"" with "ANYVAL"” while retain-
ing the evaluation flag and address. Thereafter, the dis assem-
bler would associate "ANYVAL" with value in the symbol table
whenever it was used during the final pass. Thus we have a
simple, effective means for user designated labels.

This technique can be used over a period of time, as program
segment functions are identified by you, to make an extrcuely
readable disassembly listing. If at any time you wished to termi-
nate a final pass listing, and resume at the start of the final pass
later, the following immediate mode commands would ac-
complish it: —

UNLOCK

1 CNTRL 0,65000: GOTO 34000

FDUMP "any name"

THE FINAL PASS

With labels assigned we can now begin our final pass, produc-
ing a symbolic assembly lisling for our disassembly. Actually,
this pass is not unlike the veiv lirst pass except we will be
printing what we find as we PEEK{] at various memory loca-

tions. Additionally, we'll use labels instead of octal values for
three- byte instruction operands and we'll sometimes preface a
line with a label — when that lzbel's address matches our cur-
rent memory location. Of course, if at that point the symbol table
indicates we've reached a data area. We will force the “DB”
(define byte) interpretation on what we find.

There you have it, symbolic (intelligent) disassembly. Simple,
wasn't it?

=REMark = [ssue 5« 1979

PROGRAM VARIABLES

A

A$

Cs

E

E$

i'$

111

12,13

L$
L1$
L9%
N$

0%

utility address, generally -

utility address in ollset octal, generally =
mode identilier control byte/CTL-B enable
disassembly end

disassembly end, ollset octal

absolute [lag/CTL-B enable

utility array relerence indicies

symbolic re-disassembly symbol table refer-
ence indicies

utility string

instruction length, [rom T$(I)

symbolic line prelix label

symbolic instruction operand label
symbolic end statement start label
symbolic intregrity violation message
instruction mnemonic op code, [rom T$(I]

current memory pointer

'$ atility ollset octal address, generally user
input

Qs utility octal value, Irom T$([)

Q1% symbolic two-byte instruction operand

Q2% multi-byte instr's byte 2 octal value, irom T$(I)

Q3% multi- Q3% multi-byte instr's byte 3 octal
value, [rom T$(1)

S disassembly start

S$ disassembly start, ollset octal

S$(1) symbol table

T. TS instruction type, [rom T$(I)

T1 symbolic evaluation variable

T(1) symbolic symbol table type?relerences de-
code array

TS(1) primary disassembler driving table

WO-w2 symbolic evaluation weights

51,51% E1,E1%

symbolic sub-range re-disassembly start/end
addresses

Jim’s program will be available in the next release of HUG Software which is expected to

be available late next month.
:JB:

EOF

!ERROR SYNTAX

Issue #4 Page 8 — Space Wars Patch

Line 3270 should be: T8=CIN(0):IF T8<0 GOTO 3260
Line 3285 should be: A$=LEFT$(A$,LEN(A$)-1)

Issue #4 Page 15 — Under Factorial Function

DEF FN F(N)<>GARBAGE

DEF FN (N)=INT(SQR(P2*N)* EXP(N*LOG(N)—1)+1/(12*N)))

Issue #4 Page 27 — Wrong Schematic!

Here’s the right one — [Note: the schematic in issue #4 is
supposed to make lower case when the switch is open, but
hasn’t been tested here — lower case would not be dis-
played on the H9 CRT, of course, but would be useful in
the Editor.)

H-REMark « Issue 5 +1979

Issu

N 74L502
1/0 Board
¢ 614-1 8 1w 1 13 2 5.60
IC 623-6
' I 1 e

izt bd (1
P a03-1 — 6—
& !._in
PA03-4 ;
[Erase Page L
Switeh 417-801 s

e #4 Page 16:

Line 150 should read IF L>L1 THEN ...
EOF

15

B B R ST MRS o L T R S B i SRS FER SEH KRN PN FRN BN IR ERN P RN (L (L P B (LRl TRN R KEE SES R SRS SR BRY BEE SR S PRS SEE S0 LR L S SEE LR S SR LR B T 2 K o o S L S

HELLO THERE ' I AM THE
HHH HHH 11 4444
HHH HHH 131 44444
HHH HHH 1111 444444
HHHHHHHHHHHHRHH 111 444 444
HHHHHHHHHHHHHHH 111 444 444
HHH HHH 111 444444444
HHH HHH 111 4444444444
HHH HRH 111 444
HHH HHH 111 444

WITH FEATURES LIKE SOFTWARE SELECTAEBLE LIME WIDTH AND PAGE SIZE FOR

132 CHARACTERS PER LIME
e CHARACTERS PER LIHE

WITH ECOTH

28 CHARACTERS FER LIHE

LIFFER AHD 1 owsr case

EEA THE H 14 FRINTER IS IDEAL FOR PERSONAL AND SMALL
3 LIHES BUSINESS COMPUTER SYSTEMS. WHERE HIGH PERFORMANCE AND
BEEE PEFR LOW COST IS REGUIRED. RELIABLITY 15 ASSURED
& & MERTICAL THROUGH TOTAL HEATH DESIGH
BEE THCH AMD A PRINT HEAD EY PRACTICAL AUTOMATIOM.
sa) THIS PRODUCT AND SERMICE SUFPORT 15 AVAILABLE
8 & LIHES AT _AMY OF THE 53 HEATHKIT ELECTROMIC CEMTERS IM
gss FER THE U.5.. DIRECTLY FROM THE HEATH CCOPMPAMY
& & VERTICAL IM_BENMTON HARBOR MICHIGAM. AS WELL AS HEATH MARKETING
233 THCH. OUTLETS ARCLIMD THE WORLD. i
ARG T CAM BE YOURS IF %O SUEBMIT THE BEST FROGREAM
TOOCOMTEST # 5 ' Y OUTPUT IS STAMDARD EIA-Z6 MA
WITH MERDUARE HAMDSHAKTHMG AEOVE 366 BAUD, SUBMIT
WOLIR FPROGEAM TO HUG BEFORE APRIL . 1579, GOOD LUCK! !

£ R D s B EE S S T (S B S D T SR B2 SR R S L S B S S R TR T8 D ot ot S S Y S B B SRS TS B SR BEE M SR S L SR S S SR S o

16

>REMark - Issue 5 «1979

--EDIT

PAUSE SWITCH MOD
FOR ECP-3801

by: Jim Meyers

If you have electrical expertise, and are
not afraid of violating your recorder’s
warranty, perform this simple mod to
eliminate your having to *“‘pull the plug”
everytime YOU want to operate the trans-
port.

Locate the area where the red, pink and
violet wires are soldered to the board in-
side the recorder. Remove the red and
pink wires from the board and solder
them across the remote jack. Jumper the
pads together where the red and pink
wires were. Cut and tie back the violet
wire. Record these changes in your man-
ual so you can “restore” your recorder to
normal in the future.

When you have connected the recorder to
the H8 again you will find that by sliding
the switch to PLAY you can operate the
transport without disconnecting the re-
mote plug. Slide the switch back to
PAUSE to give the H8 control.

REVERSING MEDIA ON
SINGLE HEAD FLEXIBLE
DISK DRIVE

Flexible Disk Drives (Floppies) offer the
end user low cost random access to data
records. Prior to the introduction of the
floppy, the only other alternatives were
sequential tape cassettes, low cost one-
half inch tape, or single cartridge hard
media disk drives. The floppy disk has
been an ideal peripheral for low cost
CPU’s (Mini's and microprocessors) and
low cost systems. It is a natural solution
for storage in the lower end of the compu-
ter market.

#REMark « Issue 51979

There has been a tendency by some end
users, to economize by attempting to use
the media on both sides in a single head
disk drive. We must not lose sight of the
fact that the value of the data stored on
diskettes exceeds the cost of the media by
a wide margin. Loss of data on either read
or write means time delays, reconstruc-
tion of lost data, and customer dissatisfac-
tion with the system, drive and/or media
manufacturer. All of this can be avoided
in advance if the end user is made aware
of the whys and why nots.

HEAD SHOE AND
PAD OPERATION

The relationship of the head to the media
is such that when the jacket is properly
inserted, and all interlocks are satisfied,
the head is loaded on to the media on the
recording side, and a felt loading pad is
applied to the non-recorded side. In nor-
mal operation, a gradual build-up of
oxide will accumulate on the pressure
pad. There might even be some wear on
the non-recorded side due to a scouring
action of the oxide impregnated pad.

If the media is reversed, the scouring ac-
tion will now occur on the prime re-
corded side, and the previously scoured
side is now presented for recording. The
recorded data is now subjected toan abra-
sive wearing by the contaminated load
pad. Since this data is not being read,
there is not any means of detecting the
amount of wear ortheloss of data. Whilea
catastrophic failure might not occur, it is
possible that some drop-out or other read
error might go undetected. Worse yet, is
the possibility that the error condition
might be intermittent, which makes the
entire operating system suspect. Another
adverse effect of reversing the media, is
caused by reversing the direction of rota-
tion of the media against the pressure
pad. This reversal of direction is apt to
“break off"’ any build-up of oxide parti-
cles. This presents a potential loose con-
taminent situation.

The net effect of this reversing (or flip-
ping) action over a period of time is to
reduce performance and increase the
probability of drop outs and errors.

