e —— .

——

R sneak preview of the HI9 Video Terminal
,-- l-' I\/
MORSE CODE ON | RTTY PACKAGE FOR
THE X THE
FOR THE H8/H17 SYSTEM ;
ET-3408 H-8
f L BT 11 INVENTORY PROGRAM |
MORE BASIC IDERS :
NEW EDITOR MODEM TALK
‘ RNOTHER GRERT CONTEST
F"

MORE INTERFACING HINTS

FEATURES OF MICROSOFT tm (MBASIC) -

T 3 R W T) ONE O O oy o,
Official magazine for users of Heath computer equipment.

- T

(HUG MATERIALS AVAILABLE
TO HUG MEMBERS

HERE IS A COMPLETE LIST OF MATERIALS AVAILABLE
TO MEMBERS TO DATE.

HUG BINDER 885-4 $ 4.00
HUG TEE § 885-1100 $ 4.50
SHIRTS M 885-1101 $ 4.50
L 885-1102 § 4.50
SOFTWARE TAPE 1 885-1009 $ 7.00
SOFTWARE VOLUME I 885-1008 $ 9.00
VOLUME II
TAPE II (BASIC)
TAPE Il (ASSEMBLY)
ADVENTURE (H8) (disk)
HDOS PROGRAMMING GUIDE
HDOS DEVICE DRIVER
SOFTWARE (disk) See Page 34
RTTY COMMUNICATIONS
PACKAGE
HDOS EDITOR

See Page 34

885-1010 $10.00
885-1018 $ 5.00
885-1019 $10.00
885-1024 $18.00

885-1023 $22.00
885-1022 $15.00

NOTE: Always place your orders on the green order form

\-

N

and include payment plus shipping and handling./

on the stack

OAT

CPM FOR THE H8 SYSTEMcccivvinnnnennnn 3
:JB: ETAL

UNDERSTANDING NUMBERSccvvvvvennnns Bys
Charles Dattolo

NEWBASIC FEATURESc.iiiiiiiinnnnncnnnnas 13
Kathy Borden

BASIC IDEAS . o ovoasiivaissivsansenu s s ea e 17

DECIMALI/OINTHEHB.......coivviivnnenrnnnnnas 20
Alan Day

HT-11 INVENTORY PROGRAMvvvvvvnennnens 25

MORSECODEONTHEET-3400cc000nvuuens 26
Louis Grave

H19 SNEAK PREVIEWcovvvvieernnnennrsnnnns 31

NEW SOFTWAREc0vviiiiiennnennsrnnnnsnsssns 34

N\

COVER PHOTO — H19 New video terminal
coming next month described on page 31

“REMark"” is a HUG membership magazine
published quarterly. A subscription cannot
be purchased separately without member-
ship. The following membership rates ap-

ply.

U.S. Canada &
Domestic Mexico Internat’]l

Initial $14 $16 $24

Renewal $11 $13 $18

Membership in England, France, Germany,
Belgium, Holland, Sweden and Switzerland
is acquired through the local distributor at
the prevailing rate.

Send payment to: Heath User's Group, Hill-
top Road, St. Joseph, MI 49085. Back issues
that are available cost $2.50 postpaid to U.S.
destinations. Request for magazines mailed
to foreign countries should specify mailing
method and add the appropriate cost.

Although it is a policy to check material
placed in REMark for accuracy, HUG offers
no warranty, either expressed or implied,
and is not responsible for any losses due to
the use of any material in this magazine.

Articles submitted by users and published in
REMark, which describe hardware modifica-
tions, are not supported by Heathkit Elec-
tronic Centers or technical consultants.

HUG Manager and Editor....... Jim Blake
Graphics Ron Hungerford

Copyright © 1979, Heath Users’ Group

MeREMark

¥-REMark » Issue 6 » 1979

CPM FOR THE H8/H17 SYSTEM

Lifeboat Associates in New York is mod-
ifying CPM to run on the H8 system. I
talked with the President of the firm,
Tony Gold and learned what is in store for
us. :JB:

HUG: What is CPM?®

TG: CPM is a floppy diskette operating
system for 8080 family microprocessors
which would include the 8085 and the
Z80. It is not only an operating system,
which controls the data structures on the
disk and the directory housekeeping, but
it also includes a family of utility pro-
grams to operate with it which includes a
text editor, assembler, utilities to debug
programs by tracing through them and
with break points, examing registers and
is a program to recreate systems — to use
different amounts of memory, a utility to
handle files and direct files from device to
device. It's a family. There is one other
program. It is a Batch processor so that
you can run a sequence of programs regu-
larly just by creating a kind of menu. CPM
is a trade name of Digital Research and is
an operating system and a family of
utilities which are supplied at no extra
charge with the system.

HUG: Are you familiar with HDOS?
TG: I haven't had the opportunity and
unfortunately the luxury of time to learn
all the various operating systems. I have
heard good things about HDOS; the fact
that the people want CPM really should
not be considered a criticism of HDOS.
HDOS is very much a captive system of
the manufacturer just as for instance ISIS
is the captive system of INTEL and
PTDOS of Processor Technology. It has
been found useful to consider CPM much
more of a standard in that it is not owned
by a manufacturer. And manufacturers in
general don’t feel threatened to have this
operating system co-exist with their own.
In fact, this operating system is used very
happily on the Helios with the Sol and on
the North Star and on the Micropolis sys-
tems, although each of those manufactur-

HREMark « Issue 6 « 1979

ers themselves have their own operating
system.

HUG: Is CPM just one of those currently
popular buzz words or is it really that
much better a system?

TG: No, it is not a better system. What I
was trying to say, in fact, is that it is possi-
bly cruder than others. I don’t know the
features of HDOS, it may be that HDOS
has superior features. There are some ar-
chitectural problems with HDOS and 1
believe some errors were made originally
when the thing was architected in the
terms of addressing various parts in the
system memory. I believe in general that
itis not a good system practice to have the
operating system hog low memory with
all of the interrupt structures. In general it
is best to make that available to the user,
but the CPM was, I guess, first distributed
in 1975 and [am sure that many clever
things have been thought up since then
and in all likelihood, the person who
wrote HDOS was fully aware of what CPM
could do and he therefore did things dif-
ferently because he thought he was doing
it better. CPM has a couple advantages
over and above it’s commonality. One ad-
vantage is that it is quite small and
another is that it is extremely powerful.
The kernel of CPM is only 4 K and that
manages all of the disk control functions
in terms of maintaining integrity of the
data structures and directing data to disk
files, opening files and such. That is a
very remarkable achievement and con-
sidering it was written in a high level
language with all the inefficiencies and
code explosions associated with that. Itis
also extremely fast, but it is possible to
write bigger operating systems with more
bells and whistles. In general, those
would operate more slowly. You have on
your staff someone who is very experi-
enced with CPM and probably now very
experienced with HDOS and this is Barry
Watzman. He is one of the people in the
company who really understands CPM
and wants people to use it. I could count

on the fingers of one set of hands and feet
the people who really understand it and
you've got one of them there and you can
certainly go to him for a contrastive
analysis.

HUG: About the Editor and Assembler,
what bells and whistles does it have?

TG: The Editor is very much reminis-
cent of the TECO Editor on the DEC
machine. It is a character, not aline editor
and it allows full global searching and
replacing. It offers the ability to find
strings deep in files. It has the ability of
moving stuff around from one part of the
file to another. It has the ability to find out
how full your buffer is and what line of
the file you are on. It takes a little learn-
ing, all editors do. In general, people
don'’t like new editors. Most people learn

- onan editor and at that point are spoiled. I

was brought up with DEC software
(TECQ), so I kind of slipped into ED with
no trouble at all. Other people are more
used to the kinds of editors that come
with BASIC interpreters and we do have
editors available. There is one written by
Microsoft that is very reminiscent of their
disk Extended BASIC and it has the same
attractive features. It is a character editor
and it has all the features of that, so you
can use it for creating letters and also
create source programs or whatever. It
provides back up features. Most editors
do. When you alterafile, it will back it up.

HUG: The Assembler, does it create
cross reference?

TG: The Assembler doesn’t create a
cross reference table, it creates a listing
file, with the errors flagged on the listing
file and also separately, any errors will
come to console and it creates an output
object file in INTEL hex format. It is not a
macro-assembler and it does not have lin-
kage and relocation. We have other as-
semblers that will do all of those things,
but the one furnished by Digital Research
does none of those.

HUG: Well, obviously, one of the
reasons a person might want to buy CPM
is because there might be some more
software available, right?

TG: Okay, there are two sources of
software on the CPM. First of all I must
say that the CPM offered on the H8 is not
standard CPM, it is modified because of
the unique architectural characteristics
(of the H8), but for instance, we could
come up with a COBOL for the H8 in a
week because it is just a matter of relink-
ing it with different constants. Whereas,
coming up with a COBOL for HDOS
might take two or three months and many
thousands of dollars. For instance, the
FORTRAN which has been provided for
HDOS, we could have had that available
on the CPM in about one or two man days
of work and a total elapsed time of a week.
Microsoft would relink with different
constants and run immediately with no
debugging or anything. It is field tested
and a proven system that has run in
thousands of systems around the world.
That is the advantage of CPM. And, it is
very easy to acquire reconfigured prop-
rietary software. The other source of
software is that there is an extensive us-
ers’ group library of software and Barry
Watzman has expressed an interest in
making that available to Heath Users and
maybe it will go through HUG. Maybe
we will put in a separate set of volumes
that will be in the CPM library. Those
programs are in source form for the most
part and those would just be edited for
different constants and reassembled for
the Heath version of CPM. There is
enormous software. It is something like 6
megabytes. It is enormous! It is between
30 and 40 8 inch diskettes.

HUG: Does CPM require two drives?

TG: CPMdoesn'trequire twodrives,but
no operating system that I've come across
could really work well with one drive. All
the main problems with single drive sys-
tems is that the user doesn’t do enough
backing up. It takes him 20 minutes to
back up his disk at the end of the day and
he says, “well, I'll back up at the end of
the week”. And then one day, unfortu-
nately, the cat bites his diskette half way
through the week and at that point he
realizes the advantage of a 30 second back
up procedure with two drives. Just the
redundancy and the ability to have a
spare around.

4

HUG: Whenwillitbeavailableand how
much?

TG: The cost is $145 including the
utilities and at that time (June) we will
also have a COBOL and FORTRAN simi-
lar to the one you have. We will have
Microsoft Extended BASIC also. And
some other languages if they are availa-
ble. We will be showing CPM at NCC (in
May). We are planning to be distributing
itby June, but thatis conservative. We can
generally be on the conservative because
what happens is, we normally finish the
software well ahead and then sit down
and write the manuals. That takes longer,
but I think that there should be no trouble
in meeting June 1. It is about a three or
four man week job.

HUG: Who will support this if the user
runs into a question?

TG: We support it.

HUG: You have a staff that can cope
with all this?

TG: Yes.

HUG: What kind of documentation can
we expect?

TG: There will be 6 manuals from Digi-
tal Research plus the manual of special
features for the Heath User.

HUG: Sounds good.

TG: The BASIC and all these other
things will be available in June also, or is
just down the road a little further.

I am going to get better informed on
what’s run under HDOS to know what I
should be providing, but they all can be
provided on very short notice. For in-
stance, CBASIC. We had that put together
for the TRS80 in about 2 days, just by
saying hey, change this number to that
and after that it was just relinked. And the
guys at Microsoft are equally responsive;
so it is a trivial job to come out with these
versions for CPM. It is 3 constants or 4
constants and the whole thing is finished,
so it is really a matter of deciding what it
is that the Heath users want and make
sure that it is prepared for him.

HUG: You mentioned BATCH capabil-
ity. How about indirect files? Where a

user can build an indirect file so that
when heboots up, it automatically goes to
some predetermined task.

TG: Yes, we have that built in the sys-
tems we supply. We put in a feature
where you have the program called
AUTO. When he starts out from cold, it
will run this program, then that program
itself can, if necessary, chain another
program.

We have a thing called a ‘mode byte’
which has different options, by setting
the bits of that byte high or low, he can
enable read-after-write or he can enable
initialization of this program and a
number of different features that we built
in based on the setting of this configura-
tion byte and that cold start program is
one of the center features.

Armed with this information, we called
Barry Watzman over at the ‘Software
Den’.

HUG: What are the major differences
between HDOS and CPM?

BW: There are two major differences in
philosophy between CPM and HDOS.
When HDOS was written, it was written
with the idea that the environment was
known. It was a Heathkit system with
Heathkit I/O devices and I/O boards.

Also, HDOS was written with the idea
that the user was probably not an expert
on computers and didn’t know much
about them, and to a certain extent that
the user had to be protected from acciden-
tal destruction of the system or his prog-
rams and diskettes by himself or by his
own unfortunate actions.

CPM, on the other hand, was designed
with the philosophy (since Digital Re-
search doesn’t even make hardware) that
they wanted to make the system as gen-
eral as they possibly could; totally adapt-
able to any reasonable hardware envi-
ronment.

Also, it was designed with the idea that
the user or at least the system imple-
menter was somewhat knowledgeable of
computers and programming. The con-
sequence is that HDOS does provide the
user with somewhat more protection, the
documentation quality is better, consid-
erably in some areas, and it is probably

HEREMark « Issue 6 « 1979

the easier system for the novice to learn.
On the other hand, the capabilities that
one has with HDOS, (and this is particu-
larly true for the experienced or sophisti-
cated user), are somewhat less than with
CPM. HDOS actually does more for the
user than CPM does; but sometimes what
it does is not what is desired. CPM is a
more versatile system than HDOS. It re-
stricts the user a lost less, though it also
protects him a lot less. What we found in
adapting outside software to HDOS, such
as the forthcoming business software, is
that some of the things which were done
in HDOS to protect the novice user make
it difficult for us to adapt software not
originally written for HDOS to run uder
HDOS. Another difference in the two sys-
tems is that because no one micro-
computer manufacturer, whether it is
Heath or IMSALI or Processor Technology
or whomever, hasa dominant share of the
market, and because software written for
any one operating system will in general
not operate under any other operating
system, one finds that the only operating
systems which really attract a very large
quantity of availabke software are those
which are not the proprietary property of
a single manufacturer. In the case of the
8080 systems that really means CPM.
There is really no competitor for it.

HUG: Compare the operating systems
directly.

BW: One really does find a lot of
similiarities. Maybe more similiarities
than differences. Both systems are about
the same size. They both need approxi-
mately 4 to 6 K — that's a generalization.
Both systems have esstentially the same
utilities; they both come with a program
called PIP which does pretty much the
same thing in both systems. In fact, an
HDOS user could use CPM PIP without
even reading the manual and almost ev-
erything would work with the same syn-
tax. They both come with an Assembler,
Text Editor and a debug package. Both
systems use very very similar, in fact, al-
most identical disk file allocation
techniques; and both of them feature
non-physically contiguous dynamic allo-
cation of disk space to files. So, to that
extent, they are the similar. CPM’s
utilities, I think, are generally better than
HDOS's. PIP is pretty much the same, but
it has the same wild card structure and
has pretty much the same command for-
mat, but it has about 20 or 25 additional

S REMark « Issue 6 « 1979

functions that are not present in the
HDOS PIP and some of them are very use-
ful. However you can’t do a directory or
delete files from within CPM’s PIP.

The debug package is much better. It al-
lows you to trace execution. And it does
not require that you reassemble the prog-
ram just to run debug. It works with the
program at its normal address. It has sev-
eral other capabilities which HDOS’s
DBUG lacks, including a built-in desas-
sembler.

The Editor is much better. The Editor is
actually somewhat similar to the Editor
which I gave you. (which we called
BWEDIT for HDOS). It is a little bit slower
than BWEDIT but it has many additional
features including a Q buffer. And it also
has the ability to read another disk file
into the one that you are editing. Com-
mand syntax is much more concise than
the HDOS Text Editor.

The Heathkit assembler is perhaps better
than the standard CPM assembler. It has
features that the standard CPM assembler
does not, but one of the things about CPM
is the wealth of software available and so
there are least 6 additional assemblers av-
ailable from other sources. Two of them
are free through the Users’ Group and in
addition there are assemblers by Mic-
rosoft™, TDL, Digital Research and TSC
which are not free, but which are very
nice. The Microsoft Assembler has cross-
references and it generates relocatable ob-
ject modules which can then be linked
together with the linkage Editor. The TSC
assembler comes with source code. There
is also a free assembler in the CPM Users
Group, on Volume 16, I believe, which
does do cross-references. And is very
nice.

HUG: Since the user has the AUTO
routine and BATCH, does this allow him
to approach turn key operation?

BW: Yes it does. These are really two
separate capabilities; the first is the
BATCH capability, what CPM calls the
SUBMIT FILE. The SUBMIT FILE facili-
tates the ability to create, using the Text
Editor, a file of CPM console commands.
Suppose we gave that file the name of
SORT. If we then Submit SORT INFILE
OUTFILE, it will execute all those com-
mands, but more than that, we could put
parameters in the Submit file and the

command line values INFILE and OUT-
FILE will be substituted for the paramet-
ers at Run time. You can create a file to
run a whole stream of programs and not
specify which programs until you Submit
the command line. The other facility in
CPM to run continuously is the AUTO
thing that Tony talked about. But, the dis-
tinction in those really is that BATCH
runs a file of CPM console commands and
AUTO runs an assembly language prog-
ram. [say assembly language, but it could
be Microsoft BASIC. The point is that by
combining the two, you really have the
ability to do virtually anything you want
to including set up pass word protection
of the entire system or come up running a
given BASIC program

HUG: Speaking of Microsoft, is that
going to be transportable between the sys-
tems?

