=REMark

Issue 7 = 1979

Official magazine for users of Heath computer equipment.



- A

Cover shot: This is the view just a few feet from our office. It is
however, radically different just three short months from now.
BRRR!

\_ J
4 N
on the stack

AT

Organization! Confusion with a Structured Definition ...3
Gene Bellinger

WHAatIFTS AaIn?! .. vonvrromnernmemsnseesessmns e smnes 9
Douglas H. McNeill M.D.

The HDOS Type Ahead Buffer .................c000uun 11
]J.J. Thompson

The SecPet HDOS . c.cuian e somsmsemas osesieess s e 12
Chesney E. Twombly

A Menu for BASIC Programs ........c.cvvenvvnnnaneens 12
Kevin Hauser

Operating System, Diskette File Patch (PATCH) ........ 13
David A. Wallace

ET-3400 and Tint BASIC ..........0c0iviiinrirnnnnnnns 13
<EDIT ieavswvvinisseimaieainvsesim e e v 14
ATD CONVETEOR. v i omiswim sovm sons v s s aiess & s s s 5 ¢ s 16
Don Moore

Buggin Hug .........coiiiiiirinniinninnennarnnnsnnns 17
BASIC Ideas .. cuvvsisvisvvvneiisasvasis s e vasaism 22
Bitsand Nibbles ...........ccciiiiiiiiiiiiiiiiiinann 31

NOTICE
CANADIAN MEMBERS

To avoid excessive shipping costs and to provide more expedient
delivery to Canadian members, you may now place your orders for
HUG software directly with Heath Canada at 1480 Dundas East
Highway, Mississauga, Ontario Canada L4X 2R7.

\_ P

“REMark” is a HUG membership magazine pub-
lished quarterly. A subscription cannot be purch-
ased separately without membership. The follow-
ing rates apply.

U.S. Canada &
Domestic Mexico International

Initial $14 $16 $24
Renewal $11 $13 $18

Membership in England, France, Germany, Bel-
gium, Holland, Sweden and Switzerland is ac-
quired through the local distributor at the prevail-
ing rate.

Back issues are available at $2.50 plus 10% handl-
ing and shipping. Request for magazines mailed to
foreign countries should specify mailing method
and add the appropriate cost.

Send payment to:

Heath Users’ Group
Hilltop Road
St. Joseph, MI 49085

Although it is a policy to check material placed in
REMark for accuracy, HUG offers no warranty,
either expressed or implied, and is not responsible
for any losses due to the use of any material in this
magazine.

Articles submitted by users and published in RE-
Mark, which describe hardware modifications, are
not supported by Heathkit Electronic Centers or
technical consultants.

HUG Manager and Editor ............ Jim Blake
GLAPHITE v o svmssmiisrnime s Ron Hungerford
HUG Secretary ..........ooovvn.. Susan Gilfoyle
Software Developer ............ Gerry Kabelman

Copyright © 1979, Heath Users’ Group

HUG s provided by Heath Company as a service to
its members for the purpose of fostering the ex-
change of ideas to enhance their usage of Heath
equipment. As such, little or no evaluation of the
programs in the software catalog or in REMark is
performed by Heath Company, in general and
HUG in particular. The prospective user is hereby
put on notice that the programs may contain faults
the consequences of which Heath Company in
general and HUG in particular cannot be held re-
sponsible. The prospective user is, by virtue of
obtaining and using these programs, assuming full
risk for all consequences.

SeREMark

#REMark - Issue 7 « 1979



Organization! Confusion with a
Structured Definition

Gene Bellinger
4929 Red Fox Dr.
Annandale, Va. 22003

Some time ago [ mentioned to our illustrious editor that I was
considering writing a series of articles for HUG concerning Top
Down Structured Programming. It was felt that this was a neces-
sary undertaking after surveying the programs in HUG
SOFTWARE VOLUME I and my own program library, the total
definition of which could be none other than mass confusion.

Don't get me wrong! The authors of the submitted software have
presented some very worthwhile ideas. The problem seems to
stem from the fact that it is almost impossible for one person to
author a program which exactly suits the needs or desires of
another person. Also, some of us are hesitant to use programs
that we are not intimately familiar with. There is a very strong
desire to understand just how the program accomplishes its
function. Many people also attempt to learn from the programs
of others; which is quite difficult when the logic is obscured in
the optimization.

Thusbegan the conceptualization of a series of articles; but with
no great deal of urgency. Then on 15 April 1979, another bug
appeared in one of my own undocumented, unstructured, and
optimally optimized BASIC programs; which in the final
analysis could not be eliminated without rewriting about 50
lines of code. This was just too much, the last bug you might say,
for the human system crashed and in a fit of rage ten disks were
scratched simply to ensure total bug elimination. This may have
been a bit drastic but it is certain all bugs have been eliminated.
Of course all the programs went the way of the bugs, but it is
hoped that the future may prove to be the better for it.

In addition I have vowed not to write another program until this
series of articles is finished. Thus what follows is designed to
instantiate my own concepts and offer them as an assistance to
others, least they arrive at my state of turmoil.

The intention is to proceed as follows:

1. Define allowable structural
elements

2. Implement these structures
in HDOS BASIC

3. Define a Program Design
Language

4. Develope a RENUMBER BASIC
program using 1-3

[The Ideas]
[ The Means]
[ The Method ]

[ The Proof]

Notice that there is no discussion of the pros and cons of Top
Down Structured Programming included in this list. The deci-
sion to use Top Down Structuring is one you must arrive at
through your own experience and no volume of words will
entice you to begin any sooner. I simply propose to offer The
Ideas, The Means, The Method, and the Proof. The decision is
totally yours.

SeREMark « Issue 7 « 1979

The Ideas

Although it has been mathematically proven that any program
can be written with only three structural elements (structures
1-3 below) two additional ones will be offered as they are found
to be quite useful.

Each structure is designed with two specific concepts. First,
each structure represents a process for performing a specific
function, and second, each structure is designed with a single
entry, single exit structure. The single entry, single exit idea
forces each structure to be a complete unit in that execution
begins at the top or beginning and finishes at the bottom or end,
thus maintaining the top down flow of control.

Structural Elements

SEQUENCE-OF-STATEMENTS;
IF-THEN-ELSE;

DO WHILE;

REPEAT UNTIL;

CASE STRUCTURE;

Ul b

1. SEQUENCE-OF-STATEMENTS:

This is the basic building block and is just what it says; a
sequence-of-statements. This is meant to include all legal
BASIC statements including the structural elements 2 through 5
but not the unrestricted GOTO statement. I could write abook on
how much trouble the GOTO statement has gotten me into butI
will refrain, least you be bored to death. Later in the implemen-
tation of structures 2 through 5 specific uses of the GOTO will be
necessary and these will be explained as presented. These
GOTO statements will be classified as restricted GOTO state-
ments.

2, IF-THEN-ELSE:

The traditional IF-THEN-ELSE structure has been expanded to
an IF-THEN-ELSEIF-ELSE-END IF structure; but so as to elimi-
nate immediate confusion we will work up to an explanation of
this construction.

In its simplest form the structure is as follows:

IF conditional-statement THEN
sequence-of-statements;
END IF;

In this form the conditional-statement is evaluated as being
either TRUE or FALSE. When the evaluation is TRUE the
sequence-of-statements is executed and control is passed to the
next executable statement after the END IF statement. When the
conditional-statement is evaluated as FALSE control is passed
to the next executable statement following the END IF statement
with the sequence-of-statements being bypassed completely.



From this we move on to the traditiional IF-THEN-ELSE:

IF conditional-statement THEN
sequence-of-statements-1;
ELSE
sequence-of-statements-2;
END IF;

Again the conditional-statement is evaluated as either TRUE or
FALSE. When the evaluation is TRUE sequence-of-statements-1
is executed and control is passed to the statement following the
END IF statement. If the evaluation is FALSE sequence-of-
statements-2 is executed and control falls through the END IF
statement to the next executable statement. Thus only one of the
sequences are executed.

Now we come to the ELSEIF portion of the structure. This
construct is intended to assist in the elimination of the ever
annoying and confusing nested if statement. The ELSEIF por-
tion of the structure may be repeated as many time as necessary
and functions as follows:

IF conditional-statement-1 THEN
sequence-of-statements-1;

ELSEIF conditional-statent-2 THEN
sequence-of-statements-2;

ELSEIF conditional-statement-3 THEN
sequence-of-statements-3;

ELSE
sequence-of-statements-4;

END IF;

This structure should be easily understood from the previous
structures. It should suffice to say that the sequence-of-
statements 1 through 4 are mutual exclusive (i.e. only one sequ-
ence will be evaluated and then control passed to the statement
following the END IF statement). In addition the structure may
only contain one ELSE segment which is executed when all
conditional-statements evaluated as false.

3. DO WHILE:

DO WHILE (conditional-statement);
sequence-of-statements;
END;

This structure is designed to repeatedly execute a sequence-of-
statements as long as the conditional-statement evaluates to
TRUE. The conditional-statement is evaluated prior to the
execution and when it evaluates to FALSE control is passed to
the next statement following the END statement. Thus the
sequence-of-statements may actually be executed zero (0) times.

4. REPEAT UNTIL:

REPEAT
sequence-of-statements;
UNTIL (conditional-statement);

This structure is designed to repeatedly execute a sequence-of
statements until the conditional-statement evaluates to TRUE.
Note the specific difference from the DO WHILE. The
sequence-of-statements in the REPEAT structure must be exe-
cuted at least once and the repeat continues UNTIL the
conditional-statement is TRUE; whereas the DO WHILE con-
tinues WHILE the conditional-statement is TRUE.

4

5. CASE Structure:

CASE expression

1: sequence-of-statements-1;
2: sequence-of-statements-2;
3: sequence-of-statements-3;
END;

For this structure the expression is evaluated and for a resultant
value of 1, sequence-of-statements-1 is executed and then con-
trol is passed to the next executable statement following the
END statement. Similar results occur for the expression having a
value of 2 or 3. When the expression evaluates outside the
defined range (i.e. less than 1 or greater than 3) control is passed
to the first statement following the END statement and no sequ-
ence is executed.

Summary:

Five structural elements have been defined which actually pro-
vide more than a means of creating Top Down Structured Prog-
rams. In fact using these structures allows for the creation of
nothing but Top Down Structured Programs. The only back-
ward flow of control is provided for by the DO WHILE and
REPEAT UNTIL structures. With a little thought you will see
that this is a more than adequate defintion of a set of tools to use
in the creation of programs.

The Means

The next step is, to define a clear and concise implementation of
these structures in HDOS BASIC and still maintain the concept
of single entry, single exit functional structures.

One specific set of implementations is as follows:
1. sequence-of-statements:

The sequence-of-statements structure requires no specific im-
plementation but two points may be mentioned. These points
are designed to improve program readability, which alsodoes a
great deal to improve ones understanding. First, the ‘REM’
statement is used to insert meaningful comments into the prog-
ram and second, the colon (:) is used to provide statement offset
as:

10 REM % sample sequence-of-statements;
20:A=1
30 :B=A+8B

The readability afforded by the alignmnt will prove more useful
as we continue. The percent sign (%) in the ‘REM’ statement is
simply to allow rapid identification of comments without look-
ing back to the left margin for the ‘REM’ identification. The
worth of this convention will become more obvious as state-
ments are offset further to the right.

2. IF-THEN-ELSEIF-ELSE-END IF:

The implementation of this structure will be explained using
two examples. First, suppose we wish to set C = 1 when A < B;
otherwise set C = 2.

10 REM % sample IF-THEN-ELSE structure;
20 : IF NOT (A<B) THEN 60
30 :C=1

swREMark « Issue 7 » 1979



40 : GOTO 80

50 REM <ELSE>
60 :C=2

70 REM <END IF>
B8O :

There are several points of specific interest in this exampleand a
little justification necessary. The colon (:) and the ‘REM’ state-
ments have been used to create an implementation that looks
like the IF-THEN-ELSE structure. Less than and greater than
symbols are used to enclose dummy substructure elements sim-
ply to make them readily differentiable from comments; which
describe operations. Thus the portions of the structure are im-
mediately obvious on sight, as well as where the structure ends.