DISKETTE TENSIONING

On most Floppy Disc Drives, when the
diskette is properly inserted and opera-
tion has begun, pressure is applied to the
jacket on both sides so that propertension
is created on the flexible media prior to
the recording head. This also provides a
wiping action of the liner material against
the flexible media. When the jacket is re-
versed (or flipped), the direction of rota-
tion is reversed, breaking loose any ex-
traneous particles built-up by prior wip-
ing. Thus, reversing the media increases
the probability of extraneous contamina-
tion and again increases the possibility of
errors.

TWO HEAD DRIVES

The above problem areas do not occur on
two head drives that are designed fortwo
sided applications. On a two head drive,
the pressure pad has been replaced by a
second head mounted in a ceramic shoe.
The operation now consists of a head-
media-head relationship. The soft pres-
sure pad with possible oxide build-up has
been eliminated.

The diskette tensioning apparatus is the
same on one and two head drives. Since
media spin direction is not reversed by
flipping, the oxide break-off problem
does not occur.

SUMMARY

The foregoing summarizes the reasoning
why Dysan and major OEM suppliers of
diskette drives do not recommend two
sided media for one head drive operation.
Dysan feels that the potential operating
problems would make an unwarranted re-
flection on our reputation by using media
in an unsuitable fashion. When IBM in-
troduced the 3740 diskette, they inten-
tionally interlocked reversal possibilities
by off setting the index hole from the cen-
terline. IBM does not make a reversable
diskette.

Dysan does test and supply two sided
media for operation in two head (two
sides) disc drives.

This info provided by Dysan. :JB: EOF
17

CASSETTE INTERFACE BECOMES “AT:”
TWO PORTS FOR THE PRICE OF ONE

So now you have your disc system for
your H8, 32K of memory, and an H8-5
serial card. Most likely your probably
screaming — ‘I ‘ve also got a parallel
board and I want to add a hard copy de-
vice, but there ain’t no $$%&! room on the
motherboard for another serial board.
“Well, never fear, the following article
will describe how to add another serial
port to your H8-5 interface. You're proba-
bly saying, *'I left my black rod with the
rusty star on one end back in the pirate's
maze, so it can't be magic”. You're right,
it's not magic. It's going to cost you the
cassette interface capability, but so what,
you have all your cassette programs trans-
ferred to disc and you don't use the darn
thing anyway.

Ok, enough ratchet jawin'. You will need
a good set of handtools including a sharp
exacto-kni fe and a 9/64" drill bit and
hand drill. You will also need about a half
dozen new components which you can
purchase from Heath or your nearby parts
supply house. The following is a list of
parts you will need to complete this pro-
ject:

1. 2 — 14 pin IC sockets (Heath P/N
434-298)

2. 1 — 75188 IC (Heath P/N 443-794)

3. 1 — 75189 IC (Heath P/N 443-795)

1 — +12V lhree terminal regulator
(Heath P/N 442-663)

5. 1 — =12V three terminal regulator
[Heath P/N 443-664)

6. 4 — 2.2 mfd tantalum capacitors

[Heath P/N 25-221)

The following is a pseudo step-by-step
procedure for making the conversion on
your H8-5 card. 1 would suggest reading
the entire requence over carefully before
proceeding. Remember, your cassette in-
terface will be totally destroyed once the
conversion is made.

1. The first thing.you need to do is re-
move all the IC’s associated with the
cassette interface. These IC's are Lhe
following, 1C104, IC105, IC106,
IC107 and 1C111.

2. Next remove the following compo-
nents and jumpers: R124, R125,

18

Q106,Q107 and the two L-H jumpers
at IC107.

Carefully remove the two sockets at
IC locations 107 and 111. These two
locations will later contain the two
RS-232 level translator IC's.

Now is the time to pull out your hand
drill (electric or otherwise) and 9/64"
drill bit. Locate two locations on the
board where the two regulators will
comfortably fit. These two regulators
can be mounted off the board on two
6-32x3/16" spacers. The two most
logical locations that'I found are as
follows: By pin 1 0of IC113, and about
1" right of pin 9 of IC118. Make abso-
lutely sure that when you drill the
holes, that you do not cut any foil.
Also make sure that the hole is cen-
tered such that when a 6-32 nut is
installed, it will not come in contact
with any foil when tightened down.

The following foil cuts must be made
in order to isolate the IC pads for re-
connection.

A. Isolate pin 17 of IC123 from any
other foil.

B. Isolate pin 22 of IC123 from any
other foil.

C. lsolate pin 25 of IC123 from any
other foil.

D. Isolate pin 3 of 1C123 from any
other foil.

E. Isolate all of the pads to the two
IC's just removed (1C107 and
IC111).

Make the following connections on
either side of the board [which everis
convenient), using a plastic or teflon
covered small gauge stranded wire.

A. Connect pin 17 to pin4 on1C123.

B. Connectpin25topin9onIC123.

C. Move the Y-O jumper to Y-4 (al-
ternate terminal port

D. Placeajumper at interrupt select
‘RxR’ (IC128 pin 3)

E. Place a jumper from ‘C to '13".

F. Install a jumper to turn inter-
rupts off at IC128C,D

7. Install two 14 pin IC sockets at loca-
tions 107 and 111. Make sure the pin
6 and 7 pads are not shorted together
at either location.

8. Now mount the two voltage reg-
ulators on the component side of the
board at the two previously drilled
locations using 6-32 hardware. Usea
3/16" spacer between the regulator
and board to elevate the regulator off
the board. It is not important at which
location either regulator is mounted.

9. Place a jumper from the ‘tape TX
Speed' to the proper baud rate hole
for your printer. The “Tape TX Speed’
is now the trans mit and receive baud
rate for the alternate terminal port.

10. Up to this point, I have described in
detail the maodifications necessary to
your H8-5 interface board. From this
point on, wire the rest of your board
as per the schematic shown, using
plastic or teflon covered small gauge
stranded wire.

See Schematic on Page 20

11. Since all that is necessary for RS-232
communication is three wires, it is
very convenient to use three pins on
P102 for bringing out the proper sig-
nals to the back panel connector. The
pins I chose were pins 1,2 and 6 fora
signal ground. Pins 1 and 2 of P102
have been isolated from any other
circuitry by the removal of Q106 and
Q107.

Jim “Buzzweed' Buszkiewicz

Buzzweed has
another neat
idea on Page 21

EOF

#REMark = Issue 5-1979

H10 MODIFICATIONS — IMPROVING ADJUSTMENT
ACCURACIES AND LENGTHENING THE CABLE

By: Carroll Hennick

Although often maligned, the H10 is well
designed, rugged and represents a true
bargain, considering its quite reasonable
price. My only problems had been with
getting stable alignment of punch pitch
(50 bytes/5 inches, exactly) and proper
timing adjustment of the reader sprocket
wheel. These problems have been solved.

The layout of the room where my H11
system is does not provide for placing the
H10 and H11 cabinets side-by-side, as is
demanded by the short cable provided
with the H10 kit. (Adding the disk unit
and printer soon forthcoming from Heath
aggravates this problem further.] In order
to place them six feet apart it was neces-
sary to use a ten-foot cable. The circuits
which drive the lines in this cable are not
designed to operate with the extra load
presented by this long cable, and so a few
modifications are required. They are
quite simple, inexpensive and require no
cutting or removal of wires or circuit
board lands.

The techniques for improving alignment,
and for permitting a long connecting
cable are given below.

The reader alignment problem had a
strange history. The kit assembly manual
procedure for alignment was followed in-
itially. It merely says: Adjust the sprocket
wheel so that the tape holes are lined up
with the reader assembly. So I centered
the holes over the light channels. This
worked flawlessly for reading ABS LDR,
ED-11, FOCAL, etc for several months,
but evidenced considerable difficulty
with reading my FOCAL programs which
I had punched. Examining the waveforms
of READER READY and the outgoing data
lines on P3 revealed that the data transi-
tion time was marginally close to the end
of the 16.5 ms period. A readjustment
(whose technique is given below) which
decreased the average data transition
time to 9-11 ms after the beginning of the
16,5 ms pulse cured this completely,

The partsrequired for the long cable mod-
ification should cost less than ten dollars,
and are commonly available. (They may
all be available from Heath, although I
have not searched them out.)

=REMark « Issue 5+ 1979

IMPROVING THE READ
ADJUSTMENT

I found three mechanical modifications
necessary or desirable to enable the H10
to successfully read fanfold tape:

* Increase the tension of the Reader Guide
Springs, by shortening their length
about 25%. Else the tape creases occa-
sionally cause a timing jitter of data
sensed, garbling a byte.

* Where the tape passes through the front
panel, if necessary, file the top of the
slot higher. Else the tape creases occa-
sionally catch there, crumpling the tape
beyond use.

* Cement a board of metal or plastic tothe
Reader Trough bottom, so that it pro-
trudes three inches. Else the supply tape
falls off the trough.

The following method of adjusting the
reader sprocket wheel seems necessary in
cases where the data is read with wide
variances in timing between bytes. (See
the discussion of FOCAL above.)

* Modify the instruction given in the H10
Operation Manual, page 18, from "“Line
up the tape holes with the holes in the
reader assembly’ to the following:

“Line up the rear part of the tape holes
with the side of the Reader Circuit Board
which is nearer the sprocket wheel.”

*Itisbettertoerr ontheside of having the
tape too far forward. If an oscilloscope is
available, adjust for data transfer time
(on P3 pins) about 10 ms after the rise of
READER READY (P2-3).