BW: No. CPM and HDOS are two com-
pletely different operating systems. CPM
disks do not have compatible directories,
they do not have volume labels, they do
not have the same disk allocation struc-
tures. The same thing is true with HDOS
diskettes. So, anything that is written for
CPM will not run under HDOS and any-
thing that is written for HDOS will not
run under CPM. Furthermore, the disket-
tes themselves will be incompatible. It
will not be possible to take a CPM diskette
and Mount it while you are running
HDOS. The reverse is not quite true. CPM
provides the assembly language prog-
rammer with absolute track sector acces-
siblity and it will therefore be possible for
someone who has CPM to insert an HDOS
disk in one of the drives and access it. By
the way, one thing I mentioned, CPM will
support, in theory, 4 drives; whereas
HDOS will only support 2. Our hardware
won'’t support four of course, but we are
making some provisions to simulate the
third and fourth drive under HDOS —
CPM. You will have to change the disket-
tes, but logically you will be able to run a
program that accesses four drives simul-
taneously. CPM will issue the appropriate
messages at the appropriate times. Be-
cause CPM provides track sector access, it
will be possible for the assembly lan-
guage programmer to put an HDOS dis-
kette in one of the drives and to access it
while running CPM. He will notbe able to
access it at the HDOS file level, however,
he will only be able to access it at the track
sector level. With regard to Microsoft

BASIC and Microsoft FORTRAN, the lan-
guages supported are the same, but the
compilers themselves are different.
Therefore, if a user wants to run BASIC
and/or FORTRAN under both CPM and
HDOS, unfortunately he is going to have
to buy the HDOS version and the CPM
version. With regard to the program itself,
a FORTRAN program will run under
either Microsoft FORTRAN for HDOS or
Microsoft FORTRAN for CPM with little
or no changes, but the user is going to
have a media conversion problem which
is not inconsiderable. The sophisticated
user will be able to figure out a way to do
it, I feel quite certain, but most users are
going to have to make a decision as to
whether they want to run FORTRAN
under HDOS or under CPM and for the
most part, stick with that. The HDOS ver-
sions of BASIC and FORTRAN are much
less expensive than the CPM versions, by
the way, because Heath’s marketing de-
partment wants to encourge the
maximum possible use of our customers
systems, and that means making software
readily available; so we have made it (re-
latively) inexpensive. We have no control
over the cost of the CPM versions, since
we won’t be selling them ourselves: Re-
member CPM for the H8 will not be a
Heath Company product, though we are
assisting in and encourging its develop-
ment.

HUG: So, the applications programs are
not transportable.

BW: Yes, in general that's correct.
Again, the sophisticated user may be able
to transport them. I have, as you know,
already done some transporting of CPM
stuff to HDOS here, but we have more
knowledge of the system and better
facilities than the average user has, in-
cluding multiple complete systems. You
know, obviously, if you have RS-232 se-
rial ports and you've got two complete
computer systems, you can set up one
system running HDOS and one system
running CPM and ship it down over the
RS-232 port which is in essence what we
are doing here. In general though, users
will not be able to transport programs be-
tween the two systems.

HUG: Whatkind of I/Oaccess does CPM
provide?

BW: CPM’s I/O capabilities are a lot
more versatile than they are under HDOS.

6

One of the things that happens with CPM
is that the user has source code for the 1/O
modules. In a normal CPM system, this
would include the disk I/O modules, but
Tony, because he is going this as a pro-
prietory product, may choose not to in-
clude that. Even so, the user will still have
access to the disk at a track-selector level,
and the user will still have the source
code for his terminal and console device
1/O drivers, which means a lot. It means
that the user can add features or terminals
or additional devices that under HDOS he
would not be able to add. More to the
point, CPM supports multiple physical
devices. For example, let’s take a typical
top of the line Heath system, the guy hasa
brand new H19 video terminal (which I
don’t think is in the catalog yet) and he
has a DECwriter and he has an H14 line
printer. Now, he comes up and he is run-
ning on the CRT terminal and he decides
he wants a hard copy lisiting of some-
thing he is going to do at the console. All
he hasto dois say STAT CON:=TTY: and
the next prompt comes up on the DECwri-
ter and the DECwriter is, from then until
he reassigns it, his console. What's nice
too isthat this can be done under program
control, so your I/O devices are not bound
to a physical device at the time you as-
semble them, they don’t bind until run
time. This is true of the line printer and
other devices as well as the console.

If the user has a line printer, he can say
STAT LST: = LPT: and the line printer
output goes to the H14. On the other
hand, he can say STAT LST:=CRT: and it
comes out on his H19 video terminal. One
additional feature they provide for is the
ability to run really large system type
BATCH and they provided BATCH capa-
bility, which is different by the way, from
the BATCH we talked earlier where you
arerunning from a disk file. Here, BATCH
refers to the ability to assign the console
to the BATCH device and you can run
from an 80 column card reader and a line
printer, just leaving the system to run un-
attended for a long period of time. I don't
know if any of our users will ever take
advantage of that capability, but it is
there. The device independence under
CPM is very great, much more so than it is
under HDOS, and in large systems with
multiple terminals, that can become a
significant feature.

One thing I might mention with regard to
I/O though; I wrote a skeletal BIOS for

Tony, and as I wrote it for him initially,
our console I/O is set up without inter-
rupts and that will be one difference be-
tween HDOS and CPM.The user will not
have the type-ahead buffer. There is no-
thing in CPM that prevents you from
using interrupts, it would be fully possi-
ble to enable them and use the front panel
clock or an interupt driven console.We
certainly could have, but we just felt it
would be quicker and easier not to and it
is more common in CPM systems to run
the console without interrupts. Also, it
will make the source code much easier for
most of our users to deal with, since inter-
rupt service routines are somewhat com-
plex.

HUG: Earlier you mentioned that HDOS
was very protective with the flags and so
on, is that true with CPM?

BW: Well, yesand no. CPM is in it's 4th
major release which is about a year old
now; they corrected a major deficency
which sometimes caused people to lose
disks when changing them without re-
booting. You can change disks readily
under CPM now with no danger of losing
one. If you have 10 disks and you want to
know what is on them, you can just slap
the disks in and type DIR, which by the
way is a resident command, so it is quick.
You can type DIR, get a directory, take the
disk out, put another one in. There is no
mounting or dismounting. Although
there is no mounting or dismounting, if
you don’t tell CPM to change the diskette,
(which is done simply by typing
control-C) he assumes that the directory
information he has in his tables in mem-
ory is correct. HDOS gets around this with
mount and dismount. Volume number
has its limitations as you only get 255
possible numbers. Some people have the
tendency to number all their disks 1 or
255 (me for example). Also, the physical
act of having totype Mount and Dismount
is a pain. 1.4 CPM fixed that problem in
what I consider to be a very satisfactory
manner. They checksum the directory on
every access. Then, you can change disks
freely and do anything you want to as
long as you don’t try to write; CPM has
noted the change and made the entire
diskette “‘read-only” in software. But he
really dosen't care. Until you try to write.
Then he gives you a read-only error mes-
sage, and you have to control-C.It is gen-
erally impossible now to mess up a dis-
kette. Tothat extent, itis protected. Under

S REMark + Issue 6 « 1979

1.4,Thave never heard of a single instance
of anyone losing a diskette, but as far as
the system itself is concerned, it doesn’t
really try to protect the user from himself.
The user under CPM has complete access
to the operating system and all the mod-
ules. If he wants to make a patch in as-
sembly language or in HEX (by the way,
CPM is HEX oriented as opposed to OC-
TAL), he has absolute access to CPM’s
object code. There is no write protect.
There is no lock as there is in HDOS so all
of the modules of the operating system are
directly available to the programmer. If he
wants to change the operating system it-
self, he may regret it, but he can do it. In
fact, there is a special utility called
SYSGEN which is provided explicitly to
facilitate the user’s doing just exactly
that. It creates in memory at a known loca-
tion an image of the operating system
which can then be modified and written
back onto the disk. The user can do any-
thing he wants to do to the operating sys-
tem for better or for worse, and in some
cases, no doubt, it will end up being for
worse. One other thing I would like to
mention. CPM does not use overlays. The
entire system basically is resident. It's
quite small as Tony mentioned. It's not
position independent code, like HDOS.

HDOS loads into low memory and relo-
cates itself every time you boot. CPM has
to go through a SYSGEN process. This is
very explicit and I might add it is some-
what demanding. Some of our users may
have difficulty getting through this pro-
cess. You have to go through a SYSGEN
process; there is an entire manual devoted
to it, but it really kind of assumes a know-
ledge of assembly language in which you
create your CPM system and the SYSGEN
process is where you put your own I/O
modules in if you want to do that. You
have the source code and at that point you
can change it and reassemble it. Also, at
that point, you define where you want it
to reside. From then on until you do
another SYSGEN, CPM never relocates it-
self, it loads directly into its final operat-
ing address. This has some advantages.
One of them is that some people are doing
spooling or simple multi-programming
under CPM where your printer may print
a listing even while you are using the
editor or the assembler for something else
and they do this by creating a partition
above the operating system for the spool-
ing software. You cannot do that under
HDOS because he relocates to the top of

¥REMark « Issue 6 = 1979

the memory every time you boot. Tony
will distribute CPM already SYSGENED
for some small size system, 16K or 24K,
most likely. If the user has more memory
than that, he will have to do a partial
SYSGEN to relocate the system, which
isn't too bad. But if he wants to make
major I/O changes, he will have to go
through the complete SYSGEN process
on his own. The Digital Research manuals
that are provided, frankly, are not ex-
tremely good, especially for the novice. In
fact, I would say the novice is probably
going to have a good deal of difficulty
with this. It is fairly demanding. How-
ever, it won’t be necessary unless major
changes are required, and we wrote the
BIOS to support up to two teminals plus
line printer on H8-4 and H8-5 cards, so
most users won’'t have to fool with it.
Also, Tony, on the North Star system, I
know, and this will probably be the case
on the Heath system, provides his own
manual in addition to the standard Digital
Research manual, describing how to do
that. That will hopefully ease the process,
but the user should appreciate that this is
not likely to be a Heathkit quality manual.
One consideration in choosing betweem
CPM or HDOS is the ability level of the
user and also the user’s access to help.

Both Tony and Digital Research have
their own Technical Consultant staffs av-
ailable by phone to assist their users.
However Heath will notbe in a positionto
support CPM at this time.

HUG: So, which operating system
should a person buy?

BW: It depends on his level of know-
ledge and his ability to do what he wants
to do. Probably, the more sophisticated
users, writing in several languages and
more fimiliar with the system, would
tend to gravitate to CPM, while the begin-
ning user, or those who use mostly
BASIC, would be happier with HDOS. In
general, I would probably recommend
most of our users have HDOS, if they've
got the Heathkit system and that if they
acquires CPM, it should probably be as a
second system in addition to HDOS.
There may be some sophisticated users
who are already familiar with CPM and
non-Heath systems that may choose to
purchase CPM and an H17 disk system
and never acquire HDOS at all and that is
fine. But, for most of our users, probably
they will either want just HDOS or both

systems. Also, CPM does not come with
any diagnostic software, sothat is another
reason for buying HDOS, especially for
kit builders.

HUG: Tony mentioned he had about 30
or 40 eight inch diskettes full of stuff in
the library. Briefly what kind of things
could we look forward to?

BW: You name it. One of the things I
can't really convey is just the incredibly
vast quantity of software available for
CPM. It is massive and it is mostly source
code and the scope is just enormous. It
runs all the way from games to assemblers
and editors to a complete system-wide
master catal og system that keeps a catalog
of every file on every disk in your entire
system even if you have dozens of disket-
tes. If you want to know for example
what’s on a given diskette, you can find
out without getting out that diskette. If
you want to know a list of every diskette
on which a given file is located, you can
find out. The software availablity for CPM
is one of the strongest reasons for going to
CPM. The other being the increased ver-
satility it gives you, but the software av-
ailability is just fantastic. It is the equiva-
lent roughly of 100 to 150 of our mini
floppies. Mostly in source codes. That is
the major argument for CPM and thereisa
lot of that stuff in BASIC, a lot of stuff in
assembly language; and even some stuff
in FORTRAN and other languages. There
are also other languages in the users
group, including a complete ALGOL
Complier and complete disk BASIC In-
terpreter, source code, not object code.
Several of them, not just one. There is a
language called ML80 which is a macro-
assembler with structured programming
concepts, DO WHILE and DO UNTIL and
this type of thing. The volume of software
is incredible, mostly system software I
guess and games, but there are also appli-
cations items in there, such as a complete
general ledger system. And a word pro-
cessing package among others. I just can’t
remember off hand all of the stuff availa-
ble.

EDITORS NOTE: If you call one of the
Heath Technical Consultants for any
help, he will say, “huh?" In other words,
they will not be in a position to support
CPM.

EOF

Doc Campbell

EDITORS NOTE:

Some of our Users have con-
verted from the H8 System to
the H11 System to gain more
storage in business applica-
tions — Doc Campbell being
one, the first, as soon as the
H27 became available — So,
Doc explains a little bit about
the process —

:JB:

COPYING DISC FILES FROM H17 TO H27

Note: To carry out this procedure, you will need 2 terminals (an H9 and a Decwriter, or 2 H9s, or
equivalent), the H17 Floppy and the H27 Floppy, an H8 and a H11. Each computer will need 2 serial
|0 boards configured as follows. Note that these are all serial 10 boards. Note that the following
example uses an H9 connected to the H11 computer, and a Decwriter connected to the H8 computer.

1. The primary 10 board in the H11 is assumed to be connected to the H9 as its primary output, ie to
TT: with address 177560 and interrupt vector 060. The primary |0 board in the H8 is configured to
address its TT:, (in our case, it is jumpered to the DEC as a TT:, rather than as an AT:.)

2. The second 10 card in the H8 must be jumpered to include the following parameters:

a. Jumpered for AT: (AT: = PORT 374 OCTAL).
b. RS 232.
c. Jumpered for 9600 Baud.

3. The second 10 card in the H11 must be jumpered to include the following parameters:

Jumpered for H10, ie with address 177550 and interrupt vector 070.
RS 232.

Jumpered for 9600 Baud.

C12 should be removed (if it is installed).

aoow

4. Now, a 2 wire cable is prepared to connect these second serial |10 boards. The cable can be
“tack-soldered” or appropriate plugs can be obtained.

a. One wire goes from ground on one 10 board to ground of other 10 board. On the H11 rear
panel socket from this |0 board, pin 24 is ground. On the H8 rear panel socket from the 2nd
board pin 4 is ground. ™

b. The other wire goes from Serial Output of the second |0 board in H8 to Serial Input on the
H11 10 board. On the H11 rear panel socket, pin 2 is the input. On rear HB panel socket from
the 2nd board pin 8 is data output.

c. Also, connect a jumper from pin 3 to pin 23 of rear panel socket on H11.

Note that this rear socket on the H11 is the one coming from the second modified 10 board.

5. The H8 is connected to the H17, and the H11 is connected to the H27 as usual.
6. The following procedure transfers the files from H17 disc to H27 disc.

a. Bootup both systems and put both in PIP. If a new disc in H27, enter DK:/Z and CR on H9 to
initialize disc.

Enter the following on H9 (connected to H11) DK:filename.ext=PR:/A and CR.

Enter the following on DEC (connected to H8) AT:=filename.ext and CR

Wait until HDOS returns “FILE COPIED" on the Dec.

Enter CNTRL D on the H9. (Nothing seems to happen here).

Enter AT:=TT: on the DEC and CR.

Type anything (a space is good), then CR on the DEC.

Enter CNTRL D on the DEC.

Se "o a0 o

AT THIS POINT THE FILE WILL BE WRITTEN FROM THE H17 DISC TO THE H27 DISC!!!!

NOTE: The size of the file to be transferred depends on computer memory space. With 32 K of
memory in the HB and 16 K in the H11, we found that a maximum of about 30 sectors in H8
(translates to 15 blocks in H11) could be transferred as one file. For larger data files, we simply made
smaller files, transferred them and then concatenated them using the H27 disc operating system.

HREMark « Issue 6 = 1979

H8-17 DISC BASIC VERSUS HT11 DISC BASIC SYNTAX

There is no standardization of syntax among various Basic
interpreters. A summary of syntax differences between H8-17 and
HT-11 may prove helpful to someone who is revising H8-17 to HT-11
disc Basic programs. The MACRO (and other) features of HT-11
EDIT make for easy program revision.

These features are not supported in the current version of HT11 -
BUILD, LOCK, UNLOCK, FREEZE, FREE, UNFREEZE, SEG (H8
panel function), CNTRL options, PEEK, POKE, STEP, UNSAVE,
LNO function, PAD function, and PIN function. Any statements or
functions just mentioned will have to be removed from programs.
CIN is also not supported but if used for EOF marker is replaced by
IF END...THEN; and SPC (not supported) may usually be replaced
by TAB; CLEAR (in a program) and BOOLEAN operator functions
are not supported, but it is relatively easy to alter programs in these
instances to carry out the desired manipulations. (See below for
examples.) The CHAIN function is supported, but sets all variables to
zero or null. If “carryover” of variables is necessary, they must be
placed in a temporary disc file and then accessed from the “chained”
program.

(The following are not found in H8-17, but are present in HT11 -
BIN function, OCT function, TRM$ function, RANDOMIZE, IF
END..THEN, OVERLAY, VIRTUAL MEMORY FILE functions,
DATS$, RENAME, and RESTORE number n file function.)

In the next list, the items on the left are the H8-17 statements -
functions, and on the right are the equivalent HT-11 statements -
functions. Any number in parentheses after the HT-11 version refers
to a more detailed evaluation given in the numbered paragraphs that
follow.

Multistatement Line Separator

I e S e T \
String Concatenation

W o Bummie AERETE DS SRR G S SR 6, SR &

MIDSIXBY.Z) oo vwviis ion wiosmeim o s s SEGS(XS$,Y,Z+Y-1)

(1.

EERTHRRSNY s v s o viiesee 59 5 sl SEGS(XS$,1,N)

(1)

RIGHTS(X$N) SEGS$(X$,LEN(X$)-N+1,LEN(XS$))

(1.)
MATCH(X$YSN) POS(X$,Y$,N)
OPEN fname FOR READ etc OPEN fname FOR INPUT etc
OPEN fname FOR WRITE etc OPEN fname FOR QUTPUT etc

To Reference Line Printer

YRS G 8 5ean o RREAE DR 1S “LP:"
PRINT #X, .. i PRINT #X:
LINE INPUT #X,t INPUT #X:

(2)
INPUT B, o wvsesos soenumon s samos & el INPUT #X:
(2)

¥REMark «Issue 6 = 1979

(1.)The MID$ function of HB8-17 is called the SEG$ function in
HT-11. Also, there is a subtle difference. Whereas Z in the H8-17
function represents the total number of characters to be sampled,
‘Z' in HT-11 = the position of the last character to be sampled.
The position of the last character to be sampled is equal to the
position of the first character to be sampled (Y) + the number of
characters to be sampled (Z) less 1. Hence, Z in H8-17
syntax = Z+Y -1in HT11 syntax.

There is no LEFT$ function in HT-11. Use the equivalent SEG$
function listed.

There is no RIGHTS function in HT-11. Use the equivalent SEG$
function listed.

If there is ever the possibility that X$ would be a null when used
in the SEG$ function, in a program, then be sure to bypass the
line with a line just preceding:

IF X$ =" GOTO line number
Otherwise, your program will “trap to 4’ in the event of a null.