Now for a justification of the NOT (A<B). Admittedly this is
equivalent to (A> = B) but in the initial statement of the opera-
tion we wanted to do something if (A<B). Thus the NOT is
employed to eliminate the necessity of reversing all the logic to
maintain the original structure. Reversing the logic has a very
definite tendency to obscure meaning and result in logic errors
sooner or later. All that is necessary is for one to adopt a new
method of reading IF statements. If the parenthetical expression
is TRUE control flows downward as it should. When the paren-
thetical expression is FALSE, it is negated by the NOT, making
the entire conditional-statement TRUE and a branch to the ELSE
clause is effected. Repeated consistant use of this structure leads
to a very nonambiguous interpretation. Note the GOTO state-
ment in line 40. This is a restricted GOTO in that it is only
allowed to pass control to the first executable statement follow-
ing the END IF statement. Later I will explain just why the
reference is made to the next executable statement and not the
END IF statement which is actually the end of the structure.

A full IF-THEN-ELSEIF-ELSE-END IF example:

005 REM % FULL EXAMPLE;

010 : IF NOT (A<B) THEN 50

020 :C =1

030 : GOTO 110

040 REM <ELSEIF (A = B) THEN>
050 : IF NOT (A = B) THEN 90
060 :C =2

070 : GOTO 110

080 REM <ELSE>

090 :C =3
100 REM <END IF>
110 :

Notice that all the GOTO's transfer control to the same line. This
implementation maintains the downward flow of control and
gives the structure a single entry and single exit point. Be main-
taining this single entry, single exit concept a structure becomes
a logical block; sort of a complete thought. This specific point
will be addressed in detail later.

3. DO WHILE:

10 REM <DO WHILE(A<B);>
20 : IF NOT (A<B) THEN 60
30:A=A+1

40 : GOTO 20

50 REM <END>

60 :

srREMark « Issue 7 + 1979

This structure is consistant with previous concepts and imple-
ments a DO WHILE(A<B). Line 40 contains another restricted
GOTO, in that control may only be passed tothe beginning of the
structure. Notice that the loop testing is specificaily at the be-
ginning of the loop so the structure may actually be executed
zero times.

4, REPEAT UNTIL:

10 REM <REPEAT>

20 : A=A

30 : IF NOT (A<B) THEN 20
40 REM <UNTIL (A<B);>
50 :

Thus we havea structure which repeats itself UNTIL a condition
is TRUE, in which case control falls through to the next state-
ment in the sequence. Note that the test is specifically at the end
of the loop so the structure must execute at least once.

5. CASE structure:

010 REM <CASE A>

020 : ON (A) GOTO 50, 70, 90
025 REM <OUT OF RANGE>
030 : GOTO 110 '
035 REM <1:>

050 :B =3

060 : GOTO 110

065 REM <2:>

070 :B=1

080 : GOTO 110

085 REM <3:>

090 : B =7
100 REM <END>
110 :

Now (A) is evaluated and if the result is 1, 2, or 3 the specified
branches 50, 70, or 90 are taken; after which control is passed to
statement 110 which is intended to indicate the next executable
statement. Note that all the branches are to the same statement
thus maintaining the one entry, one exit concept. If (A) evaluates
toany value out of range (i.e. less than 1 or greater than 3) control
falls through to statement 30 which may be used as an error
handling section or simply pass control to statement 110. The
implementation of the CASE structure maintains the desired or
required downward flow of control.

Summary:

The five designated structures have been given a specific im-
plementation in HDOS BASIC which maintain the single entry,
single exit concept and produce a continuing downward flow of
control. They have also been implemented in a manner which
preserves their original form (i.e. the use of the ‘REM' statement,
the colon (:), and the bracket <> notation), which makes them
readily identifiable on visual inspection.

The Method

Now that all the means to develop Top Down Structured Prog-
rams are at our disposal, we need to develop a method by which
to employ the means. Along with the method evolves several
additional restrictions. These restrictions are offered as helpful

5



hints on things to avoid but may be used if you so desire. You
will decide to stop only when you realize you have suffered
enough.

1. Basic allows multiple statements per line (don't)

2. Basic allow 'REM' statements on the same line with
another statement (don't)

3. Basic allows GOTO LINO (expression) (don’t!!!!!!)

4. Basic understands THEN GOTO (don't)

Let us continue. You may have noticed that the implemented
structures were presented without the use of conventional flow
charts. This was intentional, as conventional flowcharting is as
unrestricted as the GOTO. It allows one to transfer the flow of
control anywhere desired, and one usually does, resulting in
some very obscure logic.

Thus an alternative is proposed which will serve the purpose of
the flow chart and also assist in eliminating the difficult result-
ing from the restriction of using variable names which are com-
posed of a letter or a letter and a number.

The alternative is rather straight forward and almost obvious
enough tobe bizzare. Simply write the program in a convenient

of the program function in English type statements while adher-
ing to the allowable structures as provided. The individual
statements may be written in any form desired which is capable
of making their function intuitively obvious by inspection.

Asashortexample, suppose we want to search a specified string
for the occurrent of the first non-space character:

pointer = 1;
DO WHILE (string-character(pointer) = space);
pointer = point + 1;
END;

This sequence of statements defines the desired operation in an
understandable manner and is directly translatable into BASIC
as follows:

10:P=1

20 : IF NOT (MID$(S$,P,1) = " ") THEN 50
30 :P=P+1

40 : GOTO 20

50 :

The line for line translation to BASIC has produced an executa-
ble sequence of statements but at the same time has eliminated
the majority of the self explanation contained in the original
description. Thus what is proposed is something on the follow-
ing order:

10 REM % pointer = 1;

20 :P=1

30 REM <DO WHILE (strong-character(pointer)
=(space);>

40 : IF NOT (MID$(S$,P,1) = " ") THEN 90

50 REM % pointer=pointer + 1;

60: P=P+1

70 : GOTO 40

80 REM <END;>

90 :

Your first complaint will probably stem from the idea that you
must work overtime writing two complete programs, one de-
scriptive and one actual. This is partially true and partially false.
This literal English description is a PDL (Program Design Lan-
guage) specification of the program and may be maintained as
such using the HDOS EDIT program. One can create and main-
tain the PDL description in a file (i.e. pgmname.PDL). Once the
PDL description is complete it may be transformed intoa ‘FULL’
set of comments for the actual program. Transformed, not by
hand, but, by another BASIC program of course. The PDL de-
scription of just such a transformation program will appear at
the end of this article.

Now you may complain that all these comments will take up
very valuable memory space and slow down actual program
execution. Inthis we are in agreement, thus enter another BASIC
program. This one is designed to remove all the ‘REM’ state-
ments from a BASIC program. A PDL description of this prog-
ram will also follow. Thus there exists not two but three copies
of any given program:

1. pgmname.PDL — A program design language specifi-
cation of the program with addi-
tional comments as needed.

2. pgmname.DOC — A combination PDL and actual

BASIC statements which exists as
a fully documented and executa-
ble BASIC program.

3. pgmname.BAS — A ‘REM’ stripped version of

pgmname.DOC

One additional concept necessary for the creation of meaningful
TDS programs is the concept of modularization. The TDS con-
cepts proposed are fine as is, but you must realize that the flow of
control of a structure (i.e. DO WHILE, REPEAT UNTIL) may
range over several hundred lines. If the structure also contains
numerous nested structures you begin to loose the ability to
keep track of all the processes in effect. Thus by creating the
program in functional modules, each of which performs a func-
tion or set of related functions, it is easier to keep track of things.
Many opinions have been put forward as to just how large these
modules should be but personally I prefer the one page conven-
tion. Using this convention the scope of control of all structures
is readily obvious on visual inspection. Of course modules may
be much smaller (i.e. 3 or 4 lines) for some functions.

Summary:

What has been presented is an implementation of MTDSP
(Modularized Top Down Structured Programming) which is in
no way meant to be the last word. The individual structures and
conventions are simply a basis to work from which may be
modified as necessary to satisfy personal individuality. Nothing
is effectively lost as long as one maintains a specific set of
structures with a single entry single exit feature and some sort of
modularization is done.

I suppose you might say this article is a plea to resources. The
knowledge which might be acquired from resourceful software
development specialists (i.e. programmers) is extremely vast; if
they would simply cease being so obscure.

Part II of this article will attempt to develop an MTDS program,
with non-obscure logic, designed to renumber HDOS BASIC
programs.

SREMark « Issue 7 « 1979



remark-pd1:PROCEDURE;1

REMO.PDL = > remark-pd1.pd1
REMPDL.PDL = > all remark-pd1 associated pd1’s

remark-pd1 is designed to read a pd1 file and convert it to a
sequence of numbered statements for use in further program
development.

CALL initalize;
first-char : = CIN(input-file);

DO WHILE(first-char <> end-of-file);
IF first-char <> line-feed THEN
INPUT line;
line : = CHAR(first-char) + line;
CALL check-and-insert;
ELSE
line : = null;
END IF;
line-number : = line-number + increment;
line : = CHAR(line-number) + 'REM" + line;
OUTPUT line;
END;

CLOSE input-file, output-file;

END remark-pd1;

initalize:PROCEDURE;1
REM1.PDL => initalize,pd1

initalize inputs user specification and sets up program vari-
ables.

FUNCTION MOD8(x) :: = x — 8 * INT(x/8)

DIMENSION keys (7)
INITIAL(IF’,'ELSE','END','OO''REPEAT' 'UNTIL','CASE");

space-8 : = (8)" ;

INPUT input-file-name,output-file-name;

CALL file-check;

OPEN input-file,output-file;

INPUT first-line-number; increment;
line-number : = first-line-number — increment;

RETURN:;
END initalize;

check-and-insert:PROCEDURE;1
REM2.PDL => check-and-insert.pd1
check-and-insert searches a line for key words and if found,
encloses the key word structure in brackets. A * % * is inserted
prior to the first non space character if no key word is found.
CALL index-non-space;
IF non-space-index <> zero THEN

not-found : = true;
test-string : = MID(line,non-space-index,6):

sREMark « Issue 7 +1979

DO key-index : = 1 to 7 WHILE(not-found);
key : = keys(key-index);
key-length : = LEN(key);
IF key LEFT(test-string key-length) THEN
not-found : = false;
CALL bracket;
END IF;
END;

IF not-found THEN
IF MID(test-string,2,1) = colon THEN

this line is part of a case structure so CALL bracket;
ELSE
insert * % * before first non space character line :
LEFT(line non-space-index-1)
+ ' % * + MID(line,non-space- index);
END IF;
END IF;

END IF;

RETURN;
END check-and-insert;

file-check:PROCEDURE;1
REM3.PDL = > file-check.pd1

file-check looks at input $ output file specifications and assigns
default values as required.

comma-index : = MATCH(input-output,comma,1):
IF comma-index = 0 THEN
input-file-name : = input-output;
output-file-name : = null;
ELSE
input-file-name : = LEFT(input-output, comma-index-1);
output-file-name : = MID(input-output,comma-index + 1);
END IF;
period-index ; = MATCH(input-file-name,period.1);
IF period-index = 0 THEN
input-file-name : = input-file-name + ".PDL’;
END IF;
IF output-file-name = null THEN
period-index : = MATCH(input-file-name,period,1);
output-file-name : = LEFT(input-file-name,period-index-
1)
+ .DOC;
ELSE
period-index : = MATCH(output-file-name,period,1);
IF period-index = 0 THEN
output-file-name : = output-file-name + '.DOC";
END IF;
END IF;

RETURN;
END file-check;

index-non-space:PROCEDURE;1
REM4.PDL = > index-non-space.pd1

index-non-space searches a line for the first non space charac-
ter. In this respect control-I characters are treated as spaces

7



and their occurrence is replaced by an appropriate number of
spaces. This replacement is necessary as the prefix ‘nnnnn
REM' will mess up any offsets created in the PDL using
control-I characters. The number of spaces to be inserted is
computed as:

8 — MOD(control-E-index-1,8)

non-space-index : = 0;
looking : = true;
DO index : = 1 BY 1 WHILE(looking & index < LEN(line));
char : = MID(line,index,1);
IF char = space THEN
do-nothing;
ELSEIF char = control-I THEN
line : = LEFT(line,index-1)
+ LEFT (space-8,8-MOD8(index-1))
+ MID(line,index + 1);
ELSE
looking : = false;
non-space-index : = index;
END IF;
END;
RETURN;
END index-non-space;

bracket:PROCEDURE;1
REMS5.PDL = > bracket.pd1

bracket places the required brackets around a structural ele-
ment when called.

line : = LEFT(line,non-space-index-1)
+ '<’ + MID(line,non-space-index) + '>’;

RETURN;
END bracket;

unremark-doc:PROCEDURE;2 05-May-79

UNREMO.PDL = > unremark-doc.pd1
UNREMDOC.PDL = > all unremark-doc associated PDL’s

unremark-doc is designed to remove ‘REM’ statements from a
specified documentation file (i.e. one created from a PDL with
the executable statements inserted). In addition offset lines are
left justified by the removal of the colon, spaces, and control-I
characters which prefix the first interpretable character. Line
numbers remain unaltered.