IMPROVING THE
PUNCH ADJUSTMENT

Quite contrary to the advice given in the
H10 Operation Manual, page 16, the
punch ramp must press quite firmly
against the sprocket wheel to ensure a
stable pitch adjustment. Else, no matter
how carefully the sprocket wheel is ad-

justed, minor tensions on the punch ramp
(such as a torn tape) can grossly alter the
pitch (nominally 10 bytes/inch). Since
most tape readers (including the H10) are
quite sensitive to pitch, thisis very impor-
tant. I have installed a hefty spring bet-
ween the chassis and the mid-point of the
punch ramp, which applies nearly one
pound of pressure against the wheel.
Rather than causing problems , it has re-
moved what was a most vexing problem.
Also, itis necessary to adjust the sprocket
wheel set screw very tightly, using a
screwdriver held by vise-grip pliers.

IMPROVING THE BEHAVIOR
OF PUNCHED FANFOLD
TAPE

When first punched, fanfold paper tape
creases are stiff, and do not stack properly
in the fanfold tray. Pinch the creases as
they emerge from the H10 cabinet.

LONG CABLE
MODIFICATION

Parts

1 25-conductor cable (like the 347-65
provided with the H10 kit)

2 2-conductor cable of the same type
(These three cables should be as long
as needed, up to about 15ft)

10 100 pF mica capacitors

330 ohm 1/2 watt resistor

470 ohm 1/4 watt resistor

connector shell (Heath 432-704) and

pins [Shells and pins are left over
from the H11-2 kit.)

B =

Procedure

1. Remove the H10 top cover and right
side panel.

2. Add 8 capacitors which connect be-
tween the incoming data lines and
ground. These are best attached to
the lugs of SW4 on the component
side of the circuit board (SW4-25, 22,
13,10,7,28,4,1). Usethe illustration
given in Pictorial 1-12 of the Assem-
bly Manual Illustration Booklet, and
the Circuit Diagram. There are con-
venient ground points in the vicinity

19

H10 REHABILATATION
CONT’D

of Q8 from which torun a short insu-
lated wire to the capacitors.

3. Add a capacitor on the non-
component side of the board from
P2-11 to ground, and from AM
(IC7B-4) to ground. (Ground is avail-
able at 1C8-7.)

This completes the modifications for the
PUNCH circuits. The 10 shunt capacitors
decrease the succeptability of these data
and control lines to crosstalk pickup.

4, Swap H10 IC16 (7474) with H11-2
IC30(74LS74). Thisgives the Parallel
1/O Board greater drive power for the
READER START line.

5. Add a 470 ohm, 1/4 watt resistor on
the component side of the board from
P2-2 to P2-4. This increases the
pull-up current on the READER
START line.

6. Add a 330 ohm 1/2 watt resistor on
the non-component side of the board
from P2-3 to C7's +9V terminal. Slide
insulating tubing on the full length of
the leads. This increases the pull-up
current on the READER READY line.

This completes the modifications for the
READ circuits.

7. Cut the 25-conductor and the two
2-conductor cables to the desired
length, (Approximately 15 ft max.)

8. Prepare the cables according to the
instructions given in the H10 As-
sembly Manual, pages 77-79, with
these differences:

— Use wire colors as available, marking
the colors used in the Manual, — The
four control lines are the small cable
wires, as shown in the box:

— In the large cable, connect six wires
(instead of two) to pin 24 (ground). Use
a short bare wire from the pin to attach
the wires to.

9. Tape the three cables together at in-
tervals of two feet or more. It is not
desirable to keep the small cables
near the large one or to each other
very much.

10. Reassemble the H10.

EOF
20

| "ouTt

TWO PORTS FOR THE
PRICE OF ONE

CONTROL

o P
z T .9 &
@
w gy S0
G [4
- kad
z = =
Lg
= &
S| e 1 o
5
0 |78 2Zfs s
~ar a2 o
O = Pl Ju
wd]] L B 55‘,
> as o [e @
-_— o Lad >
L = 1§ 0
. 9 5 g O
. e -
\ Ty
ajz T T n 0
> HEeat
=z = | APt ~n &
oz Bl fno e . |e
- = ‘ glzT= =g A
afl o
£) [Y
R
2 gln
[~1* o
S O-OF R 0
:rg & &= =a
x
w- _}3
"3‘.. Z « <o
Z = b 3 1
T -2
Wi

g IC
||;||_ 128C

!
[

NT
QFF

AT Te-Rx
SPEED

CLOCK

T
- o
=l @
< g
2 e
el =
®
- NJ |‘-_'D
L 7 kg
T R ey
] oo o
s - &
af @ Uy o
T2 < ud
M)
[
£ .
§
b “gln
A i el]
i
P a
k] &
] <

0O

Cable A

Cable B

H10 pin H11 pin

10 21
20 9
9 20
21 10

READER START
PUNCH START

READER READY
PUNCH READY

SEND DATA L
TAKE DATA L

DATA SENT L
DATA TAKEN L

SeREMark = Issue 5 « 1979

H8-2&4/5--OR HOW TO USE YOUR H8 AND H9 VIA H8-2.

By: Jim Buszkiewicz

I can just hear it now — “Wow!!, What in
the world took you so long. This is just
whatI've been looking for. You must have
been lost in the pirate's maze too long to
think that I would butcher my cassette
interface just to get an extra serial port."”
Well, for you die hard cassette jocks, here
it is.

Basically the H8-2 is a parallel-to-serial-
to-parallel converter. Notice I used the
word ‘serial’. If you eliminate the last se-
rial to parallel UART, you are basically
left with an identical serial port as found
on the H8-5 interface card. By making a
few foil cuts, adding a couple of jumper
wires, and adding four resistors, you can
convert one of the three parallel ports into
a serial port, which will communicate
with the H9 via TTL levels. The schematic
shows the modifications needed to con-
vert channel ‘0" into a serial port. The
conversion, however, could be done to
any of the three channels. TTL levels were
chosen as a means of communication be-
cause in order to use RS-232, more com-
ponents would need to be added to the
parallel interface board and there isn't
any more room on the board for addi-
tional components, other than a few resis-
tors or such.

Many of you have asked
about interfacing the H8-2
with the H9 PARALLEL
BOARD.

... Can’tbedone,sorry. :JB:

Since the H8-2 card normally uses the
‘phase 2 not’ for it's baud rate clock, di-
viding it down to the proper frequency
would again require additional compo-
nents. What I did to obtain a baud clock
for the serial port, is to steal the baud rate
clock pulses from the H9. All that is
needed is one additional wire, run be-
tween the H9 and H8-2. This also allows
for total baud rate control from the H9
terminal which means you can list a pro-
gram at 9600 baud, and if you see some-
thing you like, just hit the baud rate
switch on the keyboard, and presto!!
You're crawling at a readable 110 baud!!!
OK, enough sales pitch, let’s start con-
verting.

=REMark « Issue 5 = 1979

1. The first step I took, was to convert
the I/O card in the H9 to TTL input-
output levels. This is very simple to
do, and fully explained in the H9
operation manual on page 14 and 15
(TTL Serial Input/Output). I then
proceeded to check the operation of
the card by shorting pins 2 and 10 of
connectar P-603 to see if the H9
could ‘talk' to itself. This test is very
similar to the one performed in the
second column on page 135 of the
assembly manual. The input and
output pins on the backpanel con-
nector are now pins 3 and 2 respec-
tively.

The following is a step by step procedure
in making the necessary modifications to
your H8-2 card. Follow each instruction
very carefully. Some of the foil cuts and
soldered jumper wires are in very close
quarters, so take your time, the results are
worth it!!

1. Carefully remove the UART (IC104),
and place it in some of the conduc-
tive foam that you received with
your H8 system. This UART can be
used as a backup in case the one in
your H9 should ever go sour.

2. Temporarily remove the USART
(IC103), and likewise place it in
some of the conductive foam. This
was done mainly as a visual aid.

3. Solder a jumper wire from E1 to E2
on the top side of the board if one is
not already there.

4. Isolate pin 8 on the output connector
(P101).

5. Solder a jumper wire from pin 3 of
IC101 (carefully) to pin 3 on the
USART (1C103). (All jumper wires
are soldered to the foil side of the
board.)

6. Solder a jumper wire from pin 2 of
IC101 to the output connector P101
pin 8.

7. Isolate pins 9 and 25 of the USART
(IC103) from.any other circuitry.
This can be done by cutting the foil,
on the back side of the board, to pin

10.

11.

12.

13.

14.

15.

16.

17.

18.

17 of the UART (IC104). NOTE: pins
9 and 25 of the USART (IC103)
should remain shorted together,

Solder a jumper wire from pin 17 of
the USART (IC103) to pin 4 of the
same IC.

Solder a jumper wire from pin 19 of
the USART (IC103) to pin 12 of
1C101.

Solder a-1000 Q 1/4 watt resistor
from pin 11 of IC101 to pin 14 of the
same IC.

Solder a 1000 Q 1/4 watt resistor
from pin 2 of IC101 to pin 14 of the
same IC.

Isolate pin 22 of the USART (IC103)
by cutting the foil on the top side of
the board between that pin, and pin
1 on IC105. This foil cut must be
done very carefully because of the
close proximity of other foils.

Solder a 4700 1/4 watt resistor be-
tween pin 22 and pin 26 of the
USART (IC103).