(2.)There is no LINE INPUT in HT-11
numerical values and strings.

- INPUT covers both

HT-11 does not support a ‘string-prompt’ in INPUT statements. If
the H8-17 program line reads:

30 LINE INPUT “ENTER YOUR NAME™;N$
then substitute:

30 PRINT “ENTER YOUR NAME"AINPUT N$

MORE SYNTAX DIFFERENCES:

HT-11 does not contain a PAUSE function. You can accomplish an
infinite delay by using INPUT #0:Z9$. (Z9$ is any variable that you
do not use elsewhere in your program.) Entering a Return terminates
this ‘pause’. If you had used the PAUSE statement just to delay the
program for a finite amount of time, simply substitute a ‘do nothing’
FOR...NEXT loop, such as -
50 FOR | = 1 TO 500\NEXT I
Here, vary the ‘500" to any number that supplies the desired delay.

There is a very subtle and insignificant difference in the way H8-17
and HT-11 handle FOR..NEXT loops. Following the loop, the
variable is the number following the 'TO’ plus 1, in H8-17, whereas it
is the number in HT-11. For example, following completion of the
loop given in the previous paragraph, | would = 501 in H8-17 but
would = 500 in HT-11.

It is important to remember that IF..THEN, IF..GOTO, or
IF..GOSUB statements, if false, go to the next sequential line in
H8-17, BUT in HT-11 they go to the NEXT STATEMENT on a
multistatement line (assuming there are muitiple statements on the

line)! (continued next page)

9

In HT-11 IF...THEN is only allowed to reference a line number. An
IF..THEN statement such as:

IF X =5 THEN PRINT “X = §”

is NOT allowed. This can be solved with:

30 IF X=5 GOTO 500
40 STOP
500 PRINT “X=5'"\GOTO 40

‘IF..THEN GOTO' and ‘IF..THEN GOSUB’ are NOT allowed. Use
either THEN or GOTO (or GOSUB), but not both at the same time.

Since there are no BOOLEAN functions in HT-11, you must revise
these portions of any programs. Consider the H8-17 statements:

30 IF X=5 AND Y=10 THEN 50

40 PRINT “X &/OR Y DO NOT = THE REFERENCED NUMBERS"
45 STOP

50 PRINT “X =5 AND Y = 10":STOP

IN HT-11 this could be written:

30 IF X=5 THEN 800

40 PRINT “X &0OR Y DO NOT = THE REFERENCED NUMBERS"
45 STOP

50 PRINT "X = 5 AND Y = 10"\STOP

800 IF Y=10 GOTO 50\GOTO 40

Both of the above programs accomplish the same thing.

There are a few COMMANDS that are used differently. In H8-17, to
continue a program after a STOP statement, one uses GOTO line
number, Return, then CONTINUE. In HT-11 just use GOTO line
number and Return. To exit a program in H8-17 one enters BYE and
Return. In HT-11 one or two CNTRL C’s takes you to the monitor.

If you wish to CLEAR variables in an HT-11 program you must set
the variables to zero or null with statements such as:

X=0\Y$=""\FOR I=1 TO 50\D$(1)=""ANEXT |

Although H8-17 allows you to CLOSE a file which is not open,
without an error message, HT-11 gives an error message if you
attempt to CLOSE a file which is not open.

Last, although there is no UNSAVE statement/command in HT-11
you can recover disc file space (although you can not delete the file
name) from HT-11 Basic by using the following statement/command:

OPEN “fname” FOR OUTPUT AS FILE #1\CLOSE #1

EOF

10

PROGRAMMING COURSE
COMING. . .FINALLY! :]B:

ASSEMBLY LANGUAGE
PROGRAMMING?
WHAT’S IN IT FOR ME?

The most powerful language to use on any computer is AS-
SEMBLY LANGUAGE. Wait! Hear this out! It's not long.
Consider the fact that ANYTHING that can be done in any
other language on a particular computer can be done in
Assembly Language. And, it is a true programming language,
not just a convenient notation for machine code. The use of
labels, computed operands, comments, and assembler direc-
tives allows the assembly language programmer to create a
source code that is adaptable to the system and easily read.
One of the most useful features of a programming language is
that it is flexible, and not dependant upon specific addresses
and hardware of the computer. In an assembly language
program, hardware specifications can be made at the begin-
ning and referred to symbolically through the rest of the
program. In this way, any changes that may be needed are
located together and are easily located. By using “‘computed”
origin statements, and other assembler directives, you can
make an assembly language program operate where routines
along with as many remarks or comments as you desire,
makes the program listing quite readable.

Perhaps the most fascinating fact concerning assembly lan-
guage is that anything your computer is capable of can be
done with assembly language. To run a program written in
BASIC, the computer interprets the instruction and performs
all the machine operations mecessary to do that instruction.
The programmer can do everything with assembly language
that could be done in BASIC, because there is amnemonic for
every machine operation. Further, to run a program written
inBASIC, the BASIC program must be in memory. After it has
been assembled, an assembly language program performs the
operations without that support, and because the instruc-
tions are not to be translated, the program runs much faster.

After reading this, you are probably interested in learning
Assembly Language. HEATH CONTINUING EDUCATION
has an assembly language programming course for
8080/8085 MPU based computers such as the H8. The course
number is EC-1108 and it’s described in your June 1979
HEATHKIT catalog.

HREMark « Issue 6 « 1979

NUMBERS —

By: Chuck Dattolo
METRO DETROIT AREA
HEATHKIT H8 COMPUTER
USERS’ GROUP

Computers, contrary to common belief,
are very simple minded devices. If you
could look into the very heart of your sys-
tem you would notice that it only con-
tains a large array of switches. These elec-
tronic switches may be either on or off. A
mechanism is provided to turn these on or
off and to determine if they are on or off.
About the only thing that a computer has
going for it is the speed at which it can
throw and ‘read’ the switches. The
switches we have been referring to are
more commonly called memory.

To simplify the design of the computer, it
was decided to organize this memory into
neat packages of eight switches per mem-
ory cell. A switch represents a ‘bit’; a cell
represents a ‘byte’. If a computer is to
compute it, obviously, must work with
numbers. To a human, the digits 132
mean the numeric value one hundred
thirty-two! That is obvious to everyone
except our computer who must jam that
figure into a bunch of little switches. A
noble task even for a human.

If you look carefully at our example (132)
you will note that it is made up of digits in
the range of 0-9 and that the position of
each digit in the number apparently
means something. Specifically, the posi-
tion to the right is the ‘ones’ column; the
second to the right is the ‘tens’ column
and the third to theright is the ‘hundreds’
column. In our system of numbering we
find that 1 = 10° and 10 = 10' and 100 =
102 etc. This magic number 10 is referred
to as the ‘base’ or radix of the numbering
system.

Since our computer only has a switch that
can be either on or off, say a 1 or a zero we
could acknowledge that it has only a two
digit possibility. If a numbering system
with 10 possibilities is called a ‘decimal’
system then one with two possibilitiesisa
‘binary’ system. So, we say that each digit
is a binary digit or ‘bit’ for short. To the

% REMark « Issue 6 1979

computerthen, our example of 132 would
look like 10 000 100. I'l] leave it to you to
verify that!

It wasn’t very long before it became
obvious to humans that binary numbers
were cumbersome to use. To simplify
this, man — not machine — grouped
these bits into other bits to create a new
numbering system. OCTAL — base 8
and HEXIDECIMAL — base 16. To see
how this works, let's look at three bits. .
.the possibilities of which are:
000,001,010,011,100,101,110,111. The
right most digit is the 'ones’ column,
second to the right is the ‘twos’ column
and the third to the right is the ‘fours’
column. Hence, digits of 0-7 can be
represented. This is called the base eight
or Octal. Similarly, a group of four bits
giving a combination of 0-15 is called
hexidecimal. Did you follow that? . .
.Obviously not since you would have
noticed that a digit can only be a single
character, yet we have 10,11,12, 13, 14
and 15. To get around that, designers
substituted A, B, C, D, E and F giving 16
single digits for the number system in the
base 16 we abbreviatingly call 'HEX'.

Since a lot of people found it difficult to
relate ‘letters’ to the numeric values of 10,
11, etc., many manufacturers adopted the
octal format as a standard — including
Heath, D.E.C. and others. Simple, huh?
Well, even the editor of this DUMP can
see that 8 isn’t evenly divisible by three
and what you end up with is 2 & 2/3 octal
digits per word. Well, since the left digit
can only be 0 to 3 that is no big problem. .
.we simply note that the largest octal
number that can be stored in the base 8 is
377. That relates to 255 in the base 10.

Still with me? Before you go running back
to the Heath Store saying that your
thousand dollar computer can't add
higher than 255, let me give you the rest of
the story.

In order for the computer to handle higher
numbers it is necessary for it to combine
‘words’ back to back and treat them as
bigger words. For example, two octal

words back to back would be 16 bits with
a maximum octal value of 177777 or a
decimal value of 65535. If you noticed
that our example was wrong; you are
catching on. We did say that the
maximum third digit value could only be
3, yet the example lists it as seven —
177(7)77. What happened is the extra bit
came from the adjacent byte we added to
make two words. Remember — 2 & 2/3
digits per octal word plus the second
word gives us a combined word of 5 & 1/3
digit or 177 777. If you wanted to lessen
the confusion and keep each octal word
sacred you would do what Heath and
others have done — create a modified
octal known as split or offset octal. In the
modified form, 177 777 would be rep-
resented as 377 377. Hope this makes
sense to you. For a short lesson, try writ-
ing the ‘pc’ address of 040 100 that you
use to execute a program in systems :true
octal; decimal; and binary.

So far we have discussed how numbers
could be represented in binary. We were
assuming that the numbers were whole
numbers (1,2,3 etc.). In computerese we
refer to such (whole) numbers as ‘INTE-
GERS'. In practice we often need numbers
that contain fractional parts ($1.23,
123.456, 1.4375 etc.). Such fractions are
referred to as 'REAL’ numbers. The first
attempt at handling real numbers
utilitzed a technique called ‘SCALING’. If
you wished torepresent dollars and cents
a scaling factor of 100 was applied. . .so,
$12.34 became 1234 (or 1,234) in integer.
Once the input information was scaled
then the calculations were made and the
resulting product was rescaled back. That
worked really nice since you were always
dealing with two decimal places. Well,
obviously not all applications neatly used
two decimal places so it became a prob-
lem of trying to decide which scaling fac-
tor to apply.

Next comes the ‘FIXED POINT’ plan
which attempted to correct the problems
of scaling. In this system the ‘point’ was
permanently placed at a specific location
and kept there. In the example of a four
byte number, we might say that the first

11

two bytes would represent the whole part
of the number and the last two bytes iden-
tified the fractional portion with the
‘point’ being fixed between the second
and third places. Fixed point had two
major flaws. First, the size allowed for the
whole part was often not large enough to
accommodate the piece of datum that was
unusually larger than normal sized data
and secondly, the space allotted for the
largest normally handled number was
always using up memory space even
though the actual entry was small. If a
number is unusually large it actually will
have a small number of significant digits.
For instance, we might say that Lake
Michigan had a capacity of
523,496,738,162,275.4375 gallons of
water at 25°C. The significance of .4375 (7
cups) is fairly insignificant when 523
trillion gallons are being considered.
Hence only three digits are probably sig-
nificant. . .523!

To take advantage of this phenomenon,
designers created a system that allowed
the ‘decimal point’ to float and ingeni-
ously called it ‘'FLOATING POINT". It was
quite similar to exponents in scientific
notation where numbers like 0.234E4 are
read as 2,340. In this example 0.234 is
called the MANTISSA and (E) 4 is the
exponent. Just how to represent the float-
ing point in the computer turned out tobe
the 64.E3$% question. Everyone had their
own idea, vanity prevailed and no stan-
dard arose. Most manufacturers chose
some form of binary exponents and man-
tissas while others, like .LB.M., went with
a hexidecimal exponent and a binary
mantissa. Floating point structure is re-
ally a trade off between 1. storage re-
quirement, 2. precision of the number,
and 3. the range (size) of the number
being considered. The old question of
how much to rob Peter to pay Paul. In
common practice 4 bytes are used to rep-
resent a number with 5 or 6 digits of pre-
cision. Special double precision is at-
tained using 8 bytes to achieve 12 or 13
digits of precision (depending on the
trade offs used). Since floating point be-
came popular, manufacturers quickly de-
signed hardware to manipulate the float-
ing point. . .a box which often costs more
than the original processor. Will this
technology trickle down to the lowly
80807. . .we're not sure. But, you can bet
that some of the capabilities of floating
point will be included in newer software
releases.

12

We discussed how modern day comput-
ers translate decimal numbers into binary
and how man decided to further simplify
that representation into different number
bases such as octal and hexidecimal. I
don’t want to give the impression that it
was always done this way. . .in fact, the
whole scheme was a result of trial and
error. Octal and Hex were found to be the
most efficient after exhaustive tries of
other combination.

A while back, man had the brilliant (no
pun intended) idea that if he tock a bunch
of light bulbs and arranged them in a
block. . .say five across and seven high,
that he could create the image of a number
by selectiviely turning bulbs on and off.
The idea is still used on billboards,
time/temperature signs and to some de-
gree in nixie tubes, 1.e.d.s etc. It didn't
take those early pioneers too long to dis-
cover that the 35 bits (one for each bulb) it
took to control each display was terribly
inefficient,

Man, being very inventive, said that since
there were only 10 numbers to represent
the scheme could be encoded into four
bits of binary code. Subsequent geniuses
designed hardware items to recognize the
binary 0000 and display it asa zero ‘0’, by
illuminating the appropriate lamps in the
block. The name man gave to this encod-
ing scheme was binary coded decimal or
BCD for short. Later, letters were added to
the capability as well as a full assortment
of graphic symbols. The IBM company
developed an “Extended Binary Decimal
Interface Code’ or EBCDIC. It required
eight bits of information but could repre-
sent almost anything. Then, thinking that
they (not Ford) had a better idea, the Tele-
type Corporation introduced ‘BAUDOT'
named after its inventor. They used five
information bits to represent 58 charac-
ters. Not wanting to be outdone, a man
called Holerith introduced another sys-
tem of numbering for representing
characters on punch cards.

It soon became obvious to the User that a
standard was in order before things went
totally out of control and so a committee
was formed (sound familiar) to consider
the task. The parameters which sub-
sequently developed were called the
‘American Standard Code for Information
Interchange’ and was quickly acronym’d
ASCII. At last, everyone would use the
same thing and peace would come to. . .

.what????,IBM refuses to go along
with this effort? Oh well, two standards
are better than six! But, the same com-
pany that refused to join the American
Standard also refused to join their own
standard and created a third plan called
correspondence code for use with their
new Selectric type system. Misgivings
plague everyone and certainly IBM is no
exception; soon they had to give in to a
re-design of the typing element so that
epcdic and other codes could be accom-
modated. So, the new typing wonderisn’t
even standard in itself. Fortunately, most
everyone uses ASCII and it is fairly safe to
assert that if you have a program that out-
putsa ‘1’ it will be recognized as a ‘1' on
everything but an IBM product.

Both numbers in binary and printable
characters in ASCII can be represented by
a computer, even though the computer
only sees them as a ‘bunch of switches
turned on or off’.

In future articles we will be looking at
how negative numbers and one with frac-
tional values may be represented as well
as the ways of converting from one typeto
another. When the series ends we will
hopefully understand the marvelous
things our computer does when we type.

10 Let B=90
20 Print “See you in";B;"Days"
30 End

Run

(Editors note: Chuck has begun writing a
new language for the H-8 and 8080 based
systems which will combine the benefits
of basic and the advanced capabilities of
Fortran — an extensive undertaking for
one person. We wish you well with For-
basic Chuck.)

EOF

Reprinted from ‘DUMP’ with their per-
mission — :JB:

S REMark ¢ Issue 6 » 1979

TIDBITS ON MBASIC

By: Kathy Borden
EDITORS NOTE:

Our thanks to the documentation writer on the MBASIC project
for preparing this article for us.

The MICROSOFT BASIC (MBASIC) has several features that are
of interest to you. Obviously, they will be no more than
touched on here.

PRINT USING

PRINT USING allows output, either to screen or line printer,
of a specific format. The general format of the statement
is PRINT USING <string>j;<value list>, where <string> is a
string expression, variable, or constant; and <value list>
are the items to print.

In the following example, a set of backslashes () means a
field of 2 spaces; any blanks enclosed by them enlarges the
field. **$ inserts a $ immediately to the left of the last
digit; any unused spaces will be filled with astericks.
The original size of the field was determined by the ###'s.
The c¢omma forces commas to be printed in the resultant
output where required.

10 F$=" bt I FEEE T A
20 INPUT "WHATS THE HAME";N$
30 INPUT "WHATS THE AMOUNT";A
40 PRINT USING F$,N$,A

50 GOTO 20

OK

RUN

WHATS THE NAME? BORDEN

WHATS THE AMOUNT? 26

BORDEN ARARANEI6.00

WHATS THE NAME? BROWN

WHATS THE AMOUNT? 1.238

BROWN RN RNE]. 24

WHATS THE NAME? SCHAEFFER
WHATS THE AMOUNT? 123456789
SCHAEFFE #$123,457,000.00

Note that the % indicates too large an entry; however, the
entire value is rounded and displayed. A name respones that
is too large is simply truncated; no error is generated.

RANDOM I1/0

MBASIC alsoc has RANDOM I/0 abilities. This feature allows
any record in a file to be accessed in minumum time. (A
record is a sector, or 256 bytes.)

Some special characters to know (which are wused in the

following example) are:

I Single precision variable (default)

I$% String wariable

I% Integer variable (see line 30 in the example)
Il Single precision variable

I Double precision variable (see line 50)

(I and I! are the same, unless another definition is sent
to I.) An @ symbol means a continuation line; that is, one
BASIC statement is written on more than one physical line
for programming legibility.

10 OPEN "R",1,"SY1:RFILE,EXT"

20 FIELD #1,32 AS A$, 8 AS B$

30 FOR I%=1 TO 10

40 LSET A$="RECORD NUMBER "+STR$ (I%)
50 I#=I%+2D-09

60 LSET B$=MKD$ (I#)

70 PUT #1,I%

HREMark « Issue 6 = 1979

B0 NEXT I%
90 INPUT 'WHATS THE RECORD";I%
100 IF I%<=0 THEN 130
110 IF IR<=LOF(1) @
THEN GET #1,I% : PRINT A$,CVD(B$) @
ELSE PRINT "RECORD DOES NOT EXIST"
120 GOTO 90
130 CLOSE
140 END
OK
RUN
WHATS THE RECORD? 5
RECORD NUMBER 5
WHATS THE RECORD? 10

5.000000002

RECORD NUMBER 10 10.000000002

WHATS THE RECORD? 11

RECORD DOES NOT EXIST

WHATS THE RECORD? 1

RECORD NUMBER 1 1.000000002

LINE EXPLANATION

10 Open first file and name it.

20 FIELD reserves first 32 characters for A$ and the
next 8 characters for B$.

40 Left justify and SET A$ to the string RECORD
NUMBER concatenated with the integer value of I.

60 Left justify and SET B$ to the double precision

value of I.
storage.)