CALL initalize;
first-char : = CIN(input-file);
DO WHILE(first-char <> end-of-file);
INPUT line;
line : = CHAR(first-char) line;
IF line <> rem-line THEN
CALL deblank;

OUTPUT line;
END IF;
first-char : = CIN(input-file);
END;

CLOSE input-file,output-file;

END unremark-doc;

8

initalize:PROCEDURE;1 05-May-79
UNREM1.PDL = > initalize.pd1

initalize looks at input & output file specifications and assigns
default values as required.

INPUT input-output;
comma-index : MATCH(input-output,comma,1):
IF comma-index = 0 THEN
input-file-name : = input-output;
output-file-name : = null;
ELSE
input-file-name : = LEFT(input-output,comma-index-1);
output-file-name : = MID(input-output,comma-index + 1};
END IF;
period-index : = MATCH(input-file-name,period,1);
IF period-index = 0 THEN
input-file-name : = input-file-name + '.DOC’;
END IF;
IF output-file-name = null THEN
period-index : = MATCH(input-file-name, period,1);
output-file-name : = LEFT(input-file-name,period-index-
1]
*.BAS’;
ELSE
period-index : = MATCH(output-file-name,period,1);
IF period-index = 0 THEN
output-file-name : = output-file-name + ".BAS’;
END IF;
END IF;

OPEN input-file,output-file;

RETURN;
END initalize;

deblank:PROCEDURE;2 05-May-79
UNREM2.PDL => deblank.pd1

deblank looks at an unremark line and if there is a colon in
column 7 the line is deblanked as possible.

IF MID(lin,7,1) = colon THEN
pointer : = 8;
not-found : = true;
DO WHILE(not-found & pointer < LEN(line));
char : = MID(line, pointer,1);
IF (char = space) OR (char = control-I) THEN pointer :
= pointer + 1;
ELSE
not-found : = false;
END IF;
END;
ELSE
pointer :=7;
END IF;

line : = LEFT(line,6) + MID(line,pointer);

RETURN;
END deblank;

EOF

srREMark « Issue 7 = 1979



WHAT! FTS AGAIN?!

Techniques for large file manipulation on the H-11

Douglas H. McNeill, M.D.
Poynette, Wisconsin

Although the H-11 offers a great deal of storage capacity with
two full sized drives, certain large data files may rapidly exhaust
the available space and yield increasing frustration with the
increasing emergence of the FTS (File Too Short) error message.
Some techniques are described to circumvent this problem
pending a hardware modification (such as hard disk).

Our operation uses the H-11 for the storage of patient records
and account status information in a general medical practice
setting. Because density of information is of far greater impor-
tance than speed of access, our data files are organized as se-
quential files rather than virtual files. This compromise requires
a larger working area on the disk for updates, however, since
introduction of new information to a sequential file (particularly
where the information may be added in the middle of the file)
requires that the file be written to a work area with corrections
added and then re-written to its original location in the updated
form. Unless some tricks can be devised to stretch the available
space, storage overflow is both inevitable and prompt.

The best way to stretch storage is to use more than one disk.
HT-11 easily hafidles the dual drive H-27 so that the system disk
(SY:) can be used for many purposes as a scratch area for the
major files manipulated on the scratch disk (DK:). A better (less
constraining) approach uses an infinite number of disks; but,
you say, HT-11 forbids switching disks while in BASIC! A brief
catalog of our disk allocation and discussion of programming
techniques will demonstrate how this is permissible.

Our programs are distributed in the following manner:

for SY: Disk #1: XBASIC.SAV Function: DOS

PIP.SAV

EDIT.SAV

LINX.DAT prevents dup.

run (vide infra)
for DK: Disk #2: MEDSY0.BAS Function: generate updates
+
data files for existing accounts
IDENT.BAS identify disk

for DK: Disk #3: MEDSY1.BAS Function: update data files
+ on this disk
data files for financial data for accounts
IDENT.BAS identify disk
for DK: Disk #4: MEDSY2.BAS Function: update data
+ files this disk
data files for medical information
for individuals
IDENT.DAT identify disk
Conceptually, this list could be extended infinitely; the division
into three disks for DK: is arbitrary and based on local require-
ments for our data set.

S=REMark » Issue 7 « 1979

All programs MEDSY0,BAS, MEDSY1.BAS and MEDSY2.BAS
share the same first few program lines:

10
20
30
40
50
60
70
80

REM: (RESERVED FOR PROGRAM IDENTIFICATION)
REM: (DITTO)

REM: (DITTO)

GO TO 80

OPEN “IDENT” FOR INPUT AS FILE #1

INPUT #1:Q8

CHAIN QS

REM: PROGRAM BEGINS HERE

Each disk also carries a file “IDENT.DAT” which consists of the
name of the update program resident on that disk.

The procedure is as follows: first the program (MEDSY0) to
generate updates is executed. This produces a file of all updates
that is written to the system drive and then terminates. The
operator is then instructed to exit via Control-C, returning the
H-11 to the control of the monitor program KMON.Then and
only then the DK: drive is unloaded and the disk switched to
another in the series. The old program is entered using the
KMON command RE (re-enter), the BASIC prompt “READY"”
appears and in immediate mode the command GOTO 50 is
entered. This causes the old program to determine the contents
of the new disk, load and execute any relevant programs on that
disk. This procedure effectively chains across an infinite
number of disks and permits access to a truly huge data set.

One problem needs some amplification. With a large number of
diskettes it is possible for the operator to forget which have been
updated during this session; either running an update through a
sequential file twice or not at all will quickly reduce the fileto so
much garbage. The file LINX.DAT serves to prevent this,

The first program (MEDSYO0) verifies that there are no outstand-
ing updates remaining before a new update file is generated and
then produces the file LINX.DAT, stored on the SY: disk, which
represents a worklist of remaining updates that must be per-
formed before the next pass. This is accomplished with the
following code:

OPEN *“SY:LINX” FOR INPUT AS FILE #1
INPUT #1: Q%
IF Q% = “DONE" THEN 200

100
110
120

130 PRINT “LAST BATCH NOT COMPLETED: PROGRAM(S)
MISSING: "; Q%" ™

140 INPUT #1: Q$

150 IF Q% = “DONE” THEN 170

160 PRINT Q$

170 PRINT

180 PRINT "“PROGRAM TERMINATING TO PREVENT ER-
ROR”

190 STOP

200 CLOSE #1



210 OPEN “SY:LINX” FOR OUTPUT AS FILE #1
220 PRINT #1: "MEDSY1"”

230 PRINT #1: “"MEDSY2"”

240 PRINT #1: "DONE”

250 CLOSE #1

Lines 130-150 and 224-240 may be expanded if more than three
disk transfers are required. Each new disks scrubs its name from
the worklist or aborts with the following code:

100 OPEN “IDENT” FOR INPUT AS FILE #1
110 INPUT #1:Q$%

120 CLOSE #1

130 OPEN “SY:LINX"” FOR INPUT AS FILE #1
140 FORI=0to 2

150 IF END #1 THEN 190

160 INPUT #1: Q$(I)

170 NEXT I
80 I=1+1
190 I=1-1

200 FORJ = 0TO1

210 IF Q$ = Q$(J) THEN 240

220 NEXT |

230 GO TO 320

240 CLOSE #1

250 OPEN “SY:LINX" FOR OUTPUT AS FILE #1

260 FOR ] = 0 TO 1

270 IF Q$(J) = Q$ THEN 290

280 PRINT #1:Q8())

290 NEXT ]

300 CLOSE #1

310 GO TO 370

320 GOSUB 1030 [SUBROUTINE TO ALERT OPERATOR]

330 PRINT

340 PRINT Q8$; “SUBPROGRAM NOT IN REMAINING WORK-
LIST”

350 PRINT ‘- -PROGRAM TERMINATING”

360 STOP

370 REM: PROGRAM BEGINS HERE

These techniques permit full utilization of the space of each
diskette and facilitate monstrous manipulations without over-
writing a file twice or skipping it in an update. The division of
files onto each disk is determined on the basis of the utilization

to be made of them in subsidiary programs not discussed above.
The use of the CHAIN command in line 70 of the common first
portion cleans the volatile memory of the H-11; an OVERLAY
command could also be used with care to continue a long calcu-
lation requiring multiple diskettes for entry while retaining the
variables intact. Much care is required, however, to prevent
unwanted strange bugs from creeping into the calculation be-
cause of reuse of old line numbers.

With a bit of fancy footwork and additional operator care, these
techniques effectively make the H-11 system truly high-
powered. Only the addition of hard disk drive or conversiontoa
mainframe computer could equal this performance. Both these
alternatives are far less pleasant than the above procedures.

EOF

ADDENDUM

One further trick is worth using to prevent diskette fragmenta-
tion. When a data file OLD.DAT is updated to NEW.DAT and
NEW.DAT is then re-written to OLD.DAT for the next pass, the
file NEW.DAT becomes superfluous and serves only to limit the
file size possible on that disk through fragmentation. This oc-
curs because HT-11 assigns one half of the largest available
space on a diskette for an new file unless otherwise instructed.
Two BASIC statements will free unproductive work area as
follows:

10000 OPEN “NEW” FOR OUTPUT(1) AS FILE #1
10010 CLOSE #1

By opening and immediately closing the completed working
file, its size is reduced to a minimum. The specification of the
output number of blocks as one (1) will force the allocation of
space for this file to the first sector that is free on the diskette,
effectively removing the file from the central portion of the
diskette and clearing the decks for the largest possible data files
to come in future updates. The name is obligated to remain but it
cannot block larger files under this disk-cleaning procedure.

EOF (really)

Here are changes to calender program
appearing in Vol. II for 10.05 Ex. B.H.
Basic :JB:

[Fay

485 REM WEEKS.

48 REM POSITIONM.

448 FRINT SPCCZ7#1@)D;:GOTO 445
442 IF D>18 THEH 5=6:GOTO 444

443 57

4068 DF=STR$(D):5=6

4875 IF D=1@ THEN 5=7

4164 IF UALCMIDF(P$(X2),5,4))=D THEN PRINT SPC((Z7%18)-1)LEFT$(D¥,3)+"4";:F4=8:GOTO 443
4178 PRINT SPC((Z7#10)-1)D$;:F4=0:GOTO 445

€218 POKE 8272,85:POKE 8273,78:POKE 8274,13

e38z0 POKE 8275.71:POKE 8276,69:POKE 3277.90:POKE 8278,36:POKE 8279.13

£5630 FOKE 8288.89

©5840 FOKE 8231.67:POKE 8282,79:POKE 8283,78:POKE 8284,13

eSB58 POKE 8271.13
£5066 RETURN

0118 POKE ©272,280:POKE 8273,85:POKE 8274,98:POKE 8275,36:POKE 8276,13
€5120 FOKE 8277.67:POKE 8278,79:POKE 8279,78:POKE 8288.13

&5136 POKE 3271,9%
3148 RETURN

1 REM APFOINTMENT/CALENDAR VER.1.1
REW BY WILLIAM A. WILKINSON

REM THIS VERSION WILL WORK ON EXTENDED BASIC #10.85.08.
401 REM s#wx THESE FOLLOWING LINES NEED TO BE CHANGED TO
482 REM PREVENT THE CALENDAR FROM DISPLAYING EIGHT DAY
APPARENTLY BASIC VER. 10.02.XX WOULD START
484 REM THE SPACE FUNCTION FROM THE CURSOR+1 POSITION. WHILE
405 REM BASIC UER, 18.05.88 STARTS DIRECTLY FROM THE CURSOR

JUNE 18,1979

10

s=REMark » Issue 7 + 1979



THE HDOS TYPE AHEAD BUFFER

One of the features of the console driver
used with H8 tape software that many
people have found useful is the Type-
Ahead Buffer. Knowing the location of
this buffer allows programmers to write
programs which *“POKE"” command
mode commands such as “LIST”, "RUN",

“PUT”, and “GET"” into the buffer. This
has the effect of expanding the program
mode command set because these com-
mands are illegal in normal program
statements.