Isolate pin 6 of the output connector
P101 by cutting the foil between that
pin and pin 8 of IC101.

Solder a jumper wire from pin 9 of
IC101 to pin 6 of the output connec-
tor P101.

Solder a jumper wire from pin 8 of
IC101 to pin 9 (9 and 25) of the
USART (IC103).

Solder a 1000 Q 1/4 watt resistor be-
tween pin 9 of I[C101 and pin 14 of
the same IC. NOTE: If pin 14 on that
IC is getting too crowded, you can
use any other +5 volt foil which is
close by.

In order to work properly with the
Hg, the interrupt for the port you are
using must be enabled. To do this,
solderajumper onthetop side of the
board from H1 to H2. Also-solder a
jumper on the top side of the board
from ICHX (X =port number you are
using) to I3.

21

Vectored from page 21

H8-2 MOD — MAKE IT TTL SERIAL :]B:

WORKSHOPS:

[am writing to ask your Journal to make
an announcement of our seminar prog-
ram in your January 1979 issue. Dr. Peter
Rony, Dr. Paul Field, Dr. Chris Titus and I

19. Now program the port you are using 20. Carefully rel.-plat.:e the USART are directing these workshops.
for the main console device port (IC103) back into it's socket.
number by inserting jumpers to
S?l]e;'t port 372, Remember,dthe se- T:hlS. con;pl:ltes l‘he nfecessary ;r:lc])dlflc:.a— A new and expanded series of Four 3 day
1:1a Op.orlonyoutliﬁtflc;r isalso hon;tgt- elH8-2 Lnter acecar;i, 1ha1;15 hands on workshops on 8080/8085 De-
set to this pprt.smt will have to be neede 1‘5 to make up a C?%‘J e to go : e- sign, Microcomputer Interfacing,
changled. disabled, o_r the card tem- Fwee;lnllhgslcar_d_anddl@HQ. Ibhefolkl_owxng Software Design and Digital Electronics
porari yr}?movedh{lwo or morsémrts lia ek[:] ul wiring diagram inmaking up | 1o peing given by the authors of the
cannl;)t ave Hho; samp guuross hat eaale. popular Bugbooks. Participants have the
number). option of retaining equipment used in
these courses. Dates are March 19 to 28,
1979. For more information, contact Dr.
Linda Leffel, CEC, Virginia Polytechnic
H9 Backpane! Output Connector Institute and State University,
Description P101 on H8-2 Board Blacksburg, Virginia 24061 (703-961-
5241).
Pin 2 TTL Serial Data Output -Connects to- TTL Serial Input Pin 8)
Pin 3 TTL Serial Data Input —L:cmnecls to- T'I:L Serial Out Pifn 7’ This effort on your part to bring these
P%n 7 TTL Baud Rate Out -Connects to- TTL Baud. Clock in Pin 6 programs to the attention of your readers
Pin 9 Ground -Connects to- Ground Pin 9 is greatly appreciated by the Virginia
. Polytechnic Institute and State Univer-
Because of the fact TTL levels are used for data communication, the length of sity Extension Division and the course
cable used to connect the H9 and H8-2 should be kept to a minimum. The directore.
length of cable used that I used was 7 meters with no adverse affects.
David Larsen
""" ‘ I L1101 T —
1/0 CHANNEL @& ‘ " I iiwes I M
s, [‘ - roil] | i eaTa
T L — IC’O?B | 5
: - Ic1078
N o - -
TERTT S W Ic102¢C
% . 443-598 |
‘ '-? #1003
| | ic1020
|
| i e |
| -l—-—n.nn.'l-.‘
| = I —_
| [IC101
T jDJ r:'-:? . — L
‘Ml F 5
¥ N WY, » 45w
'l ? ""lemm
5 ?’ 510;0
l T B 1 -
:] 52 —— Fi0g)
5 &
IC103 IC104 ¢
ueAsY | REMovED =
EOF
22 “=REMark « Issue 5 « 1979

'02 ERROR — FATAL SYSTEM ERROR

HDOS is very protective and we've all been reminded by various error messages. These
unhappy events can be more tolerable by re-writing the messages as illustrated here by
one of our members.

Call ERRORMSG.SYS into the EDITOR and modify to suit yourself — NEWOUT under
any file name — DELETE ERRORMSG.SYS and finally — RENAME your new file to
ERRORMSG.SYS — Have fun.

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
024
025
026
027
028
029

YOU MEAN YOU'VE ACTUALLY FOUND THE “CTRL" AND “C" KEYS?

CTL-B STRUCK — LOOKS LIKE YOU DO HAVE MORE THAN ONE FINGER!

DATA EXHAUSTED — YOU SURE YOU KNOW HOW TO PROGRAM??

ATTEMPTED DIVIDE BY ZERO — I'M A COMPUTER STUPID! — NOT GOD

YOU CALL THAT A NUMBER!!!

ILLEGAL USAGE — YOU SHOULD PLAY WITH TINKER TOYS NOT COMPUTERS

YOUR DATA IS LOCKED DUMMY

YOU MAY SAY THERE'S VARIABLE IN THE NEXT LINE, BUT [CAN'T FIND IT!!

IF YOU CAN'T COUNT THAT HIGH DUMMY, HOW DO YOU EXPECT ME TO?

HOW DO YOU EXPECT ME TO RETURN FROM A GOSUB THAT AIN'T THERE?

CAN YOU READ 256 CHARACTERS IN ONE BREATH? — I SURE CAN'T!!

THERE AIN'T NO SUCH LINE NUMBER, SLICK!!

BEING ABLE TO SPELL AND READ HELPS!!

TYPE CONFLICT (THERE IS A DIFFERENCE BETWEEN LETTERS AND NUMBERS DUMMY)
BUY SOME MEMORY CHEAPSKATE

SUBSCRIPT OUT OF RANGE — RECAPITULATE — SLICK!!

WRONG NUMBER OF SCRIPTS — HEATH CO. DOES SELL A BASIC PROCRAMMING COURSE
WHY DON'T DIMENSION THIS ARRAY FIRST BEFORE RUNNING THIS PROGRAM!
WHERE DID YOU LEARN TO SPELL?

I'M GLAD THIS INFANTILE PROGRAM IS OVER

I'M GLAD THIS STUPID PROGRAM IS OVER

HOW MANY OF THE SAME FILES DO YOU WANT DUMMY 77

YOU CAN'T CALL IT THAT STUPID!!

TOO MANY OR TOO FEW ARGUMENTS SPECIFIED (TRY AGAIN STUPID)

WOULD YOU WALK THROUGH A CLOSE DOOR? (FILE IS NOT OPEN DUMMY)
HEATH HDOS ISSUE $50.00.00 (SO WHAT!! JUST SO IT WORKS!!!)

I'VE NEVER READ ANYTHING SO BORING IN MY WHOLE LIFE!!

HOW MUCH DO YOU THINK THIS DISC WILL HOLD STUPID??

ENCAGE BRAIN BEFORE USING 'SYSCALL’, SLICK!!

THIS ISN'T A STEREO STUPID, CHANNEL ALREADY IN USE!!

WHAT DO YOU THINK 1 AM — AN 1.B.M. 3707

THIS DEVICE DOES HAVE A PROPER NAME —— HOW 'BOUT IF’N I CALL YOU HAZEL?
IF YOU DON'T KNOW WHAT YOUR PROGRAM IS CALLED HOW DO YOU EXPECT ME TO??
BUY SOME MORE MEMORY FOR THAT DEVICE DRIVER — CHEAPSKATE!!
CHANNEL 1S NOT OPEN (YOU'D PROBABLY WALK THROUGH A CLOSED DOOR!!)
WOULD YOU MIND REPEATING WHAT YOU WANTED ME TO DO.

FILE USAGE CONFLICTS (YOU SURE YOU KNOW HOW TO USE THIS THING?)

[CAN'T FIND ANYTHING BY THAT NAME, STUPID!!

LIKE YOU, 1 DO HAVE A PROPER NAME; USE IT, SLICK!!

DOES YOUR T.V. HAVE CHANNEL 1477 1 SURE DON'T!!!

THE VOLUME DIRECTORY IS FULL AND THAT AIN'T THE ONLY THING!!

YOU CAN'T DO THAT WITH THIS FILE, STUPID!!!

BUY SOME MORE MEMORY FOR THIS PROGRAM 'SCROOGE"!

I CAN'T READ THIS???7 THING — WHAT'D YOU USE, A 78 R.P.M. RECORD?

I'D HAVE TO USE A CHISEL TO WRITE ON THIS DISC!!

TAKE OFF THE WRITE PROTECT LABEL!

DO YOU NEED GLASSES? THERE'S A WRITE PROTECT LABEL ON THIS DISC.
WHY DO YOU WANT TO GET RID OF THIS FILE?? YOU'RE GONNA NEED IT, STUPID!
THIS ISN'T A STEREO, DUMMY, A FILE 1S ALREADY OPEN!!

YOU'D HAVE BETTER LUCK WITH THE LIGHT SWITCH THAN THIS DEVICE!
WHY DON'T YOU MOUNT THE DISC FIRST DUMMY!!

HEY! RASMUS, USE THE FULL FILE NAME.

I CAN'T WRITE ON THIS THING.

S=REMark « Issue 5 +1979

Vectored from page 8

BLANKING CIRCUIT OPERATION

Commonly known as TTL 74123, IC107 provides a pair of inde-
pendent, retriggerable monostables: one-shots. The IC107A cir-
cuit "‘program’’ one monostable of the pair for blanking. (The
remaining monostable serves in RUN indication.)