(MKD$ turns I# into a string for

70 PUT (store) I in the buffer.
110 Analyze the input response. If the response
exceeded the buffer end, LOF(1), tell the

operator. If the response was in range, print the
record number and the value. (CVD translates the
stored string I back into its double precision
numeric value.)

ERROR TRAPPING

If you want to analyze the cause of program errors, the
capability to write an easy, effective error trapping
routine is available. The ON ERROR GOTQO statement forces
the program to branch to your error routine when something
incorrect happens. Your routine could, for example, print
the failing step and error message, evaluate the probable
cause, and re-enter the program at a different point to
rectify the problem. Example:

10 ON ERROR GOTO 100

20 X = 1.2/0

30 PRINT X

40 NEXT I

50 STOP

100 IF ERR <> 11 THEN ON ERROR GOTO 0
110 PRINT "YOU CANT DIVIDE BY ZERO, DUMMY!"
120 PRINT "SEE LINE ";ERL

130 X=0

140 RESUME NEXT

150 END

OK

RUN

¥YOU CANT DIVIDE BY ZERO, DUMMY!

SEE LINE 20

0
NEXT without FOR in 40
OK

Using an ON ERROR GOTO XXXX statement at the start of the
program establishes that any error will cause a program
branch to the routine. ERR contains the error code number
and ERL has the line number that caused the failure.

The error code value for a divide by zero error is 11; a
check is made to confirm that that is the error. The user's
error message is output, followed by the step number, and
the program resumes execution at step 30. (The line after
the failing one.)

The ON ERROR GOTO 0 ensures that an unexpected error will
print its own message; that is, your error routine will be
ignored and program execution will stop as usual.

Continued on page 24.

13

BUGGIN’
HUG

Just a quicky this time. . .in case someone
asks:

I discovered that issue 41, Space War,
doesn’t want to run with Ext.B.H.BASIC
10.05.00 (The new one for the H8-4, etc.)
because the $Inbuf location is different
and the program uses the buffer to get
input instead of $Rchar.

Lines 3250, 3270, 3280, 3290, and 3300
need to have their PEEK and POKE state-
ments changes from 8301 to 8271. Sim-
ple!

I've only played the game a few times at
level 1, since it came only last Wednes-
day. It seems to accept input with the
above changes. Looks like I'll need an
H8-4 pretty soon for an H-14!

Ray Klait
2538 Easy Street
Ann Arbor, MI 48104

I would like to bring to your attention a
misprint I found in the number 4 issue of
the HUG REMark Magazine. On page 16,
in the subroutine for the money for mat-
ter, line 150 will not execute the HDOS
basic the way it is printed. It should be
changed to read:

150 IF L>L1 THEN A$=LEFTS$(A$,L—
L1)+","RIGHT$(A$,L1):GOTO 140

With these corrections the subroutine
works very well.

I'm an avid Heathkit equipment user. My
system consists of the H8, H9, H17, H36. 1
have 32K of memory and plan to expand it
to 64K within the next couple of months.

14

I'm also interested in starting a computer
club in the Joliet area. I would appreciate
it if you could put something in your
“meetings and Club Notices” column.
The name of the Club is:

Joliet Computer Club
2359 F Plainfield Rd.
Crest Hill, I11. 60435

Phone (815) 725-0749

Thank you for your attention to this mat-
ter.

James R. Sossong
CO0-owner,
Business Computer Systems Inc. of Joliet

Dear HUG:

For the benefit of those who may have an
unused parallel port or two on their H8-2,
the following synopsis of programming
instructions is offered. It should be noted
that as I have both a parallel and a serial
board installed in my H8, it was necessary
to re-jumper the H8-2 Channel 0 to octal
address 200-201 (128-129 decimal) so
that both would work at the same time.
Also, forthose who, like me, have the H17
disk, you should note that the port jum-
pered to octal address 374-375 (252-253
decimal) is the address for outputting AT:
as in the case of a printing terminal.

Since most of my work is in BASIC, the
following is a conversion of the assembly
instructions that would otherwise be en-
tered via the front panel or in an assembly
instruction program.

OUT 129,78 Initialize the UART
at port 129

OUT 129,5 Enables data in/out,
drive pin 12 high

OUT 129,39 Enables data in/out,
drive pin 12 low

OUT 129,64 Resets the UART at

port 129

The above instructions allow the device
control pin on the CH 0 terminal strip to
be set high (device off) or low (device on).
It then becomes a simple exercise to use
that signal to operate a relay circuit for
external control of some device, which is,
in fact, just what the signal does for a
printer, etc. These same instructions
would be used to program a parallel port

to operate a guage device driver. The in-
clusion of a short BASIC routine can take
care of it all, and at low speeds you'll
never notice the delay. Of course, the H14
gets around all this.

The following is an example of a short
BASIC demonstration program that will
alternate the signal on pin 12 of the H8-2
terminal strip from logic high tologic low
(best observed with a logic probe);

10 OUT 129,78: REM Program the
UART;

20 OUT 129,5:REM Turn device control
off (logic high])

30 PRINT “Device CONTROL OFF”
:REM Soyou can see what happened.

40 PAUSE

50 OUT 129,39: REM: Turn device con-
trol on (logic low)

60 PRINT “DEVICE CONTROL ON"
:REM As in LN 30

70 PAUSE

80 GOTO 20: REM Loop for observation
purposes

I hope this removes some of the mystery
in the use of the H8-2 for things other than
driving a paper punch or a teletype-like
device. I'll be happy to correspond with
anyone who has moved into the area of
device control, either via BASIC or as-
sembly language.

D. C. SHOEMAKER
720 Ottawa #100
Leavenworth, KS 66048

Dear HUG:

If you are (like me) the proud owner of a
minimum configuration H-11 computer
(8K), you have probably realized by now
that the BASIC interpreter takes up al-
most all available memory, barely leaving
enough space for trivial programs, You
therefore have the choice between As-
sembly Language (provided you have
LOTS of patience) or FOCAL (which you
may be seeing for the first time). This arti-
cle will outline a few “neat tricks” which
will allow you to develop fairly sophisti-
cated programs using FOCAL-4K, which
is an interpreter (like BASIC), but which
unfortunately runs much slower.

The first (and perhaps most striking) fea-
ture of FOCAL is its unique way of handl-

¥REMark « Issue 6 = 1979

ing arrays: unlike BASIC (and FORTRAN
and. . .) you do NOT need to DIMension
arrays! This means that you do NOT re-
serve space for cells in the array you will
never use. This is very convenient when
handling ‘‘sparce matrices”, that is, a
large matrix (100x 100, say) where only 5
to 10% of the cells are nonzero. Any
FOCAL variable (including elements of
arrays) whose value is set to zero (or
which undefined) does not take up ANY
space!

Another interesting feature is the Real
Time Clock (FCLK) function which is en-
abled by removing a jumper on the H-11
power supply. Unfortunately, it can only
time up to about 9 minutes before reset-
ting to zero. This is due to a bug (over-
sight?) in the way FOCAL handles the
EXTERNAL INTERRUPT (vector 100;). In
the 4K version, the internal code for the
Interrupt Handling Routine is:

ADDRESS CONTENTS MNEMONIC

10646, Hi-order word HI
of timer

10650, Lo-order word LO
of timer

10652y 005267 INC LO

10654y 177772

10656, 005567 ADC HI

10660, 177764

10662, 000002 RTI

The only problem is that . . .the INC in-
struction does NOT set the Carry flag! I
have tried using an ADD instruction in-
stead, but some other problem (?) seems
to be mapping all values of LO between
100000, and 177777, onto values 0y to
77777, (ignoring the most significant bit),
still causing the time toact funny. I would
very much appreciate hearing from
someone that knows of a solution to this
problem.

The point that should be made to con-
clude this article is that it is worthwhile
learning FOCAL if you are (like me) an
individual who likes writing sophisti-
cated programs in the minimum amount
of time, but lack the $ required toinvestin
this additional 16K RAM board (you
should see the price of these up here in
Canada!).

Francois ROY

44 Bedard #310
HULL, Que., CANADA
J8Y 527

HREMark « Issue 6 + 1979

--EDIT

H8 REGULATOR
SOCKETS

HEATH ENGINEERING HAS SPECIFIED
A NEW MOLEX CONNECTOR SHELL
WHICH FORCES BETTER CONTACT
BETWEEN THE 5v REGULATOR LEAD
AND THE SPRING CONNECTOR —
SEND HEATH YOUR PURCHASE DATE.
. .\AND QUANTITY NEEDED. ORDER
HEATH PART NUMBER 432-1080 —
THEY WILL BE SHIPPED N/C (SEE "“H8s
CRASH ARRESTER" ISSUE #5)

TRUE RS-232
FOR THE H8-5

Dear HUG:

Having begun my computer kit appren-
ticeship some fifteen years ago on a Heath
EC-1 Analog Computer, I now feel qual-
ified for a card as journeyman H8 assem-
bler as a result of constructing several sys-
tems for use in our schools. Including my
personal system, I have assembled to
date: five H8's, twelve H8-1's (each with
H8-3), ten H8-5's, and two H9's. As I
gained experience troubleshooting the
various circuits, several minor hardware
problems were overcome with decreasing
difficulty. These included such things as
bad memory chips, faulty keyboard
switches, a 7805 regulator which failed,
and an incompletely etched control cir-
cuit board which left two data lines
shorted.

I have recently solved an additional
hardware problem which I believe is a
design fault on the H8-5 serial board. A
variety of terminals are being used with
the five H8’s. Console terminals consist of
two H9’s, 2 Microterm ACT IVa's, and a
Digilog 33. Alternate terminals or prin-
ters connected to port 374(Q) are two Tele-
type ASR33's with DEC H313 interfaces
and two Integral Data IP-255's. All of the
nine I/O devices are connected via the RS
232 interface and therein lies the prob-
lem. Originally, only the two H9’s and the
Digilog 33 would transfer data to the H8-5
while the two ASR33's and the two ACT

IVa’'s would not. Afterdigging through all
of my magazine back issues, I found suffi-
cient information on the EIA RS-232C
standard to indicate that the interface
input impedance should be greater than
3000 ohms; the H8-5’s input impedance is
approximately 800 ohms. Most RS 232C
terminals (excepting the H9) have an out-
put impedance on the order of 2000 chms
which makes it impossible to light the
LED in IC 121 on a “mark"” input. I have
solved this problem by modifying the
H8-5's in the following manner:

Remove R152, 680 ochms

Change R151, 680 ohms to 6.8 K
Reverse D108, 1N4149

Remove IC121, 4N26

Vend out pins 11, 12,and 13 of IC122,
74LS00

Make solder bridge on back side of
board between 1C122-11 and 12

7. Install MPSAO06 transistor in IC121
socket (form leads to fit): emitter to
pin 4, base to pin 2, and collector to
pin 5

HU S0 6

&

1 Sr
MPSADD :

| Orderes——e—e—T7 é;

1cizi
SOCKET

DATA I

The H8-5's being used with the IP-225
printers have been additionally modified
so that the RS 232 input can be used with
the EIA level printer CTS signal by re-
moving the existing connections to IC
124-3 and 17 and connecting a jumper
from IC 122-11 toIC-124-17. The port 374
Q boards also have all cassette I/O com-
ponents omitted.

Several months ago I encountered a prob-
lem with Ext. BASIC 10.01.02 which
manifested itself in a non-working TAN
function.

The problem:

Bit 0 of address 040 073 must be clear in
order for TAN to operate. If the bit hap-
pens to be set at power on, the software
does not clear it on load and go which
results in failure of the TAN function.
(Problem doesn’t exist in BASIC
10.02.01.)

15

The fix:

(1) Load configuration tape of BASIC

10.01.02.

(2) Key in changes —
040 101 060
040 102 104
104 060 076 000 MVI A
104 062 062 073 040 STA
104 065 041 156 041 LXI H
104 070 042 101 040 SHLD
104 073 303 156 041 MP

(3) Set memory address to 104 075.
(4) Dump new configuration tape.

Another problem encountered which I
have yet to find a solution involves the
HDOS BASIC. When executing:

10 OPEN “AT:”FOR WRITE AS
FILE #1

20 PRINT #1, CHRS$ (12)

30 CLOSE #1

Eleven line feeds occur on the IP-225
printer rather than a form feed.

Theline: 40 OUT 252,12 producesa
true form feed The same occurs on the
ACT 1Va console terminals:

PRINT CHR$ (12)
ven line feeds while
OUT 250, 12 produces form
feed (clear screen).
I'll close with a suggestion: There should
be a way to mount and dismount SY1:
diskettes from BASIC without returning
to HDOS. Microsoft can do it — why not
Heath?

produces ele-

B. G. Chambers,
Science Supervisor

H-9 T.V. INTERFACE

Leon G. Biesiadecki
P.O. Box 2092
Ridgecrest, Cal 93555

There are many cases when aremote T.V.
type display can be helpful in reducing a
crowd around your H-9.

In preparation for an upcoming news dis-
play at a local county fair, much thought
was given to leaving my H-9 out in the
open so the fairgoers could read the news
from a local radio station. I decided to

16

A.C. PWR
SWITCH FUSE

ON_OFF

O[Me

HOLE TO

AN I/FII BNC
=

PWR
CORD

2N2219

Figure 2

install the following circuit in my H-9
allowing the use of a T.V. monitor (witha
video input) as a large screen display. An
R.F. adapter can be added to convert this
signal to a standard T.V. channel.

The installation of this circuit can be ac-
complished without modification of
existing circuit boards. A hole is drilled
in the rear panel of the H-9 as shown in
figure 1. The size of this hole will vary,
depending on the type of BNC connector
you install at this location. Mount the P.C.
board behind this connector next to the
Character Generator board. Remove the
Character Generator board and solder the
wires from the T.V. Interface to P201 and
P202. Take care not to short the pins to-
gether, and wrap the wire around the pin.
Press the wire down as faras possible, and
solder it in place.

Connect as follows:

A (Video) to P202 pin 1
B (V Sync) to P202 pin 4
C (H Sync) to P202 pin 2
D (+5) to P201 pin 3
E (Vid Out) to BNC Jack

F (Gnd) to P201 pin 5

If a scope is available, connect to the BNC
on the rear panel and adjust R1 for about
60% video and 40% sync. Otherwise, ad-
just R1 to midrange. Do not adjust to
either limit of rotation.

This modification will now allow view-
ing the data on your H-9 from a remote
location.

PARTS LIST

C1 — .1 uf 35v disc
R1 — 1K PC mount Trimpot
R2 — 68) 1/4W

Q1 — 2n2219

U1 — 7486

Misc — Panel mount BNC,
P.C. board

EOF
$REMark « Issue 6 +1979

BASIC IDEAS

Thanks to Bob Meister and his ‘‘H-11
BASIC PATCHER.”

A BASIC bug that I found particularly
troublesome was one which occurred
during an input routine using “IF
SEG$(A$,1,1)= THEN X statement. If
the return key is inadvertently pressed
without having entered a character, then
a reversion to a “COLD START” would
occur.

My solution was to first test the input
string using “LEN(A$) = 0", If the test is
true, then print “INVALID ENTRY” and
return to the input request statement. An
example of the routine I now use for test-
ing YES or NO inputs is listed on lines 10
through 60 with the additional lines end-
ing in 5 shows for clarity.

05 PRINT “DO YOU WANT IN-
STRUCTION"

10 INPUT A$

20 IF LEN(A$)=0 THEN 50

30 IF SEG$(A$,1,1)="Y" THEN
105

40 IF SEG$(A$,1,1)="N" THEN
205

50 PRINT “INVALID ENTRY,

ANSWER YES OR NO"
60 GOTO 10
105 REM INSTRUCTIONS
205 REM PROGRAM

George Roth
11030 Richfield
Livonia MI 48150

In disk basic, there is the CIN() command.
But, I have discovered a method of repro-
ducing this command for tape basic
(either extended issue). This procedure
uses the input buffer POKE 8301. In nor-
mal operation, this address, 8301, is 0.
But when something is typed on the con-
sole, the PEEK(8301) becomes equal to
the length of the string typed. Thus, it is
possible to bypass the need for the car-
riage return. For example, the question
“DO YOU WANT INSTRUCTIONS?” can

H-REMark « Issue 6 + 1979

be answered this way by using the follow-
ing program:

10 PRINT “DO YOU WANT IN-
STRUCTIONS?”;

POKE 8301,0

IF PEEK(8301)=0 THEN GO
TO 30

40 B$=CHR$(PEEK(8302))

50 PRINT B$: POKE 8301,0

20
30

If this program were run, the print-out
would look like this:

DO YOU WANT
TIONS? Y

INSTRUC-

where the portion underlined was input-
ted from the console. Note, though, that
no carriage return was needed. The opera-
tion of the program is very simple. Line 10
prints the prompt, line 30 sets up a loop
that does not end until something is typed
on the console. As soon as something is
typed on the console, the computer looks
at the PEEK(8302), which is the first
memory location which contains the ac-
tual ASCII code for what is typed in. But,
since the computer only took 1 character
from the console, all memory locations
after 8302 would be meaningless. Line 40
puts the character taken into the string
character B3. If you wanted a number
typed in, then line 40 would look like
this:

40 B=VAL(CHRS$(PEEK(8302)))

This would put the character (numeric
only) into the variable B. Line 50 prints
the variable; that way the question looks
as though it were done with one of the
INPUT statements. Because you never re-
ally clear the input buffer, it is necessary
to clear it by using the POKE command.
By varying these lines a little, you can
make interesting modifications, such as
timed entries, and many other things.

Andrew Dessler
001401780308

VARIABLES SCRATCH PAD

It is a good idea to keep track of the vari-
ables in a program, especially in a large
and complicated one. It is easy to lose
track of which variables have been as-
signed for what purpose and which ones
are still unassigned. When submitting a
program for publication it is helpful if
you can list the variables and their use.
This program will print a scratch pad
which will make this information easy to
recall. It will increase the chances that a
publisher will appreciate your program
and accept it for publication. It will also
become a permanent part of your records,
enabling you to recall exactly what you
did if that becomes necessary at a later
date.