HDOS also uses a Type-Ahead Buffer, but
since its location and operation has not
been documented until now it could not
be used. I have disassembled HDOS and
figured out the location and operation of
the Type-Ahead Buffer.

The HDOS Type-Ahead Buffer is a buffer
of 100 bytes maintained as a circular
queue located in high memory. As HDOS
is a relocatable program, the exact loca-
‘tion of the buffer depends on the amount
of memory in the H8. The starting address
for HDOS is kept in memory locations 040
320 (low byte) and 040 321 (high byte).
The start of the buffer is 2040 bytes above
this starting address and the end of the
buffer is 2140 bytes above this starting
address.

HDOS treats this buffer as a circular first
in first out (FIFO) queue. This is done
with two 2 byte pointers. The TAIL
pointer located at 2029 (low byte) and
2030 (high byte) bytes above the HDOS
starting address contains the address in
the buffer where the next character will be
placed. The head pointer located at 2031
(low byte) and 2032 (high byte) bytes
above the starting address contains the
address of the next character to be re-
moved from the queue. Since HDOS can
operate in either line or character mode,
there is alsoa 1 byte counter at 2025 bytes
above the starting address which keeps a
count of the lines (each terminated with a
New Line character) in the queue.

S=REMark » Issue 7 « 1979

].J. Thompson

When a character is typed on the terminal
HDOS first checks to make sure it isn't
one of several control characters that
aren’t stored in the queue. If it isn’t one of
these, HDOS stores the character and the
current tail pointer on the stack. It then
increments the tail pointer. If this causes
it to point beyond the end of the buffer, it
is changed so that it points to the start of
the buffer. If the incremented tail pointer,
(which points to where the next character
is to be stored,) is pointing to the same
location as the head pointer, then the
queue is full and the terminal bell is
sounded. If everything is OK, then the
character and the preincremented tail
pointer are retrieved from the stack and
the character is stored in the queue. If the
character was a carriage return, it is
changed to a New Line character and the
line counter is incremented. This process
is repeated for every character entered.

When HDOS wants toretrieve a character
from the queue, the following occurs. If
HDOS is operating in the line mode, it
checks the line counter byte. If this is
zero, it indicates that a full line has not
been input and HDOS must wait until the
counter is incremented. If HDOS is

operating in the character mode, it com-
pares the head pointer with the tail
pointer. If they point to the same address,
it means that the queue is empty and
HDOS must wait until a character is in-
put.

When either a character or a line is availa-
ble HDOS retrieves a character from the
location pointed to by the head pointer.
The head pointeris then incremented. If it
points beyond the end of the buffer, it is
changed to point to the start of the buffer.
If the retrieved character was a new Line
character, the line counter byte is de-
cremented.

Below is given a table of the memory loca-
tions discussed above and a subroutine
written in BASIC which can be used to
put a string into the queue. In this sub-
routine, the actual addresses of the start
and end of the buffer are not calculated as
there are two 2 byte pointers in HDOS
pointing to the start of the buffer and to
the end of the buffer + 1. All comparisons
are made using only the low byte pointer
as all locations are on the same page of
memory so the high bytes don’t change.

See Program Listing on Page 23 —

TABLE OF MEMORY LOCATIONS FOR HDOS TYPE AHEAD BUFFER

Location

HDOS Starting Address (low byte)
HDOS Starting Address (high byte)
Offset to Line Counter Byte

Offset to Queue Tail Pointer(Low Byte)
Offset to Queue Tail Pointer(high byte)
Offset to Queue Head Pointer(low byte)
Offset to Queue Head Pointer(high byte)
Offset to Pointer to Buffer Start(low byte)
Offset to Pointer to Buffer Start(hi byte)
Offset to Pointer to Buffer end + 1(low byte)
Offset to Pointer to Buffer end + 1(hi byte)

Offset to Buffer Start
Offset to Buffer End

Octal Value Decimal Value

040 320 8400
040 321 8401
005 351 2025
007 355 2029
007 356 2030
007 357 2031
007 360 2032
007 361 2033
007 362 2034
007 363 2035
007 364 2036
007 370 2040
010 134 2140
EOF

11



The Secret HDOS

Chesney E. Twombly
15 Storer Street,
Kennebunk, Maine 04043

Being curious of mind and devious of
soul and unable to take anything at face
value, I set out to discover if there was
anything which Heath had provided in
HDOS and “forgotten” to document. A
little reflection indicated to me that if I
were to dump the HDOS program files as
ASCII text, I might encounter character
strings which would be that program’s
command vocabulary. I was able to obtain
the ASCII dump I wanted by using the
TYPE command. I TYPEd HDQOS.SYS,
HDOSOVL.SYS, SYSCMD.SYS,
EDIT.ABS, ASM.ABS, and BASIC.ABS,
since any un-documented features in
these programs would be most valuable to
me. A few minutes of staring at my video
terminal and voila! I'd discovered a secret
HDOS. The Users' Group should hear of
this, I thought. And so I'm sharing what
I've discovered with you.

Please take this information as subject to
change without notice (although it didn't
change when Heath released their latest
version of HDOS.] since it wasn't

documented. But here are some of the
things I've discovered:

+ Nothing of significance was found
in HDOS.SYS, HDOSOVL.SYS,
EDIT.ABS, or BASIC.ABS — at least
nothing I could recognize.

* The HDOS command mode in-
terpreter, SYSCMD.SYS, under-
stands several commands which
weren’t written up. Unfortunately,
there are no new commands — the
commands which
documented, notably,

INDEX a synonym for CAT
DIRECT another synonym
for CAT

still another

a synonym for TYPE

were

IND
LIST

+ The assembler has two additional
pseudo-operations which were not
documented. One of these, ENCLU,
seems to be equivalent to the XTEXT
pseudo; the other, CODE, I still ha-
ven't figured out. If anybody out
there has more time to work on this
than I do, it might prove very re-
warding . . .

There is also an un-documented
switch, /WIDE, which might allow
you to control the number of charac-
ters per line in the .LST file — again,
I haven't had time to figure it out.

Finally, we come to a program which
Heath supplied on their distribution disk
for both releases of HDOS. This program
is called PATCH and no explanation was
written up for it. The name itself was
enough — I just had to figure out what it
did. I experimented with it using the
.ABS file of one of my assembly-language
programs as the data file. After about an
hour of trying reasonable (and sometimes
urreasonable) things, I found out how to
use the program — at least in part. The
results of this research have gone to make
up a two-page insert into the HDOS man-
ual given on the next two pages.

I hope other users can benefit from my
research and I hope this article brings out
from the woodwork any other users of like
mind who may have discovered other
buried treasure in the cavers of the secret
HDOS.

A MENU FOR BASIC PROGRAMS

By: Kevin Hauser

This article describes a program which prints a menu of all the
BASIC programs on your disk and then allows the user to simply
enter a number to load and run a program. Since I have only one
drive, the program will require some modification for a two-
drive system. The program provides a good example on how the
‘CHAIN’ instruction can be used.

The program begins with a clear screen which is created at line
3. Variable P1 is equal to the amount of BASIC programs on the
disk. Lines 20 through 50 load the names of the BASIC programs
into memory. Lines 60 through 80 print the memory on the
terminal. Line 85 prints a carriage return if there is an odd
number of programs. Lines 90 and 100 get the number of the
program to be run and then, using the ‘CHAIN’ instruction,
loads and begins execution of the program. Line 120 is the
DATA line and should conta all the names of your BASIC prog-
rams EXACTLY AS THEY APPEAR IN A CATALOGUE. For
example:

120 DATA “SPACEWAR.GAM"”, "CHECKBAL.BAS” and so on.
If it is preferred, more than one DATA line can be used. Also,

programs that end in .BAS can be entered into the DATA line
without the .BAS.

To set up the program, change line 1 so that P1 = the amount of
BASIC programs which you have on this disk. Then enter the

12

names of the programs into the DATA line as previously discus-
sed. After loading BASIC, type CHAIN “MENU" and ‘RETURN".
Then simply enter the number of the program you want to run.

LISTING 1 FOLLOWS:

00001 P1 = 3: REM P1 = # OF BASIC PROGRAMS ON DISK
00002 DIM P$(P1)

00003 FOR X = 1 TO 16: PRINT: NEXT X

00010 PRINT TAB(28);"MENU"

00012 PRINT :PRINT

00015 REM LINES 20 — 50 LOAD THE MENU INTO MEMORY
00020 FOR X = 1 TO P1

00040 READ P$(X)

00050 NEXT X

00055 REM LINES 60 TO 80 PRINT THE MENU

00060 FOR X = 1 to P1 STEP 2

00070 PRINT X;P$(X);:IF X1+P1 THEN PRINT TAB(40);X+1'P$(X1)
00080 NEXT X

00085 IF INT (P1/2)<>0 THEN PRINT

00086 PRINT

00087 REM LINES 90 & 100 GET AND RUN REQUESTED PROGRAM
00090 PRINT TAB(20);"ENTER PROGRAM #'';: INPUT ” ";P2
00100 CHAIN P$(P2)

00115 REM LINE 120 HOLDS NAMES OF PROGRAMS

00120 DATA see text
00130 END

EOF

wREMark « Issue 7 = 1979



Operating System
DISKETTE FILE PATCH (PATCH)

David A. Wallace
146 Westford St.
Chelmsford, MA. 01824

A file patch program has been provided
by Heath Co. so that data on diskette files
can be examined or modified by the user.
Heath Co. does not provide documenta-
tion for its use; the information contained
on this page is provided by experimenta-
tion with the program by a user and the
procedures given for the use of PATCH
may not be optimum or complete.

NOTE: Do not attempt to patch a
program file by means of this
utility unless you are sure you
know what you are doing.
Patching a program file re-
quires that you know assem-
bly- and machine-language
programming for the 8080
microprocessor and Heath Co.
will not support any programs
which you modify. It is pref-
erable (when source code
exists] to re-assemble the
program and replace the file,
since the assembler is less
error-prone than a human
programmer.

Using PATCH

1. Type PATCH and a carriage return.
PATCH will respond with the prompt

file name?

2. Type the name of the file which you
wish to patch. The default extension
is ABS.

3. PATCH will search for the file on the
disk and, if the file is found, will ask

address?

4. Type the octal address of the patch. If
that address is within the address
space used by the program, PATCH
will respond

<address> = <data>/

5. Type the new octal data which is to
replace the contents of that address.
PATCH will automatically increment
the address and display the next ad-
dress’s contents.

6. Type the change for that address (if
there is one) or carriage return (if the
data is correct).

7. Continue until all addresses in this
black are patched. Then type CTL-D
(control D). PATCH will respond

address?

8. If there is another block of addresses
to correct, repeat the procedure, start-
ing at step 4. Otherwise, type CTL-D
again. PATCH will write the file back
to the disk with your corrections
made. When the file is written,
PATCH will again ask

file name?

9. Ifthere is another file to patch, repeat
the procedure at step 2. Otherwise,
type CTL-D again to exit.

Patches made to a program do not take
effect until the file is re-written. There-
fore, it is not possible to list the changed
file. Also, CTL-C aborts the patch process
and returns you to the file name? ques-
tion. Several error conditions are possi-
ble, but the error messages for those con-
ditions are self-explanatory.

But alas, PATCH won't allow you to
patch system files. :JB:

EOF

ET-3400 AND TINY BASIC

The ET-3400 microprocessor trainer can
be expanded upon by adding to it the
ETA-3400 accessory box. The accessory
box not only provides additional
hardware but also provides the user with
an additional software language, TINY
BASIC.

BASIC is a computer language which is
quite easy to learn, and for thisreason it is
used by many hobbyist rather than as-
sembly language. The BASIC statements
provide mathematical operations, deci-
sion making, and I/O operations which
the user would otherwise have to code in
lengthy and possibly hard to follow as-
sembly language statements.