In Figure 1,IC107 A circuit connections are diagrammed accord-
ing to their specific function in development of blanking pulses.
This form of logic diagramming, although encouraged
worldwide, is still uncommon. To see how application of IC107
isclarified, compare with the same circuit on the H8 front-panel
schematic.

Each time that a logical 1 is detected at the input of IC107A, a
logical 1 is produced and held at the output for a specified
length of time, even after the input ceases to be a logical 1. (In
accordance with international convention, the 1 and pulse sym-
bol in the block identify this characteristic.)

Input to the monostable is the TICK signal entering at pin 10. Itis
not the presence of a high voltage level that signals a logical 1
input. Rather, transitions from low to high levels are logical 1's.
(This important edge-triggering qualification is signified by the
open arrowhead penetrating the block.) That is, this monostable
only sees logical 1 when the TICK input rises. Nevertheless, the
output pulse is held high for a specified duration thereafter,
independent of input pulse duration.

TICK is the sole normal input. Other connections shown on the
input side of the diagram provide supporting functions.

Pin 9, connected to ground, contributes no logical function.
(The cross on the ground path confirms that this connection is
logically irrelevant even though electrically essential for correct
operation, just like a power-supply connection.)

Actually, this connection effectively programsthe 74123, which
is more flexible than needed here, to accept positive-going in-
puts at pin 10.

Pin 11 is the reset (clear) input of the monostable. (“R" within
the block identifies this special significance.) When ever this
input is at a low level, any output pulse is dropped and no
further pulse output is allowed until reset is removed. (That low
instead of high signals reset is symbolized in the usual way by
the circle at the input point.) Since VF is always at a high level
somewhat below 5V, thereset capability isunused, as indicated.
(Wiring in this manner has some value during transient condi-
tions such as power-on when supply regulation is not yet
stabilized.)

The only significant output from the circuit is at pin 5. There
will be a high pulse every time that TICK rises (in the absence of
a reset signal). The pulse drops at a prescribed time following
the most recent rise of TICK. (This is the retriggerability prop-
erty; it is not used in this application.)

I have now described everything useful to be gleaned about
operation of the IC107A circuit except for answering the most
important question: how long after an input before the output
falls?

24

Good question. The desired pulse duration is printed in the
logic block, but its achievement is determined by C101, R103,
and the particular 74123 installed. Other mysteries of elec-
tronics, such as wiring capacitance, no doubt influence opera-
tion. In any case, everything at the logical level is specified. At
the electronic level, it is presumed that R103 and C101 are
selected to provide the necessary pulse duration. This is a matter
of specific electronics, not digital logic. You need to consult a
74123 data sheet in order to select appropriate resistor-capacitor
combinations. Chapter 4 of Don Lancaster's TTL Cookbook
(Heath catalog number EDP-183) gives excellent analysis of
74123 operation and application along with that of other timing
components.

If you're ever puzzled how one circuit diagram is chosen over
another, as [frequently am, a certain inconsistency may be
evident at this point. I'm trying, on the one hand, to show the
essence of this troublesome circuit in all of its logical purity. At
the same time, it's important to show all necessary electrical
connections for the actual components employed, hence the
presence of C101, R103, and the ground connection of pin 9. So
why aren't crosses drawn on the lines to pins 6 and 77 All [can
say is that in light of the importance of those connections, it just
doesn't seem right.

That’s about all that can be quickly said about blanking opera-
tion . Now we can have some fun with the application of IC107.

STATUS INDICATION

The four LED indicators on the left of the front-panel display
area reflect operating status of the H8. Each LED allows visual
monitoring of some distinct system condition.

Lighting of each indicator is by simple, fixed circuitry. How-
ever, conditions that cause lighting are not themselves always
straight forward, as we will see.

One indication, RUN, is derived with that half of 1C107 *“left
over” from implementation of protective blanking. The RUN
LED is an entirely neutral output intended to confirm that the
8080A micro-processor is actually processing instructions. Be-
side offering reassurance, this indicator is also an extremely
crude thermometer of the kind of running your H8 is doing.
Since RUN has little worthwhile use beyond making you feel
comfortable, it can be adjusted to your liking. To decide what
RUN means and how its behaviorisinfluenced, let's firstreview
the significance of all front-panel indicator LEDs.

GENERAL INDICATOR FUNCTIONS

Starting at the bottom of the indicator stack,

. PWR lights whenever 5 Vregulator output is present
on the front-panel control circuit board. This is a
reliable indication that the H8 main frame has
power.

L] RUN triggers each time that the 8080A processor
starts a new instruction. The indicator dims or ex-
tinguishes whenever in struction initiation slows or

“rREMark « Issue 5« 1979

halts, respectively. Because instructions usually
start every 2 to 9 microseconds, the indicator ap-
pears constantly lighted under normal conditions.

° MON is lighted and refreshed under software con-
trol to signify that PAM-8 is in control of the keypad
and numeric display. PAM-8 extinguishes MON re-
generation prior to executing ‘‘user” program in
response to a GO (4) keypad command.

L] ION lights whenever the 8080A is conditioned to
accept interrupt requests. ION is extinguished
whenever such requests will be ignored. Typical
interrupt requests announce 2 ms timer clicks, de-
pression of RTM/O, completion of a single-
instruction execution , and availability of an input
character from the console-device keyboard. ION
dimming/extinguishing signals bursts of interrupt
keyboard. ION dimming/extinguishing signals
burts of interrupt processing or of other program
sections that may not be interrupted.

PWR and MON are absolute indicators, being visibly on or off
and having definite significance.

Although RUN and ION are dynamicindicators, being switched
on and off as a function of processor activity, switching is at
micro-second intervals. Variations are rarely discernable unless
there is a prolonged pattern of operation having visible effect.

ABSOLUTE ION INDICATION

Despite the dynamic nature of RUN and ION, there are genuine
though extraordinary conditions that extinguish these lamps.
You can demonstrate the range of symptoms with a few minutes
spent at the H8 front panel.

First, turn the H8 on and off a few times. Notice that appearance
of ION, MON, and RUN is delayed beyond the lighting of PWR.
That’s because the internal reset that accompanies powerrise is
held for half a second or so. Holding RST/O depressed also
forces a reset condition until the two keys are released. Only
when the reset condition is removed does the 8080A commence
normal sequencing.

Now, to see what it means to disable honoring of interrupt
requests, introduce the following short program.

040.100 363
040.101 303 100 040
040.100 Pc

Commence execution with a GO keypad command. There are a
number of interesting effects:

° The horn will sound a continuous tone.
° MON and all LED display digits are extinguished.
° ION is extinguished but RUN stays lit.

L] RTM/O has no effect whatsoever.
HREMark = Issue 5 « 1979

Use RST/O to restore PAM-8 control. Set up the program again
but this time initiate execution with the SI keypad command.
Behavior should be identical except for the absence of an audi-
ble tone.

What have we demonstrated?

Instruction code 363 is the DI (Disable Interrupts) command.
Once executed, this command causes all interrupt requests tobe
ignored until interruption is enabled. Since the following three
bytes command a jump back to the instruction at 040.100, the
processor is executing perpetual DI commands with no provi-
sion to re-enable interrupts. Consequently, ION goes out al-
though RUN correctly indicates that the processor is still chug-
ging away.

The other effects demonstrate the degree to which an H8 de-
pends on interrupt requests for routine operation. MON and the
display digits are blanked because refreshing is inhibited:
PAM-8 fails to generate display because interrupts from the 2 ms
timerarenot being honored. Manual generation of that interrupt
request by RTM/O is also fruitless, with PAM-8 therefore failing
to see that its control is being requested at the keypad. Finally,
the hooter sounds because it is still turned on from acknowledg-
ing the GO-key depression: PAM-8 is set to turn off the speaker
on the next 2 ms timer-click interrupt, an event we've prevented.

Usage of the SI (Single Instruction) keypad command instead of
GO demonstrates another dependency on interrupt processing.
The ability to execute precisely one 8080A instruction and then
return to the monitor involves a cleverly-derived interrupt re-
quest. Since the single instruction being attempted prevents the
interrupt from being received, the processor goes its merry way.
(The speaker happens to be turned off, in this case, as part of
PAM-8's enabling of the “single-instruction interrupter.”)
There’s a moral here for developers of machine-level programs:
SI is not usable in debugging of program sequences that have
interrupts disabled. SI mode of program execution is still valu-
able in teaching yourself the behavior of individual instructions
though.

The main point is that ION and RUN indication are essentially
independent. Even though general-purpose programs such as
BASIC do not inhibit interrupts for very long at a time, you may
encounter a dedicated application that manages to keep ION off.
The operating instructions should emphasize that unusual be-
havior.

ABSOLUTE RUN INDICATION

To see what it means for the RUN light to go out, now try a
variation of the previous program:

040.100 363
040.101 166

040.102 303 100 040
25

Continuous execution is initiated by either an SI or GO keypad
command, as before, since interrupts are going to be ignored.
This time, however, the RUN light should be out as well.

In this case, we've brought the 8080A processor to a screeching
halt. Afterdisabling interrupts, execution of further instructions
issuppressed by instruction code 166 [HLT). The only event that
causes a HLT instruction to “end” is acceptance of an interrupt
or occurrence of reset. Because no new instruction is started
until the HLT waiting condition is broken, RUN also blinks off.