The program was written for use on my
Baudot printer with a line length of only
72 characters. If your printer allows a
longer line you may adjust the length by
increasing the argument of the SPC(iexp)
instructions in subroutines 1000 and
3000. A similar instruction can be added
in subroutines 2000 and 4000 and the ar-
gument set for the desired spacing bet-
ween variables.

Statement 130 is an indefinite PAUSE.
This was put in to allow getting ready for
the next page at my own speed and has no
prompt statement because I did not want
any superfluous printing at the end of the
page. When you have the paper aligned,
just hit the space bar and printing will
continue. If you have a tractor feed
printer, you will want to replace the
PAUSE with the proper instructions to
provide form feed onto the following
page.

It is amazing how much easier it is to
write a complicated program using this
scratch pad. When you think you are get-
ting cramped for new variables, a quick
glance at the scratch pad reveals that
there are actually bushels of possiblities
remaining!! Imagine writing a program

17

which uses all of the available variables?
Thereare 11 X 26 X 4 or 1144 possiblities!
I hope this program will be of some help
when you write one which uses them all.
G. L. “Jerry” Hale KOJH PROGRAM 1
6334 Edward Street

INE “G
Norfolk, VA 23513 10 LINE INPUT “CITY STATE, AND

ZIP?"CH
20 OPEN “FILE.DAT” FOR WRITE AS
LIST FILE #1

5 REM //"VARIABLES SCRATCH PAD" FOR HEATH H-8 COMPUTER 30 PRINT #1, C§

40 CLOSE #1
10 REM //ADAPTED BY GERALD L. HALE K@JH, FROM THE BASIC IDEA 50 OPEN “FILE.DAT” FOR READ AS

15 REM //CONTAINED IN AN ARTICLE IN 'KILOBAUD' MAGAZINE MARCH 79 FILE #1

2@ REM //WRITTEN BY ROBERT GOFF WHO GOT THE IDEA FROM 'ADVANCED 60 LINE INPUT #1,; C$

25 REM //BASIC', BY J.S. COAN, HAYDEN BOOK COMPANY, ROCHELLE PARK 70 CLOSE #1

39 Y$=" P123456789":28=" ABCDEFGHIJKLMNOPQRSTUVWXYZ" 80 PRINT C$

49 PRINT P=1

45 PRINT TAB(45);"PAGE";P:PRINT

. ; PROGRAM 2

5@ PRINT "PROGRAM:";TAB(3p);"DATE:";TAB(45);"PROGRAMMER : "

6@ PRINT :PRINT 10 LINE INPUT “CITY, STATE,

79 FOR 1+1 to 26 ZIP?” C$

89 FOR J=1 to 11 20 OPEN “FILE.DAT” FOR WRITE AS

99 ON P GOSUB 190@,2000, 3980,4900 FILE #1

TORNEYT 3 30 I(’JI:'ICI;IS'II'E#;,CHR$(34);C$;CHR$[34]
40 C 1

18 PRINT :

1 PRINT 50 OPEN “FILE.DAT” FOR READ AS

12@ NEXT 1 FILE #1

13p PAUSE 60 IPUT #1,; C$

149 IF P=4 GOTO 9999 70 CLOSE #1

159 P=P+1:G0TO 45 80 PRINT C3

19P@ PRINT MID$(Z$,1,1):MID$(Y$,J,1);SPC(3);:RETURN

2p@@ PRINT MID$(Z$,1,1),MID$(Y$,3,1)5"(";" "5")";s" ";:RETURN
3pPp PRINT MID$(Z$,1,1);:MID$(Y$,J,1);5"S";SPC(2) ; :RETURN
4p@@ PRINT MID$(Z$,1,1);MIDS(Y$,d,1)3"S";" (5" ";")"; :RETURN
9999 END

1U GOSUE 10000

Here are two programs both of which will ~ 20 FRINT *FREE BYTES =°71
solve the problem of reading in data that a0 LN
P g 10000 REM THIS SUBROUTINE RETURNS THE NUMBER OF FREE BYTES LEFT.

contains commas. (HDOS] 10010 REM SUBROUTINE IS ONLY VALID FOR EXTENDED BASIC 10.02.01
10020 REM

Program 1 line 60 makes use of the fact 10030 REM NUMBER OF FREE BYTES LEFT IS RETURNED IN VARIABLE ‘I’.

o : . 10040 REM VARIABLE ‘J‘ IS USED AS A SCRATCH PAD.

that line ml;l:ut ’.npum“ot'.npletehlr:emtg 10050 LET I=FEEK(17861)%256+PEEK(17860)-18049

a string allowing quotation marks an 10080 FOR J=17832 TO 17857 STEF S

commas to be part of that string. 10070 LET I=I-PEEK(J+1)¥256-PEEK(J)
10080 NEXT J

Program 2 line 30 and line 60 makeuseof 10090 RETURN

the fact that if a comma is needed to be

input in a string, then quotations marks

must be used around the string that is 10 REM USING USER DEFINED FUNCTIONS FOR RIGHTS LEFTS AND MIDS
R . : 20 \

being input. Line 30 uses the CHR$ func- 30 gpen *LP:* FOR OUTPUT AS FILE #1

tion to place a quotation mark on both 40 DEF FNR(X$,A)=SEGS$(X$sLEN(X$)-A+1sLEN(X$))\REH RIGHTS FUNCTION
sides of the string C$ as it is writtentothe ~ 50 DEF FNL(X$rA)=SEG$(X$s1rA)\REM LEFT$ FUNCTION

: g ; &0 DEF FNM(X$sA»B)=SEG$(X$,ArB+A-1)\REM MID$ FUNCTION
disk. Therefore, when C$ isread inby the 55 ag=+ 1M ELAKE®

input statement on line 60, the quotation 80 PRINT #1:FNR(A$s4)

marks are seen by the 10 routines and the ~ 90 FRINT #1iFNL(A$,3)

comma between the quotation marks is i?g EE‘E;E :i FNM(AS25,3)

not taken as a separator but as part of the EOF
string.

18 Y REMark « Issue 6 « 1979

00010 REM SAMPLE PROGRAM TO SHOW USE OF SUBROUTINES SUBMITTED
00012 REM RUNS ON H8 WITH H? TERMINAL ANY VERSION OF B.H. BASIC

00100 FRINT *“CHECKBOOK PROGRAM®" :PRINT

00101 B$=" 0,00 *

00102 PRINT "ENTER CHECK AS NEGATIVE NUMBER OR DEPOSIT AS POSITIVE NUMBER®:
00104 INPUT * ¢ "iXO

001046 GOSUB 1105

00107 1Is=Y$

00108 WB$=E$:UWP%=Y$ BY: GARY F. YEARGAIN

00112 GOSUE 1200 3030 W. NEOSHA RT 13
TUCSON» AZ 85705

00120 PRINT

00122 FRINT "INFUT WAS "#I$#" BALANCE IS "#Y$

00123 B$=Y$

00124 PRINT :PRINT :GOTO 102

01000 REM kXkk ROUTINES TO ADD OR SUBTRACT LARGE-NUMBER STRINGS XXX
01008 REM

01009 REM THIS ROUTINE WAS DEVELOFED' TO OVERCOME THE LIMITATION OF
01010 REM BASIC WHICH RESTRICTS NUMBERS TO SIX SIGNIFICANT FIGURES.
01011 REM WHILE THIS LIMITATION DOES NOT AFFECT MOST PROGRAMS THERE
01012 REM ARE TIMES WHEN IT IS A DRAWBACK» PARTICULARLY IN FROGRAMS
01013 REM DEALING WITH MONEY WHEN NUMBERS MUST BE EXFRESSED TO EXACTLY
01014 REM TWO DECIMAL PLACES AND MAY RUN TO MORE THAN SIX FIGURES.
01015 REM IT IS INTENDED THAT THESE FROGRAMS BE CALLED AS SUBROUTINES
01016 REM TO HANDLE THE ADDITION AND SUBTRACTION OF NUMBERS IN STRING
01017 REM FORM.

01018 REM

01019 REM RESTRICTIONS ANLDI LIMITATIONS?

01020 REM THE NUMBERS HANDLED EY THESE ROUTINES MUST BE IN STRING FORM.
01021 REM EXAMFLE: A$=" 12345.67 *

01022 REM NUMBERS MAY BE FPOSITIVE, NEGATIVE OR ZERO.

01023 REM NUMBERS MUST HAVE A SPACE AFTER THE SECOND DECIMAL FLACE.
01024 REM NUMBERS MUST BE OF MINIMUM LENGTH OF FIVE PLACES.

01025 REM EXAMPLE: "X.XX * SO0 THAT ALL VALUES LESS 1.00 WILL BE EXPRESSED
01026 REM AS A ZEROr DECIMAL POINTr TWO ADDITIONAL DIGITS AND A SPACE.
01027 REM TO CONVERT NUMEBER VARIAELES TO STRING VARIABLES WHICH SATISFY
01028 REM THESE CONDITIONS CALL SUBROUTINE 1100, WHICH IS A MODIFICATION
01029 REM OF A ROUTINE TAKEN FROM A HEATH CO. PROGRAM.

01030 REM

Q1097 REM AKARRIOKNNRNON K K KKK K HOK ORI KKK OR KKK 3K KK IR 30K 3OKKIOK JOK KK ¥k K
01100 REM GENERATE A STRING FOR FRINTING A NUMBER THAT WILL GUARANTEE
01102 REM TWO DIGITS AND A SPACE TO THE RIGHT OF THE DECIMAL POINT.
01103 REM ENTRY! XO=NUMEER EXIT: Y$=STRING

01105 Y$=STR$(INT(XOX100+SGN(X0)%*0.5))

011046 IF X0>=0 GOTO 1112

01107 Z1=LEN(Y$)-3:Z1$=MID$(Y$,3+21)

01108 IF Z1»>=3 GOTO 1110

01109 Z1$="0"+Z1$:Z1=Z1+1:G0OTO 1108

01110 Y$=LEFT$(Y$,2)+MIDS(Z1$,1yZ1-2)4" . "+MIDS(Z1$+Z1-1»2)+" *

01111 RETURN

01112 Z1=LEN(Y$)-21Z1$=MID$(Y$,2+7Z1)

01113 IF Z1>=3 GOTO 1117

01116 Z1$="0"4+Z1$1Z1=Z1+411G0OTO 1113

01117 Y$=LEFT$(Y$,1)+MIDS(Z1$,1,Z1-2)+" . "+MIDS(Z1$,Z1-1,2)+" *

01118 RETURN

01120 REM 20K0KKKKK KKK KKK 3OKOK K K K K KK KKK 8 K 0808 K 0K 0K 08 0K 508 0K K K KOKOK O KKk
01200 REM ROUTINE TO ADD LARGE-NUMEER STRINGS

01201 REM ENTRY: W8%: W?$ EXIT: Y$

01202 REM STRING NUMBERS MUST BE MINIMUM LENGTH OF FIVE (*XX.X *)

01203 REM YOUR FROGRAM MUST SET WB$=FIRST NUMBER TO BE ADDED AND

01204 REM W?$=SECOND NUMBER TO BE ADDED THEN GOSUB 1200. UFON RETURN
01205 REM Y$=STRING WHICH IS SUM OF VAL(WB$)+VAL(W?$) IN FORM "XXXX.XX *
01210 IF VAL(W8%)>=0 AND VAL(W?$)>=0 GOTO 1220

01212 IF VAL(WB$)<=0 AND VAL (W?%)<=0 GOTO 1240

01214 IF ABS(VAL(WB$))>=ABS(VAL(W?%)) GOTO 1260

01217 GOTO 1280

Q1220 W7=VAL(RIGHT$(WB%$:5)) 1WB=VAL(LEFT$(WB$ LEN(WBS)-5))

01222 WG=VAL(RIGHT$(W?%$:5)) :WO=VAL(LEFT$(W?$,LEN(W?$)-5))

01224 W4=WB+WE:IX0=W7+WSIIF X0>=10 THEN X0=X0-10:W4=W4+1

01226 GOSUF 110S5:W7$=RIGHT$(Y$,LEN(Y$)-1)

01228 IF WA4=0 THEN Wés$=" ":GOTO 1234

01230 WE$=STR$(W4)WE$=LEFTS$(Ws$LEN(WES)-1)

01232 IF LEN(W7$)>S THEN W7$=RIGHT$(W7$,LEN(W7$)-1)

01234 Y$=Wss+UW7%

01236 RETURN

01240 W7=-VAL(RIGHT$(WB%s5)):WB=VAL(LEFT$(WB$ LEN(WBS$)-5))

01242 WS=-VAL(RIGHT$(W?$r5)) Ws=VAL(LEFTS$(W?$sLEN(W?$)~-5))

01244 W4=WB+WSIX0=W7+WSIIF X0<=-10 THEN X0=X0+10:W4=W4~-1

01244 GOTO 1224 VECTORED TO PAGE 35

S REMark « Issue 6 « 1979 18

DECIMAL I/O WITH THE H8 MAINFRAME

Anyone who hasbuilt the Heathkit H8 will be aware that this is
a highly versatile machine, even without a terminal. What may
be less obvious is the fact that with a little extra effort it can be
made to function as a sophisticated programmable calculator,
complete with decimal input and output. (Do you find it hard
to explain to your friends why you invested so much in a
machine that can only count to seven?) This is accomplished
by means of two subroutines — one for input via the front
panel keyboard, the other for output on the display.

INPUT

At any point in a program, you can enter data via the keyboard
by calling the subroutine already programmed in the Front
Panel Monitor. 315(CALL) 260003 causes the program to halt
execution and wait for you to push a key, causing the corres-
ponding binary value to be placed in the Accumulator and
processed in whatever ingenious manner you wish. Keys 0
through 9 put 0 through 9 in the accumulator; the remaining
keys provide 10 through 15, and can serve as function keys to
indicate end of input, type of data, thing to be done next, etc.

Since only one digit is processed at a time, you must call
260003 once for each digit in a given number. If you were
entering a series of numbers 0 through 999, for each number
your routine could do the following; take the first digit entered
and multiply itby 100, take the second digit and multiply it by
10, take the third digit and add it to the first and second, and
store the sum for future use.

Simultaneous display of the digits being entered can be pro-
vided by using parts of the Output subroutine, described next.

OUTPUT

Toillustrate the basic principles of this subroutine, a relatively
simple version is described and listed here. It takes whatever
number is present in Register D (i.e., up to 377), and displaysit
in decimal on the three middle display digits.

When the subroutine is called, it first disables display updat-
ing by the Front Panel Monitor, turns off the display and clears
the BCD Digit Table. It then checks each bit in Register D; if a
bit = 1, its BCD value is placed in the table. The values in the
table are then added, and the three BCD digits comprising the
sum are separately added to the bottom address of the Display
Code Table, giving the address of the corresponding display
code. The display code is then placed in the memory location
for one of the three middle display digits. The decimal number

By: ALAN DAY
907 BROWN AVENUE
CAMBRIDGE, OHIO 43725

20

is displayed for the period of time determined by the value in
location 041003. The display time equals approximately this
value times 0.5 second. When this time elapses, display con-
trol is returned to the Front Panel Monitor, and the subroutine
is exited. The contents of Register D have not been altered.

040100 201 ~~-.__
040101 363
040102 310 DISPLAY CODES
?OR |.O.| THROUGH 'lgl'
0640103 340 4
060104 262
Daree 040112 0 [1
040113 2
040106 204 oami4 —6—2—
y 040115 ~ 3] 2 BCD
G4olo7 361 / 040116 1| 6 __ DIGIT
wotia w0 0017 018 Tasie
040121 0 | 2
040111 240 gu132 — o T T
LXI H
060160 041 010040. 40123-137 FOR STORAGE
OR EXPANSION
MVI M
040143 066 002 UBROUTINE START
MVI L \IS&BLE DISPLAY UPDATE
040145 056 013
MVI A
060147 076 024
MVI M
040151 066 377 TURN OFF DISPLAY
INR L
040153 054
cHp L
040154 275
Nz
040155 302 151040
wWI L
040160 056 112
MVI A
040162 076 123 CLEAR BCD TABLE
MV M
040164 066 000
INR L
040166 054
CHP L
040167 275 3
Nz
040170 302 164040

$REMark « Issue 6 + 1979

040173

040175

040176

040200

040203

040205

040206

040210

040211

040212

040213

040214

040216

040221

040223

040224

040225

040227

040232

040234

040235

040236

040240

040243

FREMark « Issue 6 « 1979

MVI
056

MoV
172

ANI
346

Jz
312

MVI
066

INR
054

MVI
066

DCR
055

INR
054

INR
054

MOV
172

ANI
346

Jz
312

MV1
066

INR
054

Mov
172

ANI
346

Jz
312

MVI
066

INR
054

MoV
172

ANI
346

Jz
312

MVI
066

L
112
A,D
200
IF BIT 7 OF NUMBER
211040 IN REGISTER D = 1
PUT 12&10 IN BCD TABLE
M
ool
L
A,D
IF BIT 6 = 1
PUT 6&10 IN BCD TABLE
100
223040
M
144
L
A,D
040 ¥ BIT 5 =1
UT 32 IN BCD TABLE
10
234040
M
062
L
A,D
020 IF BIT 4 = 1
PUT 1610 IN BCD TABLE
245040
M
026

040245

040246

040247

040251

040254

040256

0460257

040269

040262

040265

040267

040270

040271

040273

040276

040300

040301

040302

040304

040307

040311

040312

040314

INR L
054

MOV A,D
172

ANI
346 olo IF BIT 3 = 1
UT 8, IN BCD TABLE

/

Jz
312 256040

MVI M
066

o010
INR L
054
MOV A,D
172
ANI

346 004 IFBIT 2 =1

PUT &10 IN BCD TABLE
JZ

312 267040

MVI M
066

INR L
054

MOV A
172

//////;//////J
=)

=
S
&=~

ANT
346 002 IFBIT1 =1

PUT 210 IN BCD TABLE
Jz

312 300040

MVI M
066 002

INR L
054

MOV A,D
172

AN1
346 ool FBITO=1

UT 1 IN BCD TABLE
Iz 10

312 311040

HVI M
066 00l

MOV A,M
176

MVI B
006 007

DCR L
055

21

040315

040316

040317

040320

040323

040324

040326

040327

040330

040331

040334

040335

040336

040340

040341

040342

040344

040345

040347

040350

040351

040352

040353

040354

22

ORA A
267 <«—CLEAR CARRY BIT

ADD M
206

DAA
047 <«€—DECIMAL ADJUST

JNC
322 330040

MOV E,L
135 ADD BCD TABLE ENTRIES

MVI L

056 112 F CARRY,
NCREMENT MSD
INR M

064

MOV L,E
153

DCR B l

005 END OF BCD
TABLE?

JNZ

302 3140

£
o

/

DCR L

055 MOVE MSD
TO REG. C

MOV C,M

116

X

MVI L
056 100

DAD

o1l FOR MSD, FIND CORRES-
PONDING CODE IN DISPLAY

MOV C,M TABLE, PUT CODE IN MEM.