“#REMark « Issue 7 « 1979

TINY BASIC is a subset of the regular
BASIC language. It only does whole
number arithmetic. has no alphabetic
string capability, and does not allow ar-
rays. Figure 1 lists the statements in-
cluded in TINY BASIC. As can be seen,
there are the necessary statements for
doing arithmetic, making decisions, and
doing I/O. This subset of regular BASIC is
quite powerful in the ETA-3400 envi-
ronment.

TINY BASIC also contains two very use-
ful functions. The RND function returns a
positive pseudo-random integer between
zero and one less than the argument pas-
sed to it within parentheses. If a sub-

routine is written in TINY BASIC, then
you use the GOSUB and RETURN state-
ments to call and return from the sub-
routine. But what if the subroutine you
wish to call is not writen in TINY BASIC,
but is instead written in machine code.
Maybe you want to usea subroutine in the
ET-3400 monitor to display something on
the 7-segment displays. The other func-
tion that TINY BASIC has will allow you
to call any machine code subroutine. It is
called the USR function.

VECTORED TO PAGE 21

13



--EDIT

Dear Mr. Blake:

I am enclosing a lot of words on how I
connected two mainframes together. |
hope that it will be of use to some other
member. The ground plane cable was ob-
tained by a friend who helped in this
modification, It is fairly expensive but it
is available and probably better than any
other alternative. At least it works.

Sorry that I don't have pictures of the
motherboard modification, but I feel that
it is self-explanatory to anyone capable of
building the kit in the first place. The
reason for the modification was that I
needed the extra memory, but couldn’t
find a buyer for the 8K boards and didn’t
want to scrap them. The 16K boards we-
ren’t available at that time anyway. Know
of anyone who wants to buy a new CPU
and Control board?

EXPANDING YOUR H8

R. E. CLARK, M.D.
MEMPHIS, TEXAS 79245
806-259-2232

As probably many enthusiasts have dis-
covered, the H8 is an excellent starting
point. Most of us have had a lot of fun and
have been able to develop some routines
with 8K or 16K of memory with little dif-
ficulty. As our systems have grown, we
have all felt the pinch of too little memory
or restricted program space. Heath first
designed our system with what they con-
sidered totally adequate motherboard
space. After the addition of a disk system
with disk BASIC and increasingly com-
plex programming, many of us have been
faced with the lack of sufficient space.
Those who have 32K of memory in 8K
boards do not want to discard them to
purchase the newer 16K boards. An ex-
pansion board has not been forthcoming
from Heath and is not in the works as far
as I have been able to determine. This is
written to offer one solution which I have
had the fortune to be able to manage to get
to work well without too much invest-
ment or involvement. We are now run-
ning 56K on our system with two H8-5
serial boards and one H8-4 serial board. A
parallel board has been used but is out of
the line at this time.

14

With the disk system, 32K of Heath mem-
ory and two serial boards, my system was
completely filled. An occasional program
with the Extended Disk BASIC would
give me a memory overflow error and I
would lose a portion of vital files unless I
could add to the system. Heath was con-
tacted about the problem and the addi-
tional motherboard space needed, but to
no avail. A man working at the Dallas
Heath Retail center was contacted about
the possibility of connecting two main-
frames together. He had no knowledge of
this having been done. A friend with a
degree in electronics with a specialty in
computers was contacted when he was at
home for a vacation and we put a scope on
the motherboard. We did find spike po-
tentials on the address and data lines
especially when loading from a cassette.
He suggested shielding any connecting
lines and terminating the slave main-
frame on the data and address lines.

A second H8 was purchased from Heath
and was carefully assembled. All traces
with the exception of the ground traces
were cut atlocation 1 on the motherboard.
A grounded tinned copper bus was ex-
tended from 0 to 49 at this position. The
25 pin plugs were left out at P2 and all
lines except 2, 47, 48, and 49 were con-
nected through 680 ohm 1/4 w resistorsto
the ground bus. Four connector shells
with enough spring clips were obtained
from the parts department at Heath. Five
feet of 50 conductor flat gray laminated
ground plane cable with drain wire was
obtained from the friend. This is Allied
stock number 943-1635 and costs about
$3 a foot if it can be found. It is only
available from Allied in 100 footrolls. It is
tedious to separate the ground plane
which is a mesh of fine copper laminated
to the bottom of the flat cable, but it is
worth it. The wire is not color coded and
extreme care must be used in attaching
the spring clips and the plugs. By ex-
perimentation, we found that it was not
necessary or wise to connect the pins 2,
47,48, and 49. Pins 0 and 1 must be con-
nected and the drain wire must also be
connected at each plug. Position 10 on
each motherboard was connected with
this cable.

Two Godbout 12K boards were obtained
and assembled. These were tested first in
the main H8 and found to be working
well. They were then placed in the slave
mainframe and a memory test with 64K as
the high limit (377 377) was performed
and left running for a couple of days with
no failure. As word processing was my

prime concern the H9 was sold and a
ADM-3A kit was purchased and assem-
bled. The lower case option was obtained
from a chip compnay in California for $14
and the additional RAM was purchased
for $12.50. This furnished me with a 24
line terminal with upper and lower case
at about the least money output possible. I
had tried the mods on the H9 with poor
success and it wouldn't work without a
definite flicker and jitter above 600 Baud
anyway. The ADM-3A will function with
no difficulty with the H8-5 at 9600 Baud.

REMOVE R152 ON THE H8-5 :/B:

To complete the system a NEC Spinwriter
with panel was obtained. The NEC in se-
rial configuration did not supply a CTS
signal but it did have a full buffer signal.
The HB8-5 was modified with a n-p-n
transistor switch grounding pin 17 of IC
124 on the H8-5 after cutting the ground
trace to this pin. When the full buffer sig-
nal drops to zero the CTS of the IC 124 is
raised above ground effecting an inter-
rupt. When the buffer is sufficiently
empty (about 60 bytes) the signal is posi-
tive 5 v and the transistor conducts,
grounding pin 17 of the USART and al-
lowing transfer of data, As pin 2 on P102
was not being used, it was pressed into
service to serve as the input of this signal
to the H8-5. This allows the NEC to run at
1200 Baud with very little interruption in
output.

The slave mainframe does not use the
Control circuit board or the CPU board. It
is now serving as the housing for a H8-2
parallel board not currently used and fora
HB8-4 board driving a modem for com-
munication over the phone line at 300
Baud to my office computer and to a
Northstar Horizon at my home. The only
complaint I have is that the slave main-
frame had the holes in the front of the
panel for the keyboard which I could only
cover with tape. With the current units I
have as good a wordprocessor and as ef-
fective a general purpose computer as any
I have seen for three or four times the
money. I am limited for disk storage, but
in anticipation of Heath and their compu-
ter inquiry, I hope someday to see a
reasonable 7.5M-10M hard disk added to
their line with S-50 bus compatibility. I
feel that this would probably be the ulti-
mate hobby (?) system.

EOF

“SeREMark « Issue 7 = 1979



USING A H14 WITH A H8-5 IS OK.

Chesney Twombly
15 Storer Street
Kennebunk, ME 04043

Here is some good news for H14 owner’s
and prospective buyers who would like to
use it with the H8-5 Serial I/O and Cas-
sette Interface. All it takes to do it is a
simple outboard adapter to change the
H14 ‘handshake’ signal from RS-232C to
TTL level. 1C124 pin 17, is lifted from
ground and connected tothe output of the
level converter. It will cost about $2.00 for
parts. No need to get a H8-4 Multiport
board.

The schematic shows everything you
need to know. No construction details are
given — the prototype was built on a 14-
pin, wire wrap type IC socket, which
holds all the parts and is mounted on the
back side of the H8-5 board by soldering
one of the socket’s grounded pins to the
eyelet hole in the ground foil near 1C124
pin 17. Note that after isolating pin 17
from ground, a jumper must be added to
restore the ground connection to pin 4.

Only three wires between H8 and H14 are
needed. They can be permanently con-
nected, if desired, since the printer when
turned off has no effect on H8 operation.
When hard copy is wanted, the H14 is
powered up and its ‘on line’ button
pushed down. Anything appearing on the
H9 Video Terminal, will be printed on the
H14. Nothing could be simpler. There is
one restriction, however. The video dis-
play will be inhibited whenever the ‘on
line’ button is in the out position. The
reason for this effect is explained on page
10 of the H14 Operations manual.

The assembly manual has errors in the
last two steps on page 76 and in the first
step on page 77. This is in the “Initial

Tests” section and is certain to cause in-
convenience and unnecessary checking.
The same information is given correctly
in the Operation manual, pages 26 and 27.

A word of caution when connecting the
H14 to the H8-5. Baud rates must be the

PRINTER

same in both units. Mechanical damageto
the printer could result if baud rates dis-
agree. Be careful. A replacement print
head is listed at $133.00 on the Heath
parts list. I was lucky — fuse F101 blew
and shut down the printing short of disas-
ter.

+5

BUSY SIGNAL S 10K
/INPUT 1
10 PIN 17
PIN T > q 24
680 H&-5
2 5
FROM H14 ;
102 INd148 ? st
HEATH PART #443-808
1 6 4
> b
PIN 1 /
PIN 17
1C 124 -15
HANDS HAKE
SIGNAL
FROM H14
(RS-232)
|
|
|
14-P [N WW

i/ IC SOCKET
|

|

+5

LEVEL CONVERTER
RS-232C TO TTL

Here’s a simple modification to the H14
Line Printer that costs nothing. The path
of the ribbon is almost horizontal. So the
print head is using only a small protion of
the width of the ribbon. This causes the
print darkness to fade after a short time. A
more ideal ribbon path would be sloping
sothat the print head strikes the ribbon on
the top of the ribbon on one side and the
bottom of the ribbon on the other.

SREMark « Issue 7 « 1979

It is easy to improve the situation by
swapping around the shim washers used
with the ribbon guide spools. I increased
theribbon tilt by moving one washer from
the right front guide to the left rear guide
and by moving both washers from the bot-
tom of the right rear guide to the top. This
should increase ribbon life and print un-
iformity and you can still turn the ribbon
over and use the other half.

Bill Phillips
6 Monterey Circle
Ormand Beach, FL 32074

15



MODIFICATION OF AN H11-5 SERIAL
INTERFACE FOR 19.2 K BAUD OPERATION

Grand ]. Munsey
909 Kennard Way
Sunnyvale, Ca. 94087

INTRODUCTION

Many CRT terminals will run at 19.2 K
baud. This speed allows extremely fast
screen writing capability for such appli-
cations as screen oriented editors. The
H11-5 is designed to run at baud rates up
to 9600 baud. This document describes a
simple modification which allows the
H11-5 to run at 19.2 K baud without giv-
ing up the ability to run at other speeds.

THEORY

IC 27 (Fairchild 7402, Heath 443-793) is
used to produce a crystal controlled clock
which is 16 times faster than the required
baud rate. The proper rate is selected by
setting jumpers FRO through FR3. By set-
ting FRO through FR3 to zero the fre-
quency selected is input from pin 15 of
1C27. This option was provided to allow

users of the IC to produce custom baud
rates in addition to the standard rates
normally provided by the chip. The
proper clock frequency for 19.2 K baud
operation is provided by IC 27 at pin 3.
Thus by connecting pin 3 topin 15a *‘cus-
tom’' clock is available which runs at 19.2
K baud.

MODIFICATION

1. Make sure the H11 computer is pow-
ered off.

2. Remove the H11-5 serial interface.

3. Carefully remove IC 27 (Heath part
number 443-793) and place it on a
piece of conductive foam. This integ-
rated circuit can be damaged by static
electricity so please follow the in-
structions supplied by Heath when
handling this part.

4, Turn the printed circuit board over so
that the foil side shows.

5. Use a small piece of bare wire (a por-
tion of 1/4 watt resistor lead will do)
to connect pins 3 and 15 of IC 27
together. Be careful to place the
jumper so that it does not touch any
PC traces or other IC pins.

6. The baud rate selection jumpers FRO
through FR3 should be set to all zeros
(all jumpers installed) for 19.2 K
baud operation.

7. Turn the board over and re-install IC
27 in its socket. Be careful to insert
the IC so that pin 1 is in the right
place.

8. Install the interface in the H11 com-

puter and re-connect the terminal ca-
bles.

9. Settheterminaltorunat 19.2 K baud.

10. Use micro ODT to test the interface.

EOF

A/D CONVERTER

By: Don Moore

The analog to digital converter presented in this article is sim-
ple, yet versatile.