It is important to recognize that HLT does not, strictly speaking,
stop the processor. Rather, the processor waits for an allowed
interrupt, any interrupt, before continuing. If the 2 ms timer
interrupt is the culprit, PAM-8 will normally notice that the
processor was apparently HLT-ed and simulate an automatic
RTM.

Idiosyncrasies of the 8080A make PAM-8 have to guess that
timer interrupt is on the heels of a HLT. Since there are other
ways for 166 to appear in program code, HASL-8 programmers
are periodically rewarded with mystery monitor returns., The
problem can be aggravated when additional memory is installed
in the [H8! Fortunately, the programmer can over-rule PAM-8's
guesswork using demonstrated in the next section and in Ap-
pendix B.

Meanwhile, redo the HLT-demonstrating program with the 363
at 040.100 changed to 000. You can now Sl right through the
sequence , watching Pc stage from 040.100 to 040.102 and back
10 040.100. Execution by GO command comesback immediately
with Pc = 040.102 . This is PAM-8's HLT detector in action,
another example of the H8’s dependence on interrupt proces-
sing. The discrepancy between Pc and actual location of the
HLT, 040.101, is the source of PAM-8 guesswork. PAM-8 peeks
in front of the captured Pc location and concludes that any 166
codeis fora HLT that was being executed. All right this time, but
not totally reliable. Try the program

040.100 041 104 040
040.103 076 167
040,105 326 001
040.107 302 105 040
040.112 064

040.113 303 100 040
040.100 Pc

with the GO key held down for a few minutes. What's happen-
ing?

DYNAMIC RUN INDICATION

Every time that the H8's processor starts a new instruction, the
event is signalled by provision of a unique bus signal, M1,

26

Although HLT instructions have indefinite duration, other in-
structions operate in fixed numbers of processor cycles accord-
ing tosystematicrules. The least number of cycles foran instruc-
tion is 4. The greatest is 18. Single cycles take just under .5
microseconds with 2.048 MHz clocking, so instructions are
expected to take 2 to 9 wsec apiece.

Because of instruction-time variations, M1 pulses are not un-
iformly spaced. The upper trace in Figure 2 illustrates the pre-
dominant M1 pattern while PAM-8 is awaiting a keypad com-
mand. In this particular viewing, we're seeing a composite of
M1 intervals, 7- and 10-cyle instructions being very popular.
Other timings occur, but too infrequently to make a visible trave.

M1 is unsuitable for direct usage as a RUN indication. Its pulses
are too brief and, as a bus signal, it should directly drive a
minimal number of TTL inputs, permitting future usage by
other bus occupants.

The lower trace of Figure 2 exhibits a corresponding RUN signal
easily derived from M1 using IC107B circuitry. This trace was
actually obtained at unused output 1C107-13 after dropping
R153 to about 10 k2. The “on” time of the RUN indicator
(LED112) corresponds exactly tothe **high" duration of he exhi-
bited RUN signal.

Pulseduration of RUN signals is fundamentally a matter of taste.
Using long pulses (5 usec or more) keeps the RUN indicator
solidly lighted. Shorter pulse times allow changes in the pre-
vailing pattern of instructions to make pulsations of the RUN
indicator. Because of the speeds involved, only dramatic situa-
tions will have a pronounced effect.

To demonstrate dynamic variation in RUN indication, work
through the following exercises. You can then experiment with
values of R153 between 5 k and 50 k ohms until likable results
are obtained. Award yourself the compulsive-hacker title when
you can tell BASIC is running from the RUN indicator alone.

First, notice the appearance of RUN when the H8 is "idling" in
PAM-8 after power is applied. There should be no perceptible
change if you execute the following do-nothing loop:

040.100 303 100 040

040.100 Pc

pose]
‘ | I

|

M1 ’
- 1

-

Figure 2

*Actually, not every cycle need be given over to progress on a
current instruction, so the elapsed time can be greater than the
minimum required by the actual instruction. Such instruction-
time "stretching” is absent in typical cassette-oriented config-
urations.

3=REMark + Issue 5 « 1979

Now compare with a program dominated by very fast instruc-
tions:

040.100 041 103 040

040.103 204
040.117 204
040.120 351

Any brightening of RUN will be very subtle, even with RUN
pulse durations as short as 2 usec.

For the other extreme, try this loop of time-consuming instruc-
tions:

040.100 041 103 040
040.103 345

040.104 343

040.147 343
040.150 311

Thisisthedimmest RUN that can be obtained with anything like
normal instruction execution. Obviously, the RUN indicator is
not a terrific speedometer.

Many computer systems, including some of the largest, provide
visible indications when they're not working very hard. This is
also possible with the H8, provided that programs do ‘‘hard”
waiting instead of "busy” waiting.

By busy waiting is meant any procedure where the processor is
kept active simply waiting to see if there is work to be done. An
example is the waiting that PAM-8 does for keypad commands
and that BASIC does for input characters. Hard waiting is the
kind provided by HLT instructions, once PAM-8 is discouraged
from doing anything about them. A typical “idle loop" de-
monstrating this technique is accomplished by the following
instructions:

040.100 072 010 040
040.103 366 200
040.105 062 010 040
040.110 166

040.111 303 100 040

040.100 Pc

SREMark « Issue 5« 1979

HASL-8 programmers hoping to introduce new system software
forthe H8 can avoid a lot of grief by considering the implications
of the example routines:

b It’s not nice to disable interrupts any more than
absolutely necessary.

° PAM-8 HLT detection doesn’t really work and is
best avoided.

. HLT instructions written with the expectation of
being detected are also very dangerous.

The first warning is because someone, someday, will want to
run your program in conjunction with a concurrently-running
application having critical interrupt requirements.

Secondly, re-assembly of your program will someday produce
an unfortunate 166 to be incorrectly trapped as an actual HLT.
You may have already produced such a program but not been
caught by the necessary timing coincidence. The only sure way
of avoiding such embarrassment is to disallow halt detection.
Coding of the following form should exist in all serious HASL-8
programs:

MFLAG EQU 040010A

UO.HLT EQU 2000

LDA .MFLAG
ORI UO.HLT
STA .MFLAG

The prohibition on HLT instructions as a programming
technique follows pretty immediately once we’ve agreed not to
rely on PAM-8 for HLT detection. There’s another reason too.
Even with HLT detection, the HLT can be missed! Remember
that any accepted interrupt breaks the HLT. There's noreason to
presume that PAM-8's timer interrupt will always be the win-
ner.

EOF

27

Curing Single-Drive HASL’s

By: John Beetem
Quillen 4-1
Escondido Village
Stanford, CA 94305

One problem with the HASL-8 assembler
is that you need two tape drives to assem-
ble a program with origin in low memory
(i.e. below the HASL high-memory ad-
dress.) This is because two files must be
open: the source code file (input) and the
object code file (output.) You cannot as-
semble directly into memory because the
assembler will be written over. This arti-
cle describes a simple modification to
HASL-8 so that programs with origin in
low memory can be assembled using one
tape drive.

The idea is very simple: the object file is
stored in memory above the high memory
address instead of being dumped onto
tape. Note that this is different from as-
sembling the program directly into mem-
ory, because the record information de-
scribed on pages 0-12 through 0-15 of the
H8 Software Reference Manual is stored
also. After assembly, the source tape is
dismounted and the data stored in high
memory is dumped verbatim onto an ob-
ject tape.

This modification is necessary for
single-drive systems to be able to assem-
ble programs with origin=041.144, the
first address after the console driver. 1t is
also an improvement over assembling di-
rectly into memory and then dumping
using PAM since the dump parameters
(PC, start of dump, end of dump) are
supplied automatically by HASL.

Using the modification described in the
Listing

(vou must have at least 12K of memory.)

(1) HASL-8 must be configured so that
HIGH MEMORY = 18431.
(note: 18431 = 110.000 —1)

(2) HASL always outputs to tape using
the $TDOUT (Tape Data Out) sub-
routine at location 040.133 in the
console driver. This three-byte sub-
routine must be replaced with a
jump to 110.004, i.e. patch 040.133
with 303,004,110.

28

(3)

(4)

(6)

Load the program Listing 1 before
assembling. This causes bytes in-
tended to be sent to tape to be stored
in high memory.

Assemble vour program as usual.
When asked BINARY TAPE? answer
Y.

When assembly is complete, the data
which would have been written onto
tape is stored in memory starting at
110.100. Location 110.002 (COUNT)
contains the number of bytes stored.

To dump the data onto tape, set PC
equal to 110.030 and press GO.

COUNT+2 bytes are written so that
nosignificant bytes are lost when the
tape is turned off.

(7) Multiple copies can be written by
pressing GO again.

(8) The tape stored can be loaded using
PAM or BUG. The initial PC will be
the address specified in the END
statement of the source program.

(9) Since POINT and COUNT are
changed during assembly, step (3)
should be done before assembling
another program, unless you wantto
concatenate object files.

Program to write assembler object tape inte memorv, so that

040,133: 313,004,110

PASL should be configured so that high memory = 18431 [107.3774]

AREA
0

#* gimulate dumping of one bvte

" Mo repisters changed
I'OINT save byte in AREA
ML A
"
POINT
{ QOUNT
H
COUNT
4

count=count+l

n,0

* Dump tape stored in memory onto oblect tape
* This propram is te he run after the

* agscmhly is finished.