116 LOC. FOR LEFTMOST DIS-
PLAY DIGIT

;

MVI
056 1

MOV M,C
161

L
ol6

EXTRACT MIDDLE BCD

017 DIGIT FROM ACCUM.,

SEND CORRESP. DISPLAY
ANI CODE TO MIDDLE DISPLAY
346 017

040356

040357

040360

040361

040363

040364

040366

040367

040371

040372

040373

0460374

040376

040377

041001

041002

041004

041005

o4lolo

041012

041014

MVI L
056

MOV A,E
173

ANI
346

MOV C,A XTRACT LSD FROM
117 REGISTER E, SEND

CORRESP. DISPLAY
DAD B CODE TO RIGHTMOST
oll DISPLAY

MOV C,M
116

MVI L
056 020

MOV M,C
161

AN

MVI L
056 034

MOV AM
176

/

DISPLAY DECIMAL NUMBER
ADL FOR PERIOD OF TIME DE-
306 012 TERMINED BY CONTENTS
OF LOC. 041003

CMP M

276

JINZ

302 004041

MVI L

056 olo

MVI M ENABLE DISPLAY UPDATE,
066 000 RETURN TO MAIN PROGRAM
RET

311

EOF

YREMark « Issue 6 « 1979

FAST STRING SORTING WITH HT-11

By: Tom Nelson

It is often useful, especially in business
applications, to be able to sort records by
customer name or account number. The
HT-11 system has some sophisticated fea-
tures which enable it to sort strings fast.
Records can be alpha or numeric or both.
They can be of variable length. And the
sort can be in ascending or descending
order.

The program described here makes use of
the random access (virtual file) feature of
HT-11. Instead of bringing the entire re-
cord into an array in core, only the key
fields are read in, along with the “‘tag" or
record location in the virtual file. This
means that a large number of fields can be
sorted in core. Then the tag is used to
access the records from the virtual file in
proper sequence and write them to an
output file.

Input File Program

The following program, PAYMNT.BAS,
is a simple version of a payment receipt
input file. Notice that the data is written
out to a string virtual file, VFI$. Numbers
are converted to strings, and a comma is
inserted for future use as a delimiter.
Then the whole record is concatenated
into a single string variable in statement
180.

As shown in the example, the file would
accept up to 80 records, each of which
could have up to 64 characters. (Re-
member that is you print this file using R
PIP it will look strange because it's a vir-
tual file.)

PAYMNT . BAS
100 A$="PAY1"
110 OPEN A$ FOR OUTPUT AS FILE
VF1$(80)=64
120 C$=I!*Il
130 I =1
135 PRINT
140 PRINT I;"NAME";\INPUT N1i§
150 PRINT "AMOUNT";\INPUT A
160 IF Ni1$="XXX" GO TO 300

S REMark « Issue 6 »1979

170
180
190
200
210
300
310
320

A1$=STR$ (A)

N$=N1$&CH&ALE

LET VF1(I)=N$

I=I+1

GO TO 135

PRINT "RECORDS MADE= ";I-1
STOP

END

Sort Program

Now that a data file has been created, we
are ready to illustrate SORT.BAS. Sup-
pose five records were in PAY1.DAT:

1 SMITH, 100

2 JONES, 75

3 MURPHY, 30

4 ANDERSON, 90
5 JACOBSON, 85

The sort program asks the name of the
input file, PAY1; the name of the output
file, for example SORT1; the number of
the first sort column, for example 1; the
number of records, five in this example;
and the number of columns to be sorted,
for example 4. It is usually not necessary
to sort on a whole name. Punctuation and
numbers could be in the sort field also.

The program first reads the sort field into
array A$(I,1). It also stores the tag or index
number of the record in word 0 of the
array, A$(1,0). This is done in statements
210 to 240.

Sort Method

The program now starts to sort (state-
ments 250-380). It uses a simple al-
gorithm called the “‘exchange” method. It
starts by storing the key field of the first
record, A$(I,1),in S1$. The location of the
record in the virtual file, A$(1,0) is stored
in S2$. Going through the loop, if any
smaller key field is encountered, its loca-
tion in the loop is stored in P. After the
loop has been completed, the value of A$
stored in the lowest positionis exchanged
with the values in position P (statement
330 to 350). Then the lower bound of the
loop is incremented.

Thus with each pass, the lowest value is
moved into the first position in the array
and the loop is decreased in size by one
value.

Once the array A$ has been sorted, its
“tag”, the record location in the virtual
file, isused to randomly select the records
in sorted order. The records are written
out to an ordinary sequential file (state-
ment 500 to 560).

In our example, after the sort is com-
pleted, the array A$ would contain:

Word 0 Word 1
4 ANDE
5 JACO
2 JONE
3 MURP
1 SMIT

Therefore, record VF1(4) is printed into
file #2 first, followed by VF1(5) and so on.
If it is necessary to have the file in de-
scending order, simply reverse the index
of the output to go from A1 to 1 in steps of
=15

Partitions and Merging

Most files that I sort are only 50 to 100
records long. However, if a really big file
must be sorted, a combination of sort and
merge can be used. Merging is a process
of combining several smaller sorted files
into one large one. This is done by read-
ing one record from each of two input
files, comparing their key fields and writ-
ing out the lowest. HT-11 makes a merge
program easier with two features. First,
the file names can be represented by a
symbol such as F1$. Thus, a set of file
names can be made by the program by
concatenation: F1$="SORT"&"1", etc.
Then a series of files such as SORT1,
SORT2, etc. can be opened as they are
needed by sort to accomodate an array of
sorted records.

The second important feature is the test
for end-of-file. HT-11 does this with an IF
END statement. In merging it is essential
that all files read to completion and that
the output file closes normally after all
records of all files are merged.

23

24

Conclusion

Contrary to the rather negative discussion

DIN A$(80,1)

SORT.BAS

\REM CREATES A 25X2 MATRIX

. . . : . 110 PRINT TAB(15); "S TR I N G SORT"
Eﬂ;‘ﬁ?{‘,ﬂf‘%ﬁp‘gﬁ?}fg@ g‘:nﬁ:}“{o 120 PRINT “THE PROGRAM IS CURRENTLY DIMENSIONED AT 80 RECORDS"
: i .p- 130 PRINT “INPUT FILE NAME IS: ";\NINPUT F1s3
5-14 ff), I found the virtual file operation 140 PRINT "QUTPUT FILE NAME 1S:";\INPUT F2$
easy to work with and capable of makinga 150 PRINT "KEY FIELD: WHICH COLUMN IS8 FIRST?”;\INPUT C
fast and efficient sonins program. 140 FRINT "“HOW MANY RECORDST?” ;NINPUT A1
180 FRINT "NUMBER OF COLUNMNS IN KEY?";\INPUT C2
190 C1=C+C2-1 Segment field
200 OPEN F1% AS FILE VF14(B0)=44
r——210 FOR I=1 TO A1
220 LET A2%=UF1({1) Read file
;—F?;g, 230 A$(1,1)=SEG$(A2%,C,C1) Setkeyfield = AS 1
1__235 A$(I,0)=STR$(I) Set location = A$ 0
240 NEXT 1
250 L=1 Initialize lower loop bound to 1
240 P=L Initialize position of small
270 S14=A%(L,1) Set S = first value in loop
SORT 272 52%=a3%(L,0) Also store location in virtual file
280 FOR I=L TO A1
290 IF A$(I,1) > S1$ THEN 320 Test for smaller key field
SEARCH 300 P=I if smaller remember position in loop
LOOP 310 S§1%=A%(1,1) set new small string
312 S§2%=4%(1,0)
320 NEXT .1
330 A3(P,1)=A%(L,1) Exchange first in P
335 A$(P,0)=A%(L,0)
340 A$(L,1)=51% Smallest into first
350 A%$(L,0)=52%
340 L=L+1 Increase lower loop bound
370 IF L=A1 GO TO 490 Test for end of sort
380 GO TO 2680
490 OPEN F2% FOR OUTPUT(10) AS FILE #H2
r-500 FOR I=1 T0O a1
510 T14=A%(1,0)
PRINT i
SORTED 920 T1=VAL(T1%) Transform file location to numeric
FILE S30 PRINT T1,A%$(1,1) Terminal printout
535 PRINT H2:VF1(T1) File print of original record
540 NEXT 1
540 CLOSE #2
SB80 END
EOF
TIDBITS ON MBASIC
Continued from page 13.
LINE EDIT
Line edit can be used to clean up all the “crossed finger” Remember that Edit will NOT echo your commands, but act on

typing inside a 1line. That is, you dc not have to retype
the entire line. It is useful to remember that the editing
commands you enter will not be echoed by the terminal. They
are printed in the following example so you'll know what to
type.

10 PRINT A,V,C,D YOU ENTER
EDIT 10 YOU TYPE (Edit line 10)
10 TERMINAL SCREEN SHOWS
sV YOU TYPE (Search for first V)
PRINT A, TERMINAL SCREEN SHOWS
cb YOU TYPE (Change character V to B)
B TERMINAL SCREEN SHOWS
1 YOU TYPE (Print rest of line)
+C,D TERMINAL SCREEN SHOWS
10 TERMINAL SCREEN SHOWS
<cr> YOU TYPE (terminates editing of line)
PRINT A,B,C,D TERMINAL SCREEN SHOWS
LIST YOU REQUEST
10 PRINT A,B,C,D TERMINAL SCREEN SHOWS
OK

them imemdiately. In the real world (your own program),
this will be fine. You will be able to easily change a
character or group of characters within a line., Try it when
you get your copy of MBASIC,

SOME EXTRA TREATS:

Variable names can be any length, so long as the first
character is alphabetic. However, only the first two

characters determine the -variable name, so SLIP=SLID.
POKE and PEEK let you pry arocund in memory.
DOUBLE PRECISION numbers allow up to 17 digits of accuracy.

RENUM will renumber and reincrement the

program, (It cannot recrganize, alas.)

any part of

EOF

FrREMark « Issue 6 » 1979

HT11 INVENTORY PROGARM

10 REM INVENTORY

20 PRINT N FRINT "INVENTORY VER #1.0°"

30 PRINT "% X % % X ¥ X INVENTORY MENU % % X X X ¥ ¥ % ¥ x"
40 PRINT "THESE ARE THE FROGRAM OFTIONS:*

S50 FRINT TAB(10)7i*‘ADD’ " TAB(SO0)§ " 'LOOKUF"*

&40 FRINT TAB(10)#*“LIST'"#TAB(S50)}# " 'DELETE "

70 PRINT TAB(10);*’REORDER’*;TAB(S0) " /ADJUST "

80 PRINT TABC10)#"“INIT’ DISKETTE*#TAB(SO0):" 'DONE""*
90 Z1=0

100 N=7 \ DIM R1$(7) N FOR I=0 TO N N\ READ R1%$(I} %\ NEXT I
110 FRINT N\ PRINT "ENTER REQUEST "i

120 INFUT R$

130 FOR I=0 TO N

140 IF R$=R1%{(I) THEN 180

150 NEXT I

160 PRINT *INVALID REQUEST"

170 GO TO 110

180 ON I+1 GO TO 190,300+590+660+740+810,107071280
190 REM “INIT’.

200 IF Z9=1 THEN 160

210 OFEN "INVFN® FOR OUTFUT AS FILE VF1%(1000) \ CLOSE VF1
220 OFEN "INVDSC® FOR OUTFUT AS FILE VF2$(1000)=32 \ CLOSE VF2
230 OPEN "INVQ®" FOR OUTPUT AS FILE VWF3%(1000) \ CLOSE VF3
240 OFEN "INVRF* FOR OUTFUT ﬁ$ FILE VF4X(1000) \ CLOSE VF4
250 OFEN "INVRO®" FOR OUTPUT AS FILE VFS%{(1000) \ CLOSE VFS5
240 OFPEN "INVCST®" FOR OUTFUT AS FILE WF&(1000) \ CLOSE VFé
270 OPEN "INVDAT® FOR OUTPUT AS FILE VF7X(1)

280 VF7(0)=-1 \ CLOSE VF?7

290 GO TO 110

300 REM ‘ADD,

310 Z1i=1 “ GOSUE 1380

320 IF J=0 THEN 420

330 IF J=2 THEN 360

340 FRINT "ENTRY FOR PART "#F$i" ALREADY EXISTS"
350 GO TO 110

340 PRINT "A DELETED ENTRY FOR "#FP$%i" EXISTS"

370 PRINT *DO YOU WISH TO REINSTATE IT "

380 INFUT as

390 IF A$<>*YES® THEN 110

400 VF1(I)=SEG$(VF1(I)s2sLEN(VF1(I)))

410 GO TO 110

420 IF YF7(03)<>1000 THEN 450

430 PRINT "INVENTORY FILE IS FULL"

440 GO TO 110

450 A=VF7(0)+1

450 VF1(A)=F%

470 PRINT "DESCRIPTION i \ TNFUT D$ \ VF2(A)=D$
480 PRINT "GQUANTITY *i N INFUT Q@ \ VF3(A)=Q

490 IF VF3(A)>=0 THEN 510

500 PRINT *INVALID ENTRY' \ GO TO 110

510 PRINT "REORDER POINT *i N TNPUT Q@ \ VF4(A)=0
920 IF VF4(A)<0 THEN 500

530 PRINT °"REORDER QUANTITY *"# N\ INPUT Q \ VFS(A)=Q
540 IF VFS(A)<0 THEN 500

550 PRINT "COST "i \ INPUT @ \ VF&(A)=Q

540 IF YF6(A)<O THEN 500

570 VF7(0)=A

580 GO TO 110

590 REM ‘DELETE.’

400 Zi=1 \ GOSUB 1380

&10 IF J=1 THEN &40

420 PRINT °ENTRY FOR PART *iF$i* DOESN’T EXIST®

430 GO TD 110

&40 VFL1(I)="D*"BVYF1(I}

450 GO TO 110

660 REM ‘ADJUSTHENT’

470 Z1i=1 \ GOSUB 1380

4B0 IF J<»>1 THEN 420

490 PRINT *ENTER QUANTITY ADJUSTHENT *i# \ INPUT @
700 IF @>=0 THEN 720

710 IF VF3(I)+@<0 THEN 500

720 VFI(I)=VF3(1)+Q

730 GO TO 110

740 REM ‘LOOKUF-’ .

750 Zi=1 \ GOSUB 1380

760 IF J1<>1 THEN 420

770 PRINT VF2(I)

780 PRINT "QUANTITY ="jVF3(I)

790 PRINT *COST =*3VF&(I)

€00 GO TO 110

610 REM ‘LIST‘.

B20 Z1=0 \ GOSUB 1380

830 OPEN *LP:" FOR OUTPUT AS FILE #1

840 PRINT #1:CHR#$(27)iCHR$(117)iCHR$(32)+

#REMark « Issue 6 » 1979

850
|40
870
880
870
200
210
920
730
940
950
760
270

I=0 \
IF I>V
IF SEG
IF J<S
K=K+1
PRINT
PRINT
PRINT
PRINT
FPRINT
PRINT
PRINT
PRINT
780 FRINT
990 FRINT
1000 FRINT
1010 =41
1020 I=I+1
1030 GO TO
1040 PRINT
1050 CLOSE
1060 GO TO
1070 REM
1080 Z1=0
1090 OFEN
1100 FRINT
1110 I=0 N

1120 IF IXVF7(0)
1130 IF SEG$(VF1(I)s1s1)="D"

J=50 \ K=0

F7(0) THEN 1040
$(VF1(I)rlvl)="D"
0 THEN 950

N J=0
#1:DATSIiTABC(AS) i "INVENTORY LISTING"i
#1:1TAB(105)#"PAGE "#K \ PRINT #1! \ PRINT #1!
#1:"PART #"iTAB(20)i "DESCRIPTION" i TAB(SS) i "QUANTITY" i
#1:TAB(&5) i "REORDER POINT"iTAB(B5)7"REORDER QUANTITY"
#1:TAB(10S5)#"COST" \ PRINT #11

#1IVFLLD) G

#1ITABC20)iVF2(I)i

#1ITAB(SB)YIVFI(I) i

#1ITAB(70)iVF4A(I) i

#1iTAB(PS) IVFS(I)#

#1!TAB(10S)iVF&(L)

THEN 1020

860
#1ICHR$(12)
#1

110

‘REORDER‘ .

\ GOSUB 1380

*LP!" FOR OUTPUT AS FILE #1
#1:CHR$(27)3CHR$(117)iCHRS$ (1)}
J=350 \ K=0

THEN 1250

THEN 1230

1140 IF VF3(I}>VF4(I) THEN 1230
1150 IF J<S0 THEN 1210

1160 K=K+1 \ .I=0

1170 PRINT #1:DAT##TAB(30)i"REDRDER REFORT"§

1180 PRINT #1:!TAB(75)i"PAGE "#K \ PRINT #1: \ FRINT #11!
1190 PRINT #1:"FPART #"iTAB(20)i *DESCRIFTION"iTAB(S55)
1200 PRINT #1:!"REORDER QUANTITY®* \ PRINT #1!