The wiring is not critical and the circuit can quickly be built up
on the Heathkit H8-7 breadboard.

The heart of the converter is the National Semiconductor 16
channel, 8 bit A/D converter designated ADC0816. The 16
channel multiplexer can directly access any one of 16 single-
ended analog signals, and operates on a single 5 V supply.
Referrring to Figure 1, the 74LS155 and the 74LS00 are used as
address decoders. In this case the ports are 0 to 16, but other port
addresses are available at the unused pins of the 74LS155 (see
table 1).

The 74LS240 is necessary to drive the data bus and provide
signal inversion to satisfy the negative true bus of the Hs.

The four lower address lines need not be inverted, so the chan-
nels are in reverse order (i.e., channel 0 isreally channel 15, 1 is
14, etc.) but this does not affect the operation.

The 74C04 Hex inverter is used as a clock at approximately 500
kHz. This is not critical as the ADC0816 will run from 10 kHz to
1200 kHz, so it could be run off the H8 system clock if desired.

16

The ADCO0816 is designed as a complete data acquisition system
(DAS) for rationmatic conversion systems, the physical variable
being measured is expressed as a percentage of full scale which
is not necessarily related to an absolute standard. A good exam-
ple of a ratiomatic transducer is a potentiometer. (See Figure 2.)

A program listing is provided for display of all channels and one
for a 5 volt voltmeter in listings 1 and 2.

PARTS LIST

IC1 ADC0816 IC5 74C04
IC2 74LS240 IC6 LM340T-5
IC3 74LS155 R1 39kQ

IC4 74LS00 C1 120 pF
Listing 1

10 FOR I = 0 TO 15: OUT 1, 0: PRINT PIN (I);: NEXT: END
Listing 2

5 REM USES CHANNEL 0 AS PROBE FOR 5 V VOLTMETER
10 OUT 0,0

20 PRINT INT (PIN (0)/5.1 + .5)/10; " "

30 OUT 250, 13

40 GO TO 10

VECTORED TO PAGE 31

srREMark = Issue 7 » 1979



BUGGIN’

I am sure many HUG members are duffers
like myself. I for one would like to see the
REMark articles written in English in-
stead of computer jargon loaded with
about 50% buzz words. The CPM article is
a horrible example — what in hell are you
talking about?

W. B. Grandjean

Dear HUG,

I appreciated the article on CPM, and I
have a few more comments, both good
and bad, on the subject. My own system is
an H8 with a humble 12K of ram and
cassette mass storage, but at work I have
access to some Intel MDS’s with both ISIS
(Intel's own) and CPM disk operating sys-
tems. These two systems are even more
different than HDOS and CPM, yet we
have two programs that run under CPM,
called FROMISIS and TOISIS that allow
transfer from one system to the other, and
I use both systems to experiment with
programs that will eventually be used on
my H8. 1 don't know where the programs
came from, but most of our CPM software
is from the user’s group.

This brings me to the one bad thing that I
have to say about CPM. Many of the pro-
grams from the user’s group have bugs.
For example, there was an editor that re-
sembled the ISIS editor, which I really
like, but unfortunately, it had the nasty
habit of over-writing other disk files. This
is not to say that all of the user’s group
software is buggy. In fact, most of it is
terrific. But some of it has bugs. Caveat
emptor.

One really nice thing about CPM that was
not mentioned in the article is BASIC-E. It
is not part of the CPM package, but most
versions of CPM come with it thrown in at

#REMark = Issue 7 + 1979

little or no cost, because it is public do-
main software. BASIC-E is a very nice full
featured BASIC that has one important
difference from most other BASIC's. It is
not an interpreter, but rather a compiler-
interpreter. BASIC-E programs are pre-
pared using an editor, as in assembly lan-
guage, and then compiled with the
BASIC-E compiler. What is produced is
not directly executable object code, butan
intermediate code that must be run using
a program called the ‘‘run-time monitor"".
The whole thing sounds complicated, but
is much easier to do than to explain. The
disadvantages of BASIC-E are that pro-
grams are a little harder to prepare and
debug, and more ram is required than
with a comparable interpreter. The big
advantage is that programs run faster in
BASIC-E than in most other BASIC’s.

There are a lot of other nice things about
CPM not mentioned in the article, and 1
am glad to know that Heath is joining the
“family”.

Patrick Swayne
290 Springdale
Sebastopol, CA. 95472

Since 1 purchased my H8 system last
summer, my son has taken a tremendous
interest in computer science. At the age of
10 he has a long way to go, but I am sure
the experiences with our modern
‘technology” will help him greatly in
years to come.

We were present at the Heath Group meet-
ing last year when you spoke about per-
sonal computers and the Heath system.
Because of that I purchased a system and
my son and I have been ‘learning’ ever
since . . .

My son’s success in learning and using
computer systems has affected his rela-
tionship with friends. He even has his 8
year old sister practicing her weekly spel-
ling words on the terminal.

Kevin E. Foley

Just received issue #6 of REMark, and as
always found it very informative and in-
teresting. I talked to you a couple of times
via phone concerning a problem I was
having in getting my integral data system
IP-125 printer to work with the H8. Well
as you can see, it is now working with the
H8-5 serial board. Some of your readers
may be interested. Memory location

040.367Q on all the new printer software
needs to be changed from 302 to 312. This
change lets the H8 accept an inverted
(low) instead of high clear to send signal
from the printer buffer.

Hugh R. Carrington
Amateur Radio Wb4TDY
3689 Huckleberry St.
Memphis, TN 38116

I am writing to once again make an an-
nouncement in your August 1979 issue,
of a seminar program here at Virginia
Tech. Dr. Jonathan Titus, Dr. Paul Field,
Dr. Christopher Titus and I are directing
these workshops.

WORKSHOPS: Two expanded work-
shops on 8080/8085/Z80 Microcomputer
Design, Microcomputer Interfacing,
Software Design and Digital Electronics
are being given by the editors of the popu-
lar Blacksburg books. Participants have
the option of retaining the equipment
used in these courses. Dates are Qctober 1
to 6, 1979. For more information contact
Dr. Linda Leffel, C.E.C., VPI and SU,
Blacksburg, VA 24061 (703-961-5241).

This effort on your part to bring these
programs to the attention of readers is
greatly appreciated by the Virginia
Polytechnic Institute and State Univer-
sity Extension Division and the course
directors.

The H9 screen erase works OK up to 600
baud, but is erratic at higher speeds. The
reason seems to be that the erase pulse at
these higher speeds sometimes occurs
during an extended TPU cycle, and is
gone by the time a screen refresh cycle
occurs. The cure is to increase the timing
resistor to 33 K ohms which stretches the
erase pulse to about 20 ms. If a still longer
pulse is needed. increase the size of the
capacitor. The erase command is then (as-
suming the terminal at the usual port):
OUT 250,5:PAUSE 10. This works on my
H89 to 4800 baud. My H9 refuses to run at
9600, but Idon’t care since I don't like the
blinking display above 600, so don't run
any faster.

William C. Richter
1001-140 Evelyn Ter. E.
Sunnyvale, CA. 94086

17



Thanks for your REM #5 article on
HT11/H27. It was a welcome sight. Hav-
ing received my H27 in early December
1978, 1 was aware of the existence of
CBASIC on my system disk, and having
experimented with it, was vaguely aware
of some of its advantages over BASIC.

I have enclosed a listing of the Resequ-
ence Program given as an example in
Chapter 9 of my Heath HT11 BASIC US-
ERS’ GUIDE. It has been modified to
handle ON-GOTO and ON-GOSUB
statements. 1 have also included a provi-
sion for specifying a last input line. This
eliminates the need to always renumber
to the end of a program. Anyone who has
not yet tried this program is missing out
on a powerful and versatile tool worthy of
attention.

(See Page 22)
Roland L. Penny

4505 Junction Dr.
El Paso, TX 79924

Greetings:

1. You asked for information regarding
local HUG groups:

CINCINNATI

HUG-26 (started with the impetus of store
#26) meets every second Tuesday at the
Cincinnati Heath Electronic Center. We
have a wide range of sophistication, of
interests, and of equipment, and would
like to include anyone interested in Heath
computers, whether they have their own
yet, or not. We’ll send a copy of our news-
letter “I/O PORT" to anyone who calls
Don Skiff, 351-6830.

2. You asked for feedback on the new
HUG Text Editor (I just figured our
where “BWEDIT" came from: Thank
you, Barry Watzman!

We judge it to be software that suits the
do-it-yourself inclinations of Heath users,
and we really get off on doing things with
it (how can we experiment with object
code?) — such as:

Routine GCMD (enclosed) prints, through
a parallel port or H8-5 serial port, any part
of the text buffer, exactly as it would be
displayed on the CRT. It retains CNTRL-C
and CNTRL-S, but doesn’t go through an
HDOS output buffer. In fact, it is exactly
the same as the TCMD routine, substitut-
ing the printer port for the terminal, Un-
like EDIT, it does not remove anything
from the buffer as it prints.

18

Routine HCMD is a simple “halt" or
PAUSE command that can be part of a
macro, to stop and wait for the operator to
hit RETURN — useful in printing or pag-
ing through the buffer (e.g.
“B12TH#<PH>$$"). The H-8 horn alerts
the operator, and the front panel displays
“PAUSE-ing”.

Routines XCMD and YCMD dump text to
the cassette port, and load from it. The
tape code isn't readable through TED-8 or
tape BASIC, only through this editor. But
if you need tape backup files, this is easy
to do. And this is called automatically
when the ecitor discovers “NO MORE
DISK SPACE", to give you a chance to
save your file that won't fit on disk. Later,
you can put another disk in, and transfer
the file from tape.

We're working on a justification routine
(JCMD), and place to try our hand at block

moves, and line identification, too.

So you see what a boon source code is?
Thebasicfile access and I/O routines give
you a leg up, so you can experiment with

TITLE

*

assembly language programming with-
out having to know all the complexities.
Also, programming for text manipulation
seems easier than number crunching, for
beginners. It's a good way to become
familiar with the 8080 instruction set.

Now, is there a way we can get source
code for the 1/O routines in the tape
software? We'd like to try modifying
BWEDIT to run from cassette.

And thanks for the interviews on CP/M —
they help usto evaluate, and that’s hard to
doin this field when nobody tells us any-
thing. We're aware of the problem of
proprietary software protection, but those
of us who are trying to learn to program
have a rough time adapting magazine
programs to the Heath architecture.

Cheers.

Mike Morrison
Don Skiff
HUG-26
Cincinnati, OH

'HUGED-II EDITOR WITH PRINTER ROUTINE'

*** BY MORRISON & SKIFF, CINCINNATI ***

*

*THIS VERSION HAS BEEN MODIFIED TO PRINT THROUGH I/0O PORT

*374,

USED WITH A PARALLEL INTERFACE AND SELECTRIC PRINTER.

*IT DOES NOT USE HDOS OUTPUT BUFFER, AND DOES NOT DELETE THE
*TEXT IT PRINTS; USE COMMAND "G"™ TO PRINT, EXACTLY AS "T"

*IS USED TO TYPE ON CONSOLE.
*

*IT WILL ALSO PERMIT DUMPING OF BUFFER TO CASSETTE, WITHOUT

*DISTURBING BUFFER.