NE= & of byres left

*

* you don't need two tape drives,

* answer "Y' to HASL-8's question: Binary Tape?
* Malke the follewing pateh te HASL-8:
* replace N40,133: 323,370,311 with .
*

* The followinp propram should he leaded at 110,000
L

110.009 100,119 POLNT (1
110,072 000,000 COUNT 1M
110,004 345 mEsI PUSH
119,005 052,000,110 LHLD
110,010 167 v
110,011 043 LHX
11n.012 42,000,110 SHLD
110,115 052,n02,11% LILD
110.620 043 InNX
110.021 N42,002,110 SELD
111,024 341 rop
112,025 311 PET
11n.026 ann,nann ne
111,037 152,002,110 D*TAREA LHLD
117.033 353 Xeue
11n.7%4 n23 IMX
111,035 nal 1IN
110,036 315,152,940 CALL
110,041 041,100,110 LXI
110,064 N76,721 i
110,046 323,371 nuT
111,050 333,371 nAl I
110,052 6,001 AL
110.N54 312,059,111 JZ
11n.n57 176 By
110,060 n43 THX
117,061 323,370 nuT
110,063 13 bex
119,064 172 oy
1In,n65 263 0ORA
11N, n6b 302,150,110 JNZ
119,071 323,371 OuT
110,073 166 LT
110,074 13,030,110 JiP
111,077 N0 DB

* ump area...

COUNT DE = count+2

n

n

SPRSCL preset UARTs

11, AREA IIL points to AREA
A, 210) Turn on tape

3719

3719 wait for trans., ready
1

DAl

AH ret hyte

h

3700 output Lyte

n count=count-1

AN count=07?

2

DAL

371 turn off tape
DHME'AREA re=dump

0

* This area must be bip enouph to save the
* gntire object tape

110,170 1900 AREA DB

END

0

EOF
#REMark « Issue 5 « 1979

CONFIG.SAV — .. .“Ta

wniist ttm
«enabl amarlc
stitle confis

+sbtt]l Hameton G. Hiller

at the Heath Coneany §-Dec-73

Pt
i DisFplay various sustesm rFaraneLers.
'
‘ Swstem has:
’ {9-28)K of memory
(] EIS/FIS Char
¢ Farer-tare Reader
Farer-tare Funch
V Line-rranter
¥ Line-time-clock runnins
4 H27 Externded Mode ./ RX0L comrétible todn

o

smocall .sresdefs. . vIioraprints.enit

sawZen

«resdef
valobl confia

trard4=4
trario=10
clkvec=100
FR=177550
FF=177554
LF=177510
RACS=177170
REDB=177172

confis] JFrint
mov
mowv
mowv
mov

108: tst
add
ChF
or

memblst! mtrg
tsl
mov
cFrint
sEFTINL

rarer tare readger

* rarer tsre Funch

i lime Franter

H27 device resistors

#susmss
BHTRAFAr =15k)
#memtst s F#TRAFS
#siztaby RO
$20000.R1

FR1

#20000.R1
VROV RO+

108

LEF)+
{sFrit
LsElteEHTRAFA

#hmss

¢ test for EIS/FIS Chae

Bischki mowv
mav
JsT

teismss RO
teistot Rl
reriestd

i test Tor rarer-taFre resacr rrosent

erochkl moy
mow
45T

#rtrasa. RO
tetrist il
ForLestd

7 test tor parer-Llare Funcn FrescnL

Frchikl mowv
mowv
JS5 T

#Etemsar RO
fetrrstaR1
Foetestd

P test Tor line-printer eresenl

lechik: mowv
Row
Jsr

F otest for lime tame clork rresent (tins

clkche! mov
mov
mav

10%: sob
mav
noy
ChF
one
sPrint

2082

v Test for REXOL/HZ? mooe (thas can

tletmss RO
$lrttst Rl
Fortestd

F¥cleverruave Ll
taotoclesPtelivee
#40000 R0

FOe10%

Edclhvec RO
savelkPiclhvec
ROrsavelk

20%

#clhmss

P Wwilhout warnins. !

H27chk ! mov
CLR
mov

104! tst
ben
bit
brie
mov
clr

2041 WErAAL

mov
exit

¥ Here to test

eiststi mov
Cme
Tadd
ris

i Here to test
rtrtst! tst
rts

i Here to test
rtrist: tst
ris

krenss RO
B#RXDE
#1101, B4RXCS
E¢RXCS

10%

+A0 B#RACE
203
#HZ7msa RO
FERADE

se RO

for EIS/FIS chie
sFafl

-{R1)e=(R1}

R1

FC
for rarer tare reader

GH4FR
BC

for rarer tare punch
BHFF
FC

SrREMark « Issue 5+1979

P
i
i
¢
i
i

'
i
'
i
P

*Hustem has!'

irslall our own vector

roint a3t *4° moessane

#nts

scan In AK dncr

mumors there? (will tree 3f notd

ro1nt Lo nest Ak bank
slep to next AK sscir strins
sooner of later 5 trep will set us

TRLLOrE Frevinus F5
giecard intervust FLC
restorg sustem vee Lor
strins alresduy in RO
‘K of memorw'

TEIS/FIA Lihae®
FALD RO wnstruction
perform common test code

Fapar—-Lare Resrjr
TST @4k anstruction
call Lesy anaoc ondenl routine

*Farer=Lare Funch
TST @4FF insvruviion

e

NOL GUILe £0 BEwgrard
save clocr veoion
wrntall our oun
#llow Flents of time Tor clock Lick
tuwiddle thumos
act sustem veolor
restore reasarrdiocs
gucd we caten cloce Lick?
fiter N clock
wesy clock 1s running

be canacrous: HIF microcoac maw change

assume b

select HI? NOF

far resrunse

NONE set?

wvess he's rlauing dumo

nor sESUmE hE S Shart

Tinish out H27 NOF secuence
Frint string aadresses bw RO

euiet g1t (re-startables touo!)

#oint to FADD args

move down into stack
cause trar if mo EIS chir
else return

cauge trae if no Farer Lare reader

cause Lrae if no saser tare punch

whe masic woerollinusen R0l codel

ke My Pulse, Doc.”

H.G. Miller

29

¥ Here to test for line printer
d1pttst: tst BELP
rts BC

i cause trar if ro line Frinter

" i Here uror clock tick. Restore vector and rrosasate disratch.

gotclk! mov savolksPéclivec
miEs @#clkvect2
SmE Bclhvec

it
i Test routines TEST and TESTH4.

i set FS
i finieh wr tick sccountinsg

Entry (RO) = sddress of ascii strins to pe rrinted if test wins
i {(R1) = address of device derendent test routine
P tR2) = sddress of test vector (TEST onlw. TFST4 sets R2)
]
v Exit none
i -
test4l mov +TRAFART i select i1llesal memory reference tras
test: moy @R2r-(35F) i save vrootor
mow #108,ERT i install our ouwn
Jsr rcr@R1 i use callers routine
serant i strins sodress 16 @lreads 1n RO
or 20% ¢ skiFr interrurt disratch recoverws
10%: tst (splt i drscard return FC
mirs (=p)t i restore erevious status
tst (sF)t i discard interruet return FC
208 mowv (e)+ PR2 i restore wvector
rts FC i return to caller
shnlist bin
swemss! .asc1z \Swetem hasi
bmsal «@sC1Zz AK of Hemors™

e1smsal .asciz AEIS/FIS Chies

rtrmssl .esci1z wFarer-tare Resderh
rtemss! .asciz sFarer-tape Funcnod
IFtmssg! .asciz Aane-Frinters

clkmsai .asciz SLine-Time-Clocek’
rumsal .asciz \RX01 Comratible rode™
HZ7ms=! .asciz A\HIZ7 Extenoceo Hode'

v STZTAE consists of 8 4-bute entries. Eoch entrd con e frinked as

i an ASCII strans.

giztab! .ascii ANANAZO00 L0 RCQRABNI200 0 T0T IO NI INAZ00 TN L AN V20000
+88C1L A2ZONTPO0ALOUAZAN D000 L0 NIBN L2000 N30 2005

seven
savclik! Jblkw 1

s End confis

“H8 CRASH

Intermittent failures seem to be the most
frustrating experiences a new com-
puterist can go through. I had been hav-
ing problems with my H8 for several
months — first, with a Selectric typewri-
ter I had hooked up through a parallel
port; then, the system began to crash, oc-
casionally, then often, until I was ready to
give up. I had taken the computer to the
store (couldn’t find anything wrong), and
had made numerous calls to Benton Har-
bor, but nothing I tried helped. I even
removed the motherboard and resoldered
every connection and cleaned all the pins
(there are a lot of pins on that mother!). I
complained a lot at the local HUG meet-
ings, too.

Then, one of our club members, Bob
Craig, heard me, and said he had had the
same mysterious problem. An inspiration
prompted him to look at the voltage reg-
ulator plug-in connection on the CPU
board. (That’s sacred ground, right?
Heath didn’t want us to touch that board,
right?) He reasoned that an oxidized con-
nection could cause the CPU to lose its 5
volts, perhaps even just for microseconds,
and the 8080 would get out of step with its
program. So he cleaned up the connec-
tors, both on the IC and the plug, bent the

30

springs out a little to tighten the contact,
and burnished them together. And he had
experienced no crashes for several weeks.