1210 PRINT #1IVF1{(D)iTAB(20)iVF2(I)iTAB(AZ)iVFS(I)
1220 J=J+1

1230 I=I+1

1240 GO TO 1120

1250 PRINT #1:CHR$(12)

1260 CLOSE #1

1270 GO TO 110

1280 REM 'DONE’.

1290 IF 7Z9=0 THEN 1370

1300 CLOSE
1310 CLOSE
1320 CLOSE
1330 CLOSE
1340 CLOSE
1350 CLOSE
1360 CLOSE
1370 STOP

VF1
VF2
VF3
VFa
VF35
VFé
VF?7

1380 REM 'FIND ENTRY’.
1390 IF Z9<>0 THEN 14B0

1400 OPEN
1410 OPEN
1420 OPEN
1430 OPEN
1440 OFPEN
1450 OPEN
1440 OPEN
1470 Z9=1

INVCST

"INVPN® AS FILE VF1$(1000)
"INVDSC*" AS FILE VF2%(1000)=32
"INV@" AS FILE VF3Z(1000)
"INVRP®" AS FILE VF4Z(1000)
"INVRG* AS FILE VF3X(1000)

AS FILE VF&(1000)

"INVDAT® AS FILE VF7Z(1)

14B0 IF Z1=0 THEN 1610

1490 PRINT

"ENTER PART NUMBER *"i \ INPUT P$

1500 IF VF7(0)=-1 THEN 1550
1510 FOR I=0 TO VF7(0)
1520 IF P$=VF1(I) THEN 1570

1530 IF

ipe

LFP$=VF1(I) THEN 15%0

1540 NEXT I

1550 J=0

1560 RETURN

1570 J=i

1580 RETURN

1590 J=2

1600 RETURN
1610 RETURN

1620 DATA
14630 DATA

"INIT"+"ADD"+ "DELETE" » "ADJUST "+ "LOOKUP " ¢ "LIST"
"REORDER" » "DONE*

EOF

25

USING THE ET-3400

MORSE CODE INSTRUCTION

By: Louis C. Graue, K8TT
624 Campbell Hill Road
Bowling Green, Ohio 43402

Perhaps some ET-3400 owners would like
to learn Morse code in order to become a
ham. The program presented selects a
character at random from a table, sends it
in perfect morse code through a speaker,
pauses for a while, and then displays the
character on a LED readout. The student
listens to the code, tries to write it down
and checks the result on the readout.

If one is just beginning, it would be best to
set the number in address 00al at 05,
instead of 24,4 so that the characters will
be randomly selected from just the first
five letters. After these are learned in-
crease the number to include a few new
characters, and so on. The speed of the
sending can be adjusted by changing the
delay loop.

The speaker is operated by the processor
through the circuit mounted on the
breadboard. See page 28.

‘ ADORESS CONTENTS LABEL OF CODE OPERAND COMMENTS
|__oooo 86 , 01, | LDA A #301 Set up high port
0002 BT , 01 , Fd STA A of address of random number
I 0005 CE , FF_, 04 LDX #5FFO4 Make P/A ports
|_0008 FF_, 80 , 00 STX Agr--+hy outputs
0008 Ba , 00 , 50 START JSR CLRDIS Clear the aisplays
000 c6 , 03 , LDA B #503 Set up pointer for
0010 | F7 , 01 , FC STA B Code groups
0013 Bd ;, 00 , 90 JSR RANNUM Generate a random number
o018 FE 4 01 , Fd LDX | Set up table pointer
0069 A6 4, 00 GROUP LDA | A O,X Get code from table
0068 Cé , 08 , LCA B #3508 J Set up polnter for sending code
0od B7 , B0 , 00 BIT STA A i Start code output
0020 48 " ASL | A continue sending
0021 5A) DEC | B Keep track of element sent
0023 * Ba y 00, 80 JSR Code speed Delay to set code speed
0026 5d y 5 TST B Have all 8 bits been processed
3027 26 4, F5 , | BHE BIT If not, go get next bit
0023 08 i N | Otherwise, cet set for next group
002A F6_, 01 |, FC LDA 8 Set pointer to keep track of 3 code groups
002d A i DEC B Counting
002E F7_4 01 , FC STA B Save pointer
o3 26 | ET | BNE GROUP Have the 3 groups been sent
0033 A6, 00 | LDA A 0,X If so, get ready for display of code character
0035 Bd ; 00 , 70 J5R | DELAY Wait a while
0038 Bd | FE , 3A JSR I QUTCH Then dispiav.characfer
og3e Bd , 00 70 JSR DELAY and hold it for a while
003E 20 ,¢€C8 BRA START | Repeat
| CLEAR DISPLAY AND DELAY |
| cLrois , , !

*0022 should be a NO-OP

26

HREMark « Issue 6 =1979

ADDRESS CONTENTS LABEL OF CODE | OPERAND COMMENTS i
0050 FF_, 01 FA STX Save ‘index pointer |
0053 Bd , FC BC JSR REGD!S Reset to left-most display |
0056 4F CLR A Clear
0057 Cé6 , 06 LDA B #6
0059 Bd | FE 3A CLRD JSR QUTCH o
005C 5A DEC B
0054 26 |, FA BNE CLRD Displays
005F B8d , FC BC JSR REGDIS Reset to left-most display
0062 FE , OV FA LOX Restore index pointer
0065 3 RTS Return to calling program

DE LAY i
0070 FF , 01 FA STX Save index pointer
Q073 CE , FF FF LDX #65535 Hold
0076 09 , Wait DEX Display
0077 26 , Fd BNE Wait For a while
0079 FE , 01 FA LDX Restore index pointer
oo7C 39 RTS Return to calling program

CODE SPEED i
0080 FF , 01 FA STX Save index pointer
0083 CE , 0C FF LDX | set
0086 09 Wait DEX Code
0087 26 , Fd BNE Wait Speed

| [olo]--] FE , 01 FA LDX Restore index pointer
oosc 33 . RTS Return to calling program
RANDOM NUJBER GENERATOR B

RANNUM \

0090 CE , O FE LDX #$01FE Set pointer to random number
0093 A6 . 00 LDA A 0,X Fetch random number

0095 49 NN ROL A Make a

0096 AB | 00 EOR A 0,X New random number

0098 GC , 01 INC 1, X {ncrement the addend

009A AB 01 ADD ALK Add to addend

009C 28 , 02 BVC v 1f V=0, increment addend ance
00SE AB 01 INC 1,X Otherwise, increment it twice
00AQ 81, 24 CMP A #3524 Is number more than $24

00A2 22 | Fl BHI NN | more, get another number
0044 48 ASL A Make the number

00AS 48 ASL A Amultiple of 4

0046 A7 00 STA AOD, X Store new random number

00A8 39, RTS Return to calling program
CODE TABLE .

0100 B8 , 00 , 00 dit-dah |
0103 Lk L] 7 segment code for lettar A |
0104 EA , 8O 00 dah dit dit dit

0107 IF_, 7 segment code for letter B
0108 EB , AD 00 dah dit dah dit

0108 4E C

010C EA , 00 , 00 dah dit dit

010F 3d D

0110 B0 , 00 , 00 dit

0113 4F 3

0114 AE , 80 00 dit dah dit dit

0117 47 F

0118 EE , B0 00 dah dah dit

0118 =0 G

011C MM, 0O 00 dit dit dit dit

011F 17 H

SREMark » Issue 6 = 1979

27

28

ADDRESS CONTENTS LABEL 0P CODE | OPERAND COMMENTS
0120 AD , 00 , 00 dit dit
0123 06 I
0124 BB , B8 , 00 dit dah dah dah
0127 18 J
0128 EB , 80 , 00 dah dit dah
0128 07 K '
012C BA , 80 , 00 dit dah dit dit
012F OE L
0130 EE , 00 , OO dah dah
0133 76 M
0134 €8 , 00 , 00 dah dit
0137 15 N
0138 EE_, EO , QO dah dah dah
0138 Id 0
013C BB , AO , DO dit dah dah dit
013F 67 P
| 0140 EE , B8 , 00 dah dah dit dah
| 0143 63]
0144 BA , 00 , 0O dit dah dit
0147 05 R
0148 AB , 00 , 00 dit dit dit
0148 58 5
014C EQ , 00 , OO0 dah
014F OF T
0150 AE , 00, 00 dit dit dah
0153 ic u
0154 AB , B0 , 00 dit dit dit dah
0157 3E | v
0158 BB , 80 , 00 | dif dah dah
0158 3F W
015C EA , EO , 00 dah dit dit dah
015F 37 X
0160 EB , B3 , 00 dah dif dah dah
0163 27 ¥ N
0164 EE , AD , 00 h dah dit dit
0167 49 pi
0168 BB , BB , BO dit dah dah dah dah
0168 30 1
+5v
016C AE EE 00 dit dit dah dah dah 2200
016F 6d 2 AV
0170 AB , B8 , 00 dit dit dit dah dah
0173 79 3 Bifs e
0174 AA |, EO , 00 dit dit dIt dit dah
0177 33 4 N 100 k-
0178 A, 80 | 00 dit dit dit dit dit prIEs
0178 58 5
017C EA , AD . 00 dah dit dit dit dit
017F SF 6
0180 EE , A8 00 dah dah dit dit dit
0183 70 7
0184 EE , EA , 00 dah dah dah dit dit 1002
0187 7 8 vowne
0188 EE , EE , 80 dah dah dah dah dit
0188 73]
018C EE EE EQ dah dah dah dah dah
018F 7E @
0190 AE | EA 00 dit dit dah dah dit dit
0193 65 9 EOF

HREMark « Issue 6 = 1979

BITS AND NIBBLES :JB:

HDOS BASIC
TIME SAVER —

When you load BASIC, about 2 k is left on
disk to conserve memory — but it is slow.
For instance, BASIC has to run out to the
disk to grab an error message. . .irritating,.
However, typing control 4,1 before
‘RUN’ing a program causes all of BASIC
to be resident in memory but this cannot
be done under program control. Happily
there is a way around this. Load BASIC
and type CNTRL 4,1. Type FREEZE. All of
BASIC will be saved on disk with the ex-
tension, .BAF.Delete BASIC.ABS. Re-
name BASIC.BAF to BASIC.ABS. No
longer will you have to type CONTRL 4,1
after loading BASIC. Neat!

RING-A-DING-DING

Soyou don't like the sound of the H9 bell?
I didn't either, and found an extremely
easy way to modify it’s high pitch squeek
toalow pitched beep. On the T.P.U. board
there isa 22K resistor (the only one there).
This resistor can be increased to 47K
ohms. This mod’ will increase the dura-
tion of the H9's bell. Now, to lower it's
pitch, all you have to do is unsolder the
white/red stripped wire on the 300/preset
slide switch and solder the free end tothe
back of the I/O board IC601 pin 8. Happy
beep-beep.

MORE SOFTWARE

Volume 1I, the latest release of HUG
software is now available as announced
in the new updated catalog which was
recently sent to all members. It consists of
two cassettes and the documentation and
source listings. 885-1012 is a cassette
with about 30 basic programs all written

S REMark « Issue 6 « 1979

with version 10.02 (H8-13) 885-1014 is a
cassette containing about 7 assembly
language programs in Ted 8 source code.
They must be assembled. 885-1013 is the
necessary documentation to support
these programs and the source listings. It
is strongly recommended that you order
this along with the tape since some of the
programs require written instructions.
885-4: a HUG binder to hold the new re-
lease and; and 266-945: a cassette holder
for two cassettes that is punched so your
cassette masters can be kept in the binder
for safe and handy storage.

HUG Binder is $4.00

Cassette Holder is $2.45
MODEM

To be announced in the next Heath
Catalog is a neat little MODEM (WH-13).
It is an answer/originate model which al-
lows you to communicate with other
computer owners via telephone. All you
need is a terminal and one of these mod-
ems and you dial up any of the computer
bulletin boards around the nation. Here is
a list of known systems in operation at
this time.

—BULLETIN BOARDS—
Chicago — 312-528-7141
Atlanta — 404-458-4886
New England — 617-963-8310
San Diego — 714-565-0961
Santa Clara — 408-246-2805
D.C. — 703-281-2125

Soon we hope to have our own system up
and running and we would very much
like to hear your thoughts on what the
system should include. The modems are
available now in your local Heath Elec-
tronic Center or by ordering from the Fac-
tory. The price is around $200 in the

states. To save you time (and money) and
allow more users on the system, here is a
brief printout (next page) of what to ex-
pect when you call one of the systems.
(they are very much alike.)

H14 Heat problem. . .
What heat problem???

An independent newsletter recently pub-
lished a piece suggesting that the H14
was delayed while engineering tried to
figure out why the H14 print head would
heat up and shut down the printer. Rub-
bish! The H14, under normal operation
has an average initial through-put of 45
characters per second. The entire listings
for Volume 11 were printed on an H14
without ever stopping. Yes, the head is
protected with a sensor that will slow
down or shut off the printer when the
head temperature reaches a potentially
dangerous level. This would occur when
the printer was printing very dense text at
132 or possibly 96 characters per line.
Under these conditions, the average
through-put would be reduced to about
30 characters per second or about 300
baud. This is the way it was designed. I've
heard of a user installing a blower which
indicates an increase through-put by a
bonus of 20%. Incidentally, life tests were
terminated on the H14 after 50 million
characters at 132 characters per line
which means each head solenoid hit the
paper about 150 million times.

Yes, the printer shut down during these
tests which rendered an average
through-put of 25 characters per second.
Now that we have many local users’
groups with regular newsletters, we often
see misleading or totally wrong informa-
tion published. It would be in everyones
best interest if you would pick up the
phone and contact Heath for the straight
stuff before going to press.

29

30

*xx WELCOME TO WARD AND RANLDOY‘S XXX
akx COMFUTERIZED BULLETIN BOARD SYSTEM XXX
(IN OFERATION SINCE 2/146/78)

CONTROL CHARACTERS ACCEFTED BY THIS SYSTEM!

DEL/BS/_. BACKSFACE AND ECHO DELETEDR CHARS

CTL-C CANCEL CURRENT FPRINTING

CTL-K FUNCTION AEORT

CTL-N START SENDING S NULLS

CTL-R RETYFES CURRENT INPUT LINE

CTL~5 SUSPENDS OUTFPUT UNTIL NEXT CHAR RECEIVED
CTL-U CANCELS CURRENT INFUT LINE

IF YOU GET STUCKs TRY:! CTL-K THEN C/R UNTIL YOU
EAIL OUT BACK TO THE MAIN MENU.

WHENEVER WE REFER TO *C/R"»s WE MEAN YOUR "RETURN®" KEY!!

Y/N: IS THIS YOUR FIRST TIME ON THE SYSTEM?Y
LLOWER CASE CHARACTERS, Y/N: CAN YOUR TERMINAL HANDLE THEM?Y

What city/state are wou callind from?5t. Joserh mi.
File last urdated 11/1/78

When wou are asked a auestionr answer with Y for wses»
or N for no.
Are bvou usindg a video terminal (as orrosed to 2 printer)?®n

Warnt summary of system functions?y

The sustem has only three mador functions!?

==2 Enterind messades
== Retrieving messade summaries
== Retrievind messades

Want to know rurrose of this system?y

It was conceivedr financedr and is run by Ward Christensen
and Randy Suess for messade communication between comsuter
hobbuyists. Turical messade subdects include! ‘somethindg for
sale’r ‘need helrp with something’s ‘club meeting notice’s

ar Just sharind ideas. Feel free to leave 3 messade on

any hobbuist comruter related subdect. Commercial ‘ads’ ARE
rermitted, sroviding thew are hobbuist related.

Want a cuick summary of what to do gour first time?y
1. 8 - Use the § function to retrieve messade summaries
(or Q@ for cuick (subJdect onlw) summaries)
Start with messade 25 to 50 less than high # eprinted
when wou first sidned on.
* Use control-5 to stor/start outeut.
X Write down messade numbers wou want to see.
X Use control-K to kill the summarsr return to menu
2+ R - Use R function to retrieve messades of interest.
3. G - Use the G (Good bue) function when sou are done.

*

Remember to use the H (Hele) function for details.

NOTE! When wyou receive the line!

FUNCTION: (BsCrDsErGevees) (OR T IF NOT KNOWN)?

~—* Flease replw ? the first time so wou learn of all the
funetions available,

What is wour first nawme®dim

What is vour last name?blake

Hi» JIM BLAKE

Y/N Did I det gour name right?y

(NOTE! This correcting is only done if this is wour

first time on the sustem.)

Lodging name to dishk...
Next mse # will be 419
You are caller # 11915

SeREMark » Issue 6 + 1979

FUNCTION: BsCrDOsEsGrHrKsNsPrQsRrSrTollsX
?7

——==FUNCTIONS SUFPFORTED----
B=Rerrint bulletin

C=Case switch (usrer/lower)
D=Durlex switch (echo/no echo)
E=Enter msd into suystem

G=food bue (leave sustem)

H=Hels with functions

K=Kill msd from sustem

MN=Nulls! Set 0 to 9 as rea’d
FP=Fromest switch (Bell on/off)
G=Quick summars (Msg #» subJdect)
R=Retrieve msds by #

S=Summarize msds

T=Frint dater time

W=Ferrint welcome

X=Exrert user mode

FUNCTIONS

Py

ErCrDrErGrHeKeNeFrOGrReSeTolWeX (OR 7 1IF NOT KNOWN)

(OR 7 IF NOT KNOWN)

00000100!

EOF

H19 SNEAK PREVIEW

The much rumored H19 Video Terminal
is nolongera rumor.. . it should ship next
month and will be described in the June
catalog. For now, here are some of the
more exciting features.

To begin with, it is a professional 24 line
terminal with a 25th line to indicate
status. Plus many other features not found
on any other terminal. The H19/WH19
has a professional keyboard (similar to
the DECwriter) numeric keypad and 8
user defined keys. The (P4) CRT displays
1920 characters 80 x 24, upper caseina5
X 7 dot matrix and lower case in 5 X 9
matrix with descenders. In addition there
are 33 special graphic characters that can
be arranged and grouped to form many
more symbols and special effects includ-
ing reverse video by character.

Special local and software controllable
excape sequences allow you to select and
use thirty two special functions. . .au-
tomatic line or page scroll. . .cursor up,
down, left, right and home plus direct
cursor addressing. You can also insert
and delete characters and lines and mod-
ify baud rates, all from the keyboard.

YREMark « Issue 6 = 1979

And here is a quick description of some of
the other features. Also, you may want to
copy the sub-routines at the end of this
article so they can be called at will from
any program thus saving the need to re-
invent the wheel each time. We are very
interested in the many ingenious new
techniques that I'm sure you will come up
with to show off the H19! :]B:

SPECIAL MODES
INSERT CHARACTER MODE

This mode lets you insert characters or
words into the text already displayed on
the screen. You must type ESC@ to enter
the Insert Character Mode. You can then
use the cursor controls to place the cursor
at the point where you want to insert
characters. As you type the desired
characters, any existing text directly
above and to the right of the cursor is
shifted to the right. This feature lets you
add letters or words to existing text with-
out having to retype the whole text. When
you finish inserting characters, type ESC
0 to exit the Insert Character Mode. You
can also use the IC (Insert Character) key

to enter and exit the Insert Character
Mode.

DELETE CHARACTER

Type ESC N to delete the character di-
rectly above the cursor and shift any exist-
ing text on the right side of the cursor to
the left one character position. You can
also delete a character by typing the DC
(Delete Character) key.