THIS ROUTINE ALSO IS CALLED AUTOMATICALLY

*IN THE EVENT OF INSUFFICIENT SPACE ON OUTPUT DISK.
*TYPE "X" TO DUMP, TYPE "Y" TO LOAD
*

PORT EQU 374Q
START EQU 040000A
ABUSS EQU 040024A
DUMP EQU 002002A
LOAD EQU 001267A
ALARM EQU 002136A
$MOVE EQU 030252A
SUPCAS DB 12Q, "**
CASERR DB 12Q, "' **
$DSPMOD EQU 040007A
MFLAG EQU 040010A
PAUSE DB 255,152,144,131,
FPLEDS EQU 040013a

*
*
s d o g v o ok ok

RNC
LXI H,NSPMSG
SCALL « PRINT
MVI A,2
SCALL .CLOSE

*

;SAME AS AT:

;DUMP ROUTINE FOR PAM-8
;SEE PAM-8 PAGE 21

; TAPE FILES NOT USABLE
;BY OTHER SOFTWARE

SET UP CASSETTE **',212Q
CASSETTE ERROR **' K 212Q

164,140,123,57,32

PART OF WRITEF ROUTINE ****kkkaxkx

;DONE IF NO ERROR

; SCRERM ABOUT ERROR

;CLOSE FILE (SAVE WHAT WE CAN)
;DO IT

*SAVE THE FILE BY DUMPING TO CASSETTE
*

CALL XCMD

*

*FINAL EXIT BACK TO HDOS

;LAST CHANCE

*FIRST RESET HDOS CONSOLE TYPE BYTE
*

“#wREMark = Issue 7 = 1979



BYEBYE LDA CONVAL ;GET OLD CONSOLE VALUES

MOV B,A ;IN REG B
MVI C,10H ;SET UP TO RESTORE THOSE WHICH WE RESET
MVI A,I.CONTY i
SCALL  .CONSL ;SO WE GO BACK AS WE CAME IN
ARKARA AR A AR AR A A A A AR A AR AT A d Ak Ak h kb hhbhdhk
*kkkk*k* DART OF MAIN ROUTINE —- SEE GINIT ******x &+
LXI B, SIGNON ; PRINT SIGNON MESSAGE
LXI D, ILGMSG-SIGNON-1
CALL MESSBC
CALL GINIT ; INITIALIZE PORT
CALL GINIT ;HIT IT AGAIN
MAIN2  LXI H,OFFFFH ;ASK FOR MAX MEMORY
SCALL  .SETTP ;FIND MAX MEMORY SIZE
SHLD MAXMEM :
SCALL  .SETTP ;NOW GET IT FROM HDOS

AAARRRARK A AR KRR AR AR R RAR R AR AR A bk kA kAR Ak kh kK

*

*PRINTER OUTPUT ROUTINES - SAME AS "TYPE" COMMAND,
*EXCEPT SENDING CHARACTER TO "PORT" INSTEAD OF CONSOLE.
*RETAINS CONSOLE CONTROL THROUGH CNTRL C AND CNTRL S
*NOTE THAT PORT WAS CONFIGURED DURING 'MAIN' ROUTINE,

*RIGHT AFTER SIGNON
*
GCMD CALL SKPLIN GCHAR2 PUSH B
XCHG CALL PRTOUT ;WAS CONOUT
LHLD  TXTPTR ror B
MOV A,L LXI H,LINPOS
SUB E MOV A,C
SBB D CPI 'G'—4DII
MOV H,A JZ GCHARS
XCHG CPI OAH
JNC GCMD1 JZ GCHARS
LHLD TXTPTR CPI 'H'-40H
MOV A,D JNZ GCHAR3
CMA DCR M
MOV D,A JIMP GCHARS
MOV A,E GCHAR3 INR M
CMA GCHAR4 INR M
MOV E,A GCHARS DCR B
INX D JP GCHAR2Z2
GCMD1 MOV B,H POP H
MOV C,L POP D
MOV A,D . RET
ORA E
DeX D PRTOUT MOV A,C
JINZ GESSEC ;WAS MESSBC CPI OAH ;i IF MEWLINE, MAKE CR
RET cz CRCNV ; CONVERSION
* PRTOUT1 CALL GOUT ;DIRECT TO PORT(NO BUFFER)
GESSBC MOV H 8 B CALL CSTS H STILL NEED CONTROL
MOV L,C OR). 4
GESSHL MOV c,M Rz
INX H CALL CONIN
CALL GCHAR ;WAS PCHAR CPI 'C'-40H
CALL  BRKCHK e BREAN
MOV A,D CPI 'S'-40H
ORA E RNZ
RZ CALL CONIN
DCX D RET
JIMP GESSHL *
2 CRCNV  MVI C,0DH ;CR CHARACTER
GCHAR  PUSH D CALL GOUT ;PRINT THE CR
PUSH H MVI c,0 ; PADDING
MOV A,C CALL GouT
suU1 9 RET
JNZ GCHAR1 *
MVI c,020H GOUT IN PORT+1 ;IS PORT READY?
GCHAR1 SUI 1 ANI 1
SEB A Jz GOUT sNOT YET
MOV B,A MOV A,C ;GET CHARACTER AGAIN
LDA LINPOS ouT PORT
ANI 7 RET
CcMA *
ADI 8 GINIT MV1 A,1000Q ;RESET PORT USART
ANA B ouT PORT+1
MOV B,A MVI A,1160Q ; CONFIGURE PORT:MODE WORD
MOV A,C ouT PORT+1
SuI 0AH MVI A,005Q ; COMMAND WORD
JNZ GCHAR2 oUT PORT+1
STA LINPOS RET ;ALL SET TO PRINT

#REMark « Issue 7 +1979 19



*

*GINIT ROUTINE IS CALLED DURING INITIALIZATION OF THE EDITOR,
*TWICE, BECAUSE USART IS RESET ON POWER UP, AND RESETTING

*IT WITHOUT CONFIGURING IT THKROWS IT OUT OF SYNCH. THIS PROCESS
*ENSURES IT IS CONFIGURED WHETHER THE EDITOR IS BEING CALLED FOR
*THE FIRST TIME, OR SUBSEQUENTLY.

*

* HCMD HALTS PROCESSING, WAITS FOR 'RETURN', LIGHTS FRONT PANEL,
* SOUNDS THE HORN. IT IS CALLED BY CASSETTE LOAD/DUMP ROUTINES,
* OR CAN BE USED IN MACRO COMMANDS
*
HCMD LDA .MFLAG ; TURN OFF DISPLAY UPDATE SO THAT Kailua HI
ORI 000000108 ; "PAUSEING" CAN BE WRITTEN IN THE FPLEDS allua
STA .MFLAG
Iﬁﬁ g’gausz iWRITE FRONT-PANEL LEDS Contact Gerry Cramm at 2545a Lawrence
LXI H.FPLEDS Place Kailua HI 96734.
CALL $MOVE
CALL ALARM
HCMD1 CALL CONIN . P
CPI 10 Virginia Beach VA
JNZ HCMD1
CALL CRLE Contact [im Egerton at (804) 464-9487 or
LDA .MFLAG ; TURN DISPLAY UPDATE BACK ON 460-0997
ANI 11111101B :
STA MFLAG
RET
* v .
* ROUTINE TO DUMP ENTIRE BUFFER TO CASSETTE. TAPES ARE NOT Indianapolis IN
* COMPATIBLE WITH TED-8 OR TAPE BASIC, TXTCOM OR BASCOM.
* USE YCMD TO LOAD >>>INTO EMPTY BUFFER<<< Contact Howard at store #34 for meetings
*

times and dates.

XCMD CALL CASETE ;GO DO CASSETTE SET-UP AND PAUSE
LXI H, TXTTOP ;START OF TOP-OF-BUFFER ADDR DUMP
SHLD START Incidentally Jon Hoerbel et al visited the
LXI H, TXTTOP+1 ;END OF TOP-OF-BUFFER ADDR DUMP Heath plant in June and we enjoyed meet-
SHLD ABUSS : - :
CALL DUMP :CALL PAM-8 DUMP ROUTINE ing and ch.altm.g with the group. If you
LXI H, TXTBUF ;START OF TEXT-BUFFER DUMP plan on being in the area, please let us
SHLD START know and we will arrange for the 25¢
LHLD TXTTOP ;END OF TEXT-BUFFER DUMP tour
SHLD ABUSS ]
CALL DUMP ;CALL PAM-8 DUMP ROUTINE

XYEND  LXI H, $DSPMOD ; SET FRONT-PANEL DISPLAY MODE TO
MVI M,2 ; REGISTER READ Hialeah FL
RET

*

YCMD CALL CASETE ;GO SET-UP CASSETTE AND PAUSE The local HUG group meets the 3rd Tues-
LXI H,YCMDERR ;CASSETTE LOAD ERROR ADDR dav of eve month at 7:00 PM at the
CALL  LOAD ;CALL PAM-8 LOAD ROUTINE TWICE y o i o ! a ;
CALL LOAD Heath Electronic Center. Contact Ray for
JMP XYEND further details.

YCMDERR LXI H,CASERR ;CASSETTE ERROR MESSAGE
SCALL  .PRINT ;PRINT IT
JMP XYEND

x Buffalo NY

CASETE LXI H,SUPCAS ;SET-UP CASSETTE MESSAGE
S A crerii Contact John Hodge at 716-662-7122 for
LXI H, $DSPMOD :SET-UP FRONT-PANEL FOR the details of the Buffalo area users’ group
MVI M,0 ;MEMORY DISPLAY meetings.
RET

MEETINGS

and
CLUB NOTICES

Seattle WA

pacific Northwest HB8 owners
club. . . Contact Marty Lindal at 283-0806
or Gary Hawthorne at the Heath Elec-
tronic Center at 682-2172.

20

Corpus Christi TX

Member Peter Tewes needs some help
with his H8 system. Anyone around that
area that could give Peter a hand? Contact
him at 4445 Hannigan Dr. Corpus Christi
78413.

Milwaukee WI

Anyone interested in forming a H8 users’
group should contact Marvin Olson at
9040 N. Lake Dr. Milwaukee, W1 53217 or
phone him at 352-3346.

Danders MA

HUG Northshore meets every 2nd
Wedensday at 7 PM at the Hilltech Bldg.
at 88 Holten St. (3rd floor) Danders, MA.
01923. You can get a free copy of the
newsletter by writing Perry Miller at PO
Box 112 Danders, MA.

Detroit MI

The Metro Detroit Area Heathkit H8
Computer Users Group meets in various
places once monthly. .. contact Bob

Mathias at 313-465-0068 for details.

wREMark « Issue 7 » 1979



VECTORED FROM PAGE 13

To demonstrate how much easier it
would be to write a program in TINY
BASICthan in machine code, Figure4 isa
TINY BASIC program which performs a
simple guessing game between human
and machine. Best of all I didn't have to
hand assemble this program. I just typed
it in on my terminal, typed the RUN
command, and TINY BASIC did the rest.

The software reference manual for the ac-
cessory box contains an appendix with
several articles which demonstrate the
use of the TINY BASIC statements. Since
TINY BASICisa subset, thesearticlesalso
show alternate ways to provide for some
of the regular BASIC statements which
are not part of the subset.

As an example of an alternate method for
providing a statement found in regular
BASIC, let us look at the FOR and NEXT
statements. In regular BASIC the FOR
statement is used for executing a section
of the program a number of times. The
syntax for this statement is FOR Var-
=Exp1 TO Exp2. The Var is initialized to
the value of Exp1. The section of the pro-
gram up to the NEXT statement is exe-
cuted. When the NEXT statement is en-
countered, Var is incremented by one. If
the value of Var is not greater than the
value of Exp2, then the section of the pro-
gram is executed again. Figure 2 is aregu-
lar BASIC program that prints HELLO ten
times. Figure 3 is a program written in
TINY BASIC that does the same thing,.

la FOR I=1 TO 1G
L4 PRINT "HELLO"
Sk MEKT I

461 EHD

Figure 2

13 I=1

28 PRINT "HELLO"™

36 I=1+41

46 IF I<=1@ THEH GOTO Z6
SE END

Figure 3

REMark « Issue 7 « 1979

REM

LIAR:

STRTEMEMT

TEXT

-EEPRESZION

IHFLUT LAk

FRINT AR

GOTCO MHH

GOSUE A

RETURM

IF EXFP1 REL EXMZ THEM

DLECRIPTTAN

THE FEMOMK IS A MO

! < CUTARCLE STRTEMEWT
LISED ORL Y FOR COiM

ITORN .

THIS IMSTRUCTION NooT
CHPRCSSIOH TO O THE LNETS

- THC ALUE or THE

WOLE TC ROOD DNTR

THIZ IHZTR
/ GH UNLUES TO THE

R THE
N IAEBLLS.

TION MLLO

THC WUALUC OF THC UARIALLE 15 PRINTED O THE
CONZOLE TCORMMTHAL.

THE PROGREOM TS UNCOHGITIONGE LY TENMSTTCRED TO
THE STATEMENT HUMDCE WHEL

A SUBROUTIMT Ol IS CHCCOTCD TO STATCHMONT
NHH.

FETURM FROM £ SURROUITINE.

STHMT IF THE TEST "Exr1 RCL CX
STATEMENT ACTER TIHE “THR

2" IS TRUC. THC
¢OIL CRLCUTCD.

THIS INSTRUCTION STRRTS MREOGRNGM EXCCUTION.