Well, I had spent hundreds of hours try-
ing to figure out what was wrong, so I'd
give it one more try. It took about fifteen
minutes to do, and I've been up and run-
ning ever since.

I keep thinking of that old joke about the
guy who charged a dollar for hitting the
machine with a hammer, and a hundred
dollars for knowing where to hit it. What
it demonstrates is that the value of the
local HUG group can be incalculable, be-
cause where else can you accumulate so
much practical experience with the exact
problems you are likely to have yourself?

It's fun, and time-saving, to share
software through HUG. But it's sharing
solved problems that really makes the
group worth while.

Donald Skiff
2448 Vera Ave
Cincinnati OH 45237

Thanks Don — We've heard of perhaps a
dozen other H8 owners with the same

ARRESTER”

mysterious problem and just about the
time your letter came in we verified that it
is, indeed ‘tacky’ contacts on the +5 V
regulators on any of the boards. For now,
if any one else is experiencing this prob-
lem, I suggest eliminating the sockets and
soldering the wires directly to the leads of
the regulator — :JB:

Just at press time, we acquired a
new Text Editor for the H8/H17 sys-
tem — BWEDIT is a character
oriented editor. Multiple, one letter
commands may be placed on one
line without delimiters — A
FNAME.BAK (backup) is automati-
cally generated and a string of
commands may be repeatedly exe-
cuted by a single command.
(MACRO)

BWEDIT.ABS and BWEDIT.DOC is
availabel from HUG by ordering (on
green order form) 885-1022, cost is
$15.00.

:JB:

COMING SOON! A TEXT FORMATER

S=REMark « Issue 5+1979

ERROR IN ‘BIORHYTM’ SOFTWARE TAPE — ISSUE 40.00.00

This problem came about when I ran into
someone with a birth certificate in their
pocket. T compared the computer results

except for the month of February of any
Leap Year.

which covers the day of the week for any
date from September 14, 1752 to 2000
AD.

example: Input ‘Birth Date’ 2,24,1928
(NOT MINE!!)
Results show that day to be
Saturday. Actually it was Fri-
After entering your birth date, the prog- day.
ram returns the 'day of the week’ on
which you were born. This data is correct

with two different perpetual calendars
and found the computer program to be in
error.

Thank you for your kind consideration of
this matter, [remain,

D. A. Provancher
441-L Church Ave

[am attaching a program of my own Chula Vista CA 92010

5 PRINT TAB(15)"**DAY OF THE WE2K**-BY:D.A. PROVANCHER":PRINT
6 PRINT TAB(15)"EXTENDED BENTON HARBOR BASIC®ISSUE #10.02.01":PRINT:PRINT
10 DIM D3(7),M8(12)
20 D$(0)="SATURDAY":D§(1)="SUNDAY":D§(2)="MONDAY" :D§(3)="TUESDAY"
30 D§(4)="WEDNESOAY":D8(5)="THURSDAY" :D3(6)="FRIDAY"
40 M$(1)="JANUARY" :M$(2)="FEBRUARY'" :M§(3)="MARCH" :M§(4)="APRIL" :M§(5)="MAY"
50 M3(6)="JUNE":MB(7)="JULY" :4$(8)="AUGUST" :M§(9)="SEPTEMBER" :M§ (10)="0CTOBER"
60 M$(11)="NOVEMBER" :M$(12)="DECEMBER"
70 PRINT TAB(5)"DAY OF THE WEEK FOR ANY DAY SINCE SEPTEMBER 14, 1752";
71 PRINT" TO 20Q0 A.B."
80 FOR X= 1 TO 64: PRINT TAB(S5) "=";: NEXT X:PRINT :PRINT
90 INPUT " MONTH,DAY ,YEAR (USE COMMAS) > "; M,D,Y
95 REM JAN AND FEB BEING THE 13TH & 14TH MONTHS OF THE PREVIOUS YEAR
100 IF M=1 THEN M=13 : ¥Y=Y-1
110 1IF M=2 THEN M=14 : ¥Y=Y-1
115 REM FOR DAY OF THE WEEK BETWEEN 1900 AND 2000 A.D.
120 W1=D+INT((13/5) * (M+1))+INT(1.25 * Y):IF ¥»=1900 GOTO 140
125 REM FOR DAY OF THE WEEK BETWEEN 1752 AND 1999 A.D.
130 W2=W1-INT(/100)+INT(Y/400): w=w2-((INT(%2/7))*7): GOTO 150
1450 Ww=Wl+6-((INT((W1+6)/7))*7)
145 REM REVERT JAN AND FEB BACK TO 1ST & 2ND MONTHS OF THE YEAR ENTERKED.
150 IF M=13 THEN M=1 : Y=Y+1
160 IF M=14 THEN M=2 : Y=Y+l
170 PRINT :PRINT TAB(10) Do(W);"......";M8(M);"";D;"";Y: PRINT: GOTO 90

HUG MEMBERSHIP RENEWAL FORM

You can determine your expiration date by examining the last six REMEMBER — ENCLOSE CHECK OR MONEY ORDER
digits of your ID number — example: 780202 indicates your

membership began 02/02/78 and expires one year from then. CHECK THE APPROPIATE BOX AND RETURN TO HUG

NEW MEMBERSHIP?

FEE IS: \

IS THE INFORMATION ON THE REVERSE SIDE
CORRECT? IF NOT FILL IN BELOW

Name RENEWAL RATES

US DOMESTIC $11 [$14 [
Address EEEm—— CANADA $13 [J US FUNDS $16 (]

INTERNAT'L* $18 [J US FUNDS $24 J
City-State e .

* Membership in England, France, Germany, Belgium,
Ziph — e _ S Holland, Sweden and Switzerland is aquired through

the local distributor at the prevailing rate.

=REMark « Issue 5 « 1979 31

THE

BACK
PAGE —

As soon as these words are written, work
will resume on putting the finishing
touches on Volume Il of HUG Software.
Let me tell you about it —

Volume Il and TapelIlis being prepared so
that you may assemble them into a com-
plete, neat package, including a HUG
binder and cassette holder. All programs
are written for the H8 cassette system —
(Some may convert to disk, most would
require some degree of modification).

Some of the programs included are:

An excellent Data Base Manage-

ment program.

Two programs that allow you to
‘Create’ a customized pro-
gram to suit your needs (mail-
ing lists, for example) with no
programming knowledge.

Miscellaneous I/O Routines.

Complete I'ile Maintenance and

Sort programs

DC Circuit Analysis.

Metric Conversion (Good Educa-

tional Tool).

Calendars.

Utility Graphs.

Electronic Formulas.

BASIC Renumbering Programs and
‘Merge’.

Mailing Lists.

More Disassemblers.

Tape and File Management.

And the next release will include:

Personal Accounts Payable.
Credit Card Management.
Inventory Control.

Home Budget Control.
Expense Account Maintenance.
And Many More Surprises.

We're beginning toaccumulale some very
nice software for the H8 disk system —
these are being evaluated and assembled
into a very nice package that will be avail-
able real soon — hopefully after March.

You will be receiving an updated catalog
soon that details the software available
and ordering information.

Here's another reminder about continu-
ing your membership in HUG — details
are on the inside back cover — some very
exciting things are in store for us in '79
and we want to share them with you.

Contest #4 deadline — April 9. Same
rules apply as in the past — see page 16
for details. By next issue we hope to hear
from you H27 and ETA-3400 users.

H17 owners — A new release of HDOS
should be arriving any day — if you didn’t
return your registration card, you will not
receive it. Primarily, some irritating bugs
were fixed in BASIC and an LP driver was
added. Also, you will beabletolist BASIC
program statements from BASIC in the
command mode.

What's H8-18 and H8-14?

H8-18 is the system cassette software for
the H8. If you do not have the H8-4 serial
interface card, you don't need it — same
goes for H8-14 which is Extended Benton
Harbor BASIC with ‘file capability’. Same
as H8-13 ([version 10.02]). These were
modified to talk to the 4 port serial board
and the line printer. This means you can
change ports and baud rate from the
keyboard.

A Heath
- Users’
Group

Hilltop Road
St. Joseph MI 49085

POSTMASTER: If undeliverable,
please do not return.

885-2005

BULK RATE
U.S. Postage
PAID
Heath Users’ Group

	REMark_issue5_1979_Page_02
	REMark_issue5_1979_Page_03
	REMark_issue5_1979_Page_04
	REMark_issue5_1979_Page_06
	REMark_issue5_1979_Page_07
	REMark_issue5_1979_Page_08
	REMark_issue5_1979_Page_09
	REMark_issue5_1979_Page_10
	REMark_issue5_1979_Page_11
	REMark_issue5_1979_Page_12
	REMark_issue5_1979_Page_13
	REMark_issue5_1979_Page_14
	REMark_issue5_1979_Page_15
	REMark_issue5_1979_Page_16
	REMark_issue5_1979_Page_17
	REMark_issue5_1979_Page_19
	REMark_issue5_1979_Page_20
	REMark_issue5_1979_Page_21
	REMark_issue5_1979_Page_22
	REMark_issue5_1979_Page_23
	REMark_issue5_1979_Page_24
	REMark_issue5_1979_Page_25
	REMark_issue5_1979_Page_26
	REMark_issue5_1979_Page_27
	REMark_issue5_1979_Page_28
	REMark_issue5_1979_Page_29
	REMark_issue5_1979_Page_30
	REMark_issue5_1979_Page_32