INSERT LINE

Type ESC L to add a new line of text
before (above) the line the cursor is pre-
sently in. Make sure you position the cur-
sor on the line below the line you want to
add before you type ESC L. The cursor
then moves to the start of the added line.
You can also insert a line by typing the IL
(Insert Line) key.

DELETE LINE

Type ESC M to delete all of the text from
the line the cursoris presently in. You can
also delete a line by typing the DL (Delete
Line) key.

31

ERASE PAGE

Type ESC E to erase all text and fill the
screen with spaces. The cursor is placed
in the home position. You can also erase
the page by typing SHIFT ERASE.

ERASE TO END OF PAGE

Type ESC | to erase all text from the pre-
sent cursor position to the end of the page
(screen). You can also erase to end of page
by typing ERASE.

ERASE TO END OF LINE

Type ESCK to erase all text from the pre-
sent cursor position to the end of the line
the cursor is in.

5000 REM ERASE PAGE

5100 PRINT CHR$(27)iCHR$(49)3F
5200 RETURN

5300 \

5400 REM ERASE BOTTOM LINE

GRAPHICS MODE

The Graphics Mode lets you display 33
special symbols. Type ESC F to enter the
Graphics Mode. Then type any of the 26
lower case keys or the seven other symbol
keys that correspond to the graphic sym-
bols. Type ESC G to exit the Graphics
Mode. You can place the Terminal in the
Reverse Video Mode while it is in the
Graphies Mode to increase the number of
graphic symbols.

DIRECT CURSOR
ADDRESSING

Direct cursor addressing allows the com-
puter to control the position of the cursor
on the screen. The top line is designated
as octal 40 (32 decimal). The second line
is 41 and so forth. The left column is also
designated as octal 40. The number 40 is
used because it is the smallest value of the

5500 PRINT CHR$(27)3iCHR$(8%)iCHR$(53)iCHR$(33)iCHR$(27) iCHR$(73)

54600 RETURN
5700 \

5800 REM ENTER REVERSE VIDEO MODE
5900 PRINT CHR$(27)FCHR$(112)}
46000 RETURN

6100 \

46200 REM EXIT REVERSE VIDEO MODE
4300 PRINT CHR$(27)fCHR$(113)}
4400 RETURN

4500 N\

4600 REM ENTER GRAPHICS MODE
6700 PRINT CHR$(27)iCHR$(70)}
46800 RETURN

4900 N\

7000 REM EXIT GRAPHICS MODE

7100 FRINT CHR$(27)iCHR$(71)}
7200 RETURN
7300 N\

7400 REM MOVE

7600 RETURN
7800 \
7900 REM FPRINT A% ON BOTTOM LINE

8000 PRINT CHR$(27)3iCHR$(89)iCHR$(S53)ICHRS$ (43)iTAB(10)iAsi

8100 RETURN

32

CURSOR TO BOTTOM LINE
7500 PRINT CHR$(27)#iCHR$(8%)iCHR$(89)iCHR$(33)%

printing characters. All values less than
40 are control codes.

The form of the direct cursor addressing
escape code is:

ESC Y line# column#

Since the lines are normally thought to be
numbered from 0 to 23 (from top to bot-
tom) and the columns from 0 to 79 (from
left to right), you must add 40 octal (32
decimal) to obtain the proper line # and
column #,

REVERSE LINE FEED

Normally, a line feed moves the cursor
down one line toward the bottom of the
screen. A reverse line feed (ESCI) causes
the cursor to move upward one line. If the
cursor is at the top line it will remain
there however, any text on the screen will
be scrolled downward one line.

:JB:

EOF

MANAGEMENT TRAINEE

Heathkit Electronic Centers, a Schiumberger Pro-
ducts Corp. Unit presently has career opportunities
in the retail store program.

A retail and computer background is required. Excel-
lent starting salary and benefits package. Send re-
sume to:

PERSONNEL DEPARTMENT

SCHLUMBERGER PRODUCTS CORPORATION

P.O. BOX 167
ST. JOSEPH, MI 49085

An equal opportunity employer MI[F

HREMark « Issue 6 + 1979

ED.HUG

In the last issue we mentioned we have a
new editor for the H8/H17 system. How-
ever, there was not sufficient time to ex-
plain some of the features. Here is a list of
commands and a few examples of their
use. This editor is supplied on diskette as
HUG P/N 885-1022 and includes full
documentation and source code and
HDOS common deck. Price is $15.00 plus
$1.50 handling and postage.

INVOKING THE EDITOR

The editor is invoked with the following
command (assume TEST.ASM is the file
to be edited):

>ED TEST . ASM

This results in the editor being invoked
and TEST.ASM opened for input; it also
results in the creation of an output file,
TEST,TMP, which is opened for write.
Note that the file name is specified on the
same line as the editor command, and
cannot be specified after the editor is en-
tered. If the file to be edited is on the SY1:
drive, the format is: >ED SY1: TEST.ASM
if the file is on the SYO: drive, but the
output is to be placed on the SY1: drive
(as would be necessary for files larger
than 1/2 the size of the disk), the format is:

>ED TEST.ASM SY1:

The trailing colon on the output drive
specification is optional. The above may
be combined in any reasonable fashion,
E.G.

>ED SY1: TEST.ASM SYD

Is valid, with input on SY1 and output on
SYo.

COMMAND LINE FORMAT

The editor prompts for single letter upper
or lower case commands with a ‘-’
(minus sign). Any number of commands
may be put on a command line, one after
the other without any type of delimiter.

HREMark « Issue 6 +1979

Command lines are terminated (and exe-
cuted) by typing two escapes (1B hex) ina
row; escapes are echoed to the console as
‘$’ (dollar signs); a single escape is used to
terminate (delimit) strings in those com-
mands requiring strings (search, replace
and insert). In general, commands may be
preceeded by a numeric repetition factor,
which in some cases may be either posi-
tive or negative. The special symbol ‘#’
(shift three) is interpreted as infinity (ac-
tually FFFF hex) for use ' when one wants
to repeat a command until end of file or
some similar automatic termination
event. The following are examples of
valid command lines (the commands
used will be discussed below):

—BR23T23L$$

This executes the B command, then exe-
cutes the T command 23 times, then exe-
cutes the L command 23 times.

—#A3$3

—#AB23T$$

Bring in all the text which will fit, go to
the beginning of the text and type out the
first 23 lines (a full CRT screen, since the
24th line is occupied by the prompt for
the next command line).

—OLT$$

Go to the beginning of the current line
and type it out. In most cases the pointer
will have already been at the beginning of
the line, but this will move it there in any
case.

—LT$$ move down 1 line and type it.
Note: as a convienence borrowed from
CP/M, a null command line (just a car-
riage return) is equivalent to an LT com-
mand. SKIP2

A string of commands may be executed
repeatedly as a single command by en-
closing them in <>'s. Consider the fol-
lowing examples:

—B5000<FJPO$OLTL>$§

This example goes to the beginning of the
file and then finds the first 5000 occurr-
ences of the string JPO, and in each case
goes to the beginning of the line contain-
ing the string, types the line, and goes to
the next line. (Quiz time: Why would the
above command not work if the final L
command was left out?) Another exam-
ple:

The P (page) command is the same as
typing 23L23T — it “pages” a 24 line CRT
screen.
NOTE: The (P) page command can
be changed at an EQU statement at
the very beginning of the source
code. The label is ‘LPS'. This re-
lease is set for 12 lines.

COMMAND SUMMARY

COMMAND FUNCTION

A Append test into buffer
from disk

Move pointer to beg. or
end of text

Pointer movement by
characters

Deletion of characters
End the edit

String search

Insert

Kill (delete) lines

Move pointer by lines
Displays text and buffer
size

Auto string search

Return to original file
CRT screen page

Quit the edit

String search and change
Type lines

Displays text and buffer
size

Write lines to disk from
buffer

Pointer to end of file

EOF :JB:

33

N = CHwOwWOZ ZrAR~mmUO O W™

SPECIAL

H8/H17

SOFTWARE RELEASES!

VOLUME I

Tape Il (BASIC Programs)
TAPE Il (Assembly Language Programs)

A new release of HUG cassette software is ready — Volume Il
(885-1013) is the actual listings of all the programs and documenta-
tion for this new release. Over 30 very useful programs are in-
cluded. ($12.00)

There are two cassettes that accompany this release. One is all
BASIC Programs (885-1012); most are utility programs, (no
games). The other cassette contains the complete Assembly Lan-
guage Source Code for 7 general purpose programs (885-1014).
The cassettes are $9.00 each. The details of this release are
further described in your new Software Catalog.

Volume lIl which is all financial and amateur applications programs should be ready by
the first of June.

W6LLO RTTY
COMMUNICATIONS PROCESSOR

By: Howard Nurse — HUG P/N 885-1023

The W6LLO RTTY Communications Processor converts your
HB/H17 system into an advanced amatuer radio teletype control
center. When connected to a radio transmitter/receiver through a
modem your computer will come alive with digital voices from
around the world.

This package performs the function of the communications operat-
ing procedures required by the FCC, or in common use through

convention. Some of these duties include conversion of data back °

and forth from BAUDOT to ASCII; CW Id; timekeeping; text editing;
data buffering; operating and system status indication; and remote
control functions.

Hardware requirements are an H8 with 24K, H17, H9 terminal,
H8-2 with external UART, (schematic included) and RTTY modem
such as RM-300 (as described in September 78 Ham Radio
Magazine).

Complete written documentation and users guide included with the

34

diskette and full source code. Available now — order HUG P/N
885-1023 price — $22.00 + 10% postage and handling.

Smaller type cassette version available in June.

DDDVD.ASM/BPDVD.ASM

DEVICE DRIVER — Source code and HDOS common decks
which allows the sophisticated assembly language programmer to
adapt this program to communicate with various periphial devices
— (BPDVD.ASM is a BAUDOT device driver). Minimum documen-
tation included and sans Heath technical support — P/N 885-1019
— price $10.

DISK SOFTWARE (H8/H17)
REN.ABS By: Mark Duttwiler

Assembly language program that renumbers basic programs.

DSKCAS.ABS By: David Lovett

Allows the HDOS user to transfer files to and from cassette.

PFS.BAS By: Jack Coursey

Complete personal finance program

FINANCE.BAS By: R. Reale

Complete home finance management program

INVENTORY By: A T. Snucker

Suitable inventory program for small businesses.

Order HUG P/N 885-1024 — price $18. Each program is self
documentated.

HREMark « Issue 6 - 1979

Vectored from Page 19

012560
01262
01264
01266
01268
01270
01272
01274
01276
01278
01280
01282
01284
01286
01288
01290
01297
01299
01300
01301
01302
01303
01304
01305
01306
01307
01310
01312
01314
01399

W?=SGN(VAL (UBS))

W7=VAL(RIGHT$(WB%+5)) !WB=ABS(VAL(LEFT$(WB$,LEN(WB%)-5)))
W5=VAL(RIGHT$(W?%,5)) {W6=ABS(VAL(LEFT$(W?$,LEN(W?$)~-5)))
W4=WB-W&IIF WS>W7 THEN W7=W7+10:iW4=W4~-1

X0=W7-W5:!GOSUB 1105:W7$=RIGHT$(Y$sLEN(Y$)-1)

Wa=W4XW?

IF W4=0 THEN W&$=STR$(W?):WLSs=LEFTS$(W&$,LEN(W68)-2):G0TO 1276
Wo$=STR$(W4) IWSS=LEFT$ (WSS LEN(WSS)~1)

Y$=UWE$1+W7S

RETURN

W?=SGN(VAL (W?%))

W7=VAL (RIGHT$(WB%$:5)) :WB=ABS(VAL(LEFT$(WB$,LEN(WB%)-5)))
WS=VAL(RIGHT$(W?$:5)) IW6=ABS(VAL(LEFT$(W?$,LEN(W?$)-5)))
WaA=WE6-WBIIF W7>W5S THEN W3S=W5+10:W4=W4-1

X0=W5-W7:GOSUE 1105:iW7$=RIGHTS$(Y$,LEN(Y$)-1)

GOTO 1270

REM VARIABLES USED!W?$rWBS W78 WSS WP rWB W7y WErWSr W4, X0 YS

REM 30ORB0R0R0R RO KK 00K 0K 000 KK 00 KRR KRR kR kX ok
REM ROUTINE TO SUBTRACT LARGE-NUMBER STRINGS

REM ENTRY: WB$» W7$ EXIT: TO LINE 1210

REM STRING NUMBERS MUST SATISFY CONDITIONS FOR ROUTINE 1200
REM AS THIS SURROUTINE CHANGES THE SIGN OF THE SUBTRAHEND: W9$,
REM AND THEN EXITS TO SUBROUTINE 1200 FOR THE ADDITION.

REM YOUR PROGRAM MUST SET WB8$=STRING NUMBER FROM WHICH YOU WANT
REM TO SUBTRACT W9$ WHICH YOUR FROGRAM MUST SET EQUAL TO YOUR
REM SUETRAHEND.

IF LEFT$(W?%$,1)=" * THEN W?$=RIGHT$(W?$,LEN(W?$)-1)IG0OTO 1310 EOF
IF LEFT$(W9$,1)="-" THEN W?$=RIGHT$(W?$,LEN(WP%)-1):1G0TO 1210
Wo$="-"+W?$:60TO 1210

REM 300000R 300 0080 000 00K 0 KKK KRR K KKK R R KRk KRR Rk

HUG MEMBERSHIP RENEWAL PROGRAM UNDERWAY

As you know, we have been using the form below to solicate membership renewals. This method
saves HUG some bucks and has been working extremely well. However, if you do not renew within
about thirty days of your expiration date, you will receive a general reminder in the form ofan EZ
mailer. Since there is some interim period between your sending in your renewal and it being
posted, you may receive the notice even if you have renewed — of course, ignore the notice in that
event — very shortly, all renewals will receive a new membership card. This will be the only
acknowledgement. Also, anyone with a program in the library will automatically be renewed and
sent a new ID card.

——————————————————————————————————— CUT ALDNG THIS LINE === = = == = = = e e e e oo m oo e

HUG MEMBERSHIP RENEWAL FORM

You can determine your expiration date by examining the last six REMEMBER — ENCLOSE CHECK OR MONEY ORDER
digits of your ID number — example: 780202 indicates your
membership began 02/02/78 and expires one year from then. CHECK THE APPROPIATE BOX AND RETURN TO HUG
IS THE INFORMATION ON THE REVERSE SIDE NEW MEMBERSHIP?
CORRECT? IF NOT FILL IN BELOW FEE IS:
Name — B RENEWAL RATES \

US DOMESTIC $11 7 $14]
Address CANADA $13] USFUNDS $16 []

INTERNAT'L* $18] USFUNDS $24]
City-State

* Membership in England, France, Germany, Belgium,
Zip Holland, Sweden and Switzerland is aquired through

the local distributor at the prevailing rate.

$%REMark - Issue 6 « 1979 35

BACK
PAGE —

CONTEST #4 WINNER

Congratulations to Dave Lovett of
Wichita, Kansas as winner of contest #4!
Dave's entry was an assembly language
program that allows the HDOS user to
transfer files to and from cassette, thus
providing for long term, inexpensive off-
line storage.

Dave’s routine, with complete source
code is included in the first release of disk
software described on page 34.

Contest #6

The prize for the best H8 program submit-
ted to the HUG software Library befare
June 18 is a piece of paper worth $250!
Submit full printed listing and documen-
tation. Submit documentation and a cas-
sette or diskette. The program will be
judged on the overall usefulness to other
users, completeness of work, ease of use,
creativity and quality of documentation.
The winner will receive a gift certificate
worth $250 which may be applied toward
any purchase through the mail order
catalog or through any Heath Electronic
Center in the US or Canada.

H11 owners, same for you! A $250 gift
certificate is yours for your program writ-
ten in any language which in the opinion
of the judges will help increase the
usefullness of the H11 equipment to other
users. If written in paper tape, submit a
copy of your program on paper tape with
adequate documentation which could
allow a disk user to possibly understand
the functions of your program so he may
convert it if possible. If written under
HT11, submit a diskette (whichwill be re-
turned) with full documentation.

It is perfectly acceptable to include
documentation, etc. on the diskette or
cassette if you do not have a printer or if
you're a rotten typist like me.

Deadline for all entries is June 18, 1979.
Clearly mark all materials with your
name, program, title and contest #6.

ET-3400 USERS —
YOUR TURN IS COMING!

BACK ISSUES AVAILABLE

Back issues of REMark, beginning with
issue one are now available. You may
order them on the green order form at
$2.50 each.

Issue one 885-2001
Issue two 885-2002
Issue three 885-2003
Issue four 885-2004
Issue five 885-2005

Since many local users groups have
formed in the past few months, would
you drop a line and tell us the details of
your organization so we may include an
updated list in the next issue?

e

e

wAE

Gk dee AR

3 fidd o bl e g
ERCR RS

Your HUG secretary is

also a good cook —

your Editor reached 29,

. Users’
& 7 Group
Hilltop Road

St. Joseph Ml 49085

BULK RATE
U.S. Postage
PAID
Heath Users’ Group

POSTMASTER: If undeliverable,
please do not return.

885-2006

	REMark_issue6_1979_Page_01
	REMark_issue6_1979_Page_02
	REMark_issue6_1979_Page_03
	REMark_issue6_1979_Page_04
	REMark_issue6_1979_Page_05
	REMark_issue6_1979_Page_06
	REMark_issue6_1979_Page_07
	REMark_issue6_1979_Page_08
	REMark_issue6_1979_Page_09
	REMark_issue6_1979_Page_10
	REMark_issue6_1979_Page_11
	REMark_issue6_1979_Page_12
	REMark_issue6_1979_Page_13
	REMark_issue6_1979_Page_14
	REMark_issue6_1979_Page_15
	REMark_issue6_1979_Page_16
	REMark_issue6_1979_Page_17
	REMark_issue6_1979_Page_18
	REMark_issue6_1979_Page_19
	REMark_issue6_1979_Page_20
	REMark_issue6_1979_Page_21
	REMark_issue6_1979_Page_22
	REMark_issue6_1979_Page_23
	REMark_issue6_1979_Page_24
	REMark_issue6_1979_Page_25
	REMark_issue6_1979_Page_26
	REMark_issue6_1979_Page_27
	REMark_issue6_1979_Page_28
	REMark_issue6_1979_Page_29
	REMark_issue6_1979_Page_30
	REMark_issue6_1979_Page_31
	REMark_issue6_1979_Page_32
	REMark_issue6_1979_Page_33
	REMark_issue6_1979_Page_34
	REMark_issue6_1979_Page_35
	REMark_issue6_1979_Page_36