THIS THSTRUCTION LISTS THC PROGROGM OM THUC
COMHSOLE TCRMIMML.

THIS IHSTRUCTION CRASES THL CURRCHT FROGRMM
FROM MEMORY.

THIZ IMSTRUCTION CXKITS TIHY BNSIC NN
RETURMZ TO THE ETr-3408 MONITOR.

THIS IMETRUCTION SAVES THE MROGREAM OH
CRESETTE TAFE.

THIS THETRUCTION RETRIEVES N PREVIOUSLY
SAUED PROGREAM FROM CRSSCTTE TAPE.

Figure 1

HIUMELCF: GRAML.

ING OF A HEX HUMBER BETWEEM @ (D F"
GUESS O THE ET-34G5 KEYVROARD"

HIGH OF LOW. THEW I WILL DISCLay"”

07 RESPECTIVCLY OM THE ET--348@E DISFLAY"
CORRECT. THEM I WILL RING “OLIE"

FRINT "CONSOLE TERMIMNAL BELL"

RLUM

LIST

CLEAR

EVE

SAVE

LOAD

@18 REM GULESS My HEX

G2E PRINT "I AM THIME
@38 PRIMT “EMTCR YOLUE
@ad PRINT "IF YO ARE
asE PRIMT “<“HI® OR "L
aoea FRINT "IF vOU ARE
ava

G2a PRINT

@98 PRIWNT "GOO00- LUCE

165
116G
1264
136
14a
156
le@
17a
126
196G
pred ]
218
228
Z22:
24
256
268
ve
286
294
e la]
Zla
32a

REM USE RHD FUNCT
A=RMDCLED

FEM LET HUIMHN GLE
E=USEC-524, 0,680
REM= RESET ET- 344
C=USEC-3360

REM IF GUEZS IS H

iF A t THEHW GOTO
C=LE) G5, @, 550
C=USRL-454, 8. 430

GOTO 13@

REM IF GUESS IS5 L
IF fA=B THEM QOTO
C=USRC-454, 8, 142
=SR-S, @, 1260
GoTO 178

REM HUMAM GULSSED
C=USR{-454, 8.4
ClUSRCO- 454,18, 380
C=lSRCFLFE . @, 7
PRIMNT

FRINT "CORRECT
GOTO S8

L
I0M TO SELECT HUMBER TO BE GUESSCD.

5. USE ET Z48@ MONMITOR ROUTINE IMCH.
a DISPLAY UIA CT-3408 MOMITOR ROUTIME RCDIS.

IGH. DISPLAY HI UIf OUTCH.
21

onl, DISPLOAY Lo uIr OouroH.
ZEk

CORRECT.

TRY AROTHER™

Figure 4

21



BASIC IDEAS

This program permits formatting of dumps from the H8 Disk Files
to a printer not having any type of forms control. It will print each
page with the file name, current date, and page number, and allows
the user to specify the number of lines desired per page.

Allan H. Moser

000
000
000
000
000
000
000
000
000
001
001
001

LISTIOUMF . BAS

10 D$=""IFOR I=8383 TO 83791:D%$=D$+CHRE (PEEK(I)) INEXT

20 PRINT * FROGRAM ‘LISTDUMF’ 11-JdAaN-79"

30 PRINT

40 PRINT "THIS ROUNTINE WILL OQUTPUT @& DISK FILE TO A PRINTER WITH"

S0 PRINT "A SELECTED NUMBER OF LINES PER FAGE. T0O SET THE NUMEBER®"

40 PRINT *0F LINES, MODIFY LINE NUMBER 150 RY SETTING Y= T THE*

70 FRINT "NUMRER OF LINES DESIRED FER FAGE. EACH FAGE WILL $SHOW THE®

80 FRINT "FILE NAME, CURRENT DATE AND FAGE NUMBER."

90 PRINT

00 FRINT "THE ROUTINE ASSUMES YOU ARE USING THE ALTERNATE TERMINAL DRIVER"
10 FRINT "AT: FOR YOUR PRINTER.®:FRINT

20 LINE INPUT "ENTER FILE FILE NAME TO BE FRINTED (DEVIFNAME.EXT) *"iF$

00130 OFEN F$¢ FOR READ AS FILE #1

00140 OFEN "AT:" FOR WRITE AS FILE #2

00150 Y=40

00160 C=1

00170 FPRINT #2yTAR(42)iF$iTARB(S0) i0$iTAR(Z0) 3 "FAGE "FCIPRINT #2,
00180 FOR X=1 TO Y

00190 J=CINC(1)

00200 IF J<=0 GOTO 270

002

00230
00240
00250
00260
Q0270
40280
00290

10
29
30
49
5@
60
70

90

100
110
120
130
140
150
169
170
188
190
208
210
220
239
240
250
260
270
280
290
300
ERY’]
320
330
349
350

22

10 LINE INFUT #1y#5%
00220 S$=CHR$(J)+5%

REM
REM

FRINT #2+5¢

NEXT X

FRINT #2y :FPRINT #2»
GOTo 170

CLOSE #2

CLOSE #1:CLOSE #2
END

khkkhkhhkhhhkhhhkkhkkhkhkhd*x DENUM.BAS **kdkhkhhhhhhhhhahhhhhkk

REM This program will renumber HT-11 BASIC program lines in a new

REM seguence. In order to use RENUM your BASIC program must be stored
REM on disk. This program will use that disk file as its source. It

REM will generate a new file on the disk (which may have a different name)
REM which will contain your renumbered BASIC program. (Note: if the same

REM file name is used for output, your original file with original numbers
REM will be replaced by the new one.) All program statements involving
REM branches, such as GOTO or GOSUB, are updated to point to the new line
REM numbers, even those outside the range of lines being renumbered.

REM

REM If the output file will have the same name as the input file, merely
REM press "RETURN"™ in response to the gquestion "NEW FILE NAME?". If either
REM the Input or Output file is located on other than the system disk,
REM include the appropriate prefix, DX#: or DX1l: (do not use guotation
REM marks in giving file names).

REM

REM If a "@" is entered for the LAST INPUT LINE then the end of the

REM program is assumed. If a "0" is entered for the FIRST INPUT LINE,
REM then the beginning of the program is assumed. If a "@" is entered
REM for the INTERVAL SIZE, then an interval size of "10" is assumed.

REM If "8" is entered for FIRST OUTPUT LINE, then "1@" is assumed.

REM

DIM L(500),M(500),K$(2)

READ D

DATA 508

READ K$ (@) ,K$(1) ,KS$(2)

DATA 'GO TO ', 'THEN ', 'GOSUB '

PRINT 'RESEQUENCE'

PRINT 'OLD FILE NAME:';

INPUT P$

PRINT 'NEW FILE NAME:';

INPUT Q$

PRINT 'FIRST INPUT LINE:';\INPUT LO

SREMark = Issue 7 « 1979



360 PRINT 'LAST INPUT LINE:';\INPUT L3 758 C1=POS (L$,K$(J),C1)

370 PRINT 'FIRST OUTPUT LINE:';\INPUT L1 760 IF Cl=@ THEN 9600

380 PRINT 'INTERVAL SIZE:';\INPUT Il 770 Cl=C1+LEN(K$(J))

399 IF L3<>0 THEN 400 \L3=65532 780 C2=pOS(LS,' ',Cl)-1
406 IF Q$<>'' THEN 418 \Q$=P$ 798 E=POS(L$,'\',Cl)

410 P$=P$&'.BAS" 800 IF E<>® THEN 818 \E=256
428 Q5=QS%&"'.BAS' 819 Ql=pOS(LS$,"'",Cl)

430 IF L@<>P THEN 440 \L@=1 828 Q2=POS(L§,"'""',Cl)

440 IF L1<>0 THEN 458 \L1=18 830 IF C2<>0 THEN B840 \C2=E-1
450 IF I1<>@ THEN 460 \I11=10 840 IF (E-Ql)*Ql>@ THEN 758
460 OPEN PS AS FILE #1 850 IF (E-Q2)*Q2>0 THEN 750
470 C=-1 860 GOSUB 958

480 IF END #1 THEN 680 B70 IF SEGS$(L$,C2+2,C2+42)<>',"' THEN 758
499 INPUT #1:LS$ B8P Cl=C2+3

500 L2=L2+1 899 GO TO 780

518 T=POS(LS,' ',1) 900 NEXT J

520 S$=SEGS$(LS$,1,T-1) 910 PRINT #2:LS

538 S=VAL(SS) 928 PRINT LS

540 IF S<L@ THEN 480 930 NEXT I

550 IF S>L3 THEN 480 940 PRINT '--->DONE<---'\END
560 C=C+1 95@ S$=SEGS$ (L$,C1,C2)

570 IF C>D THEN 1070 960 S=VAL(S$)

580 L(C)=S 979 IF S>=L@ THEN 980 \RETURN
590 GO TO 480 980 FOR K=8 TO C

60@ S=INT(L1) 999 IF L(K)=S THEN 1020

610 FOR I=9 TO C 1000 NEXT K

620 M(I)=S 1@81@ RETURN

630 IF $>65530 THEN 1080 1020 L1$=SEG$(LS$,1,Cl-1)
640 S=S+I1 1630 L3$=SEGS(L$,C2+1,256)
650 NEXT I 1040 L2$=STR$ (M(K))

660 RESTORE #1 1050 LS=L1S&aL2S&L3$S

670 OPEN Q$ FOR OUTPUT AS FILE #2 1062 RETURN

688 FOR I=1 TC L2 1079 PRINT 'TOO MANY LINES'\STOP
690 INPUT #1:L$ 1880 PRINT 'LINE NO. TOQ BIG'\STOP
706 C2=POS(LS$,' ',1)-1 1890 END

719 Cl=1

720 GOSUB 9589 Roland L. Penny

7380 FOR J=0 TO 2 4504 Junction Drive

740 Cl=1 El Paso, Texas 79924

00010 REM BASIC FROGRAM TO ILLUSTRATE POKING COMMANDS TNTO

00020 REM THE HOOS TYPE AHEAD T 2

00030 REM IF USED AS A SUBRODUTIME ENTER AT LINE 130 WITH 4%

00040 REM CONTAINING THE COMMAMD(S) TO RE PORKED INTO THE

00050 REM BUFFER. EACH COMMAND MUST BE TERMINATED WITH A

00060 REM CHR$C10) MEW LINE CHARACTER .  ALSH TERMIMATE THE

00070 REM FOUTINE WITH & "RETURN® STATEMENT .

00080 REM RUNNING THE FPROCRAM BELOW CAUSES IT TO

00090 REM CONTINUALLY LIGT CLE AND THEM RUNM ITSELF .

00100 REM VARTABLES WSED & Ty ZTle E2e ZFe 24y Z% AND ¥,

00110 ME="LIST " +CHRSGCLO)H"RUN $THESC L0

00120 RKEM Z=ADDRESS OF START OF HDOS

Q0130 Z=FPEEK(8400)+25 6% (PEEK(B401L))

00140 REM Z1=ANDRESS OF LINE COUNTER

00150 Z1=Z+2025

00160 KEM Z2=ADDRESS OF FOINTER TO LOW BYTE OF Tall OF QUEDE

00170 Z2=Z+2029

00180 REM ZEA=ANDRESS 0F FOINTER 70O LOW BYTE OF HEAD OF QUEUE

00190 Z3=Z+203%1

00200 REM Z4=ADDRESS OF POINTER T LOWM BYTE OF START OF RUFFER

00210 Z4=Z2+2033

00220 REM ZE=ADDRESS OF POINTER TO END OF RUFFER+L

00230 Z5=Z4+2035

00240 REM MAKE SURE M% 1S TERMINATED BY A NEW LINE CHARACTER.

00250 REM IF M$ CONTAINS SEUVERAL SEFERATE COMMANDS IT IS THE

00240 REM RESFONSIEILITY OF THE FROSRAM PASSING M$ TQ THIS

Q0270 REM ROUTINE TO SEE THAT EACH I8 TERMINATED BY A MEW LINE.

Q0280 IF RIGHTS(M$s1)<>0HRSCI0) THEN Me=M1ELCHRECLO)

Q0290 REM HERE ‘S WHERE THE STRING 16 PFUT INTO THE QUEUE

00300 FOR X=1 TO LEN(M$)

00310 REM STORE CHARACTER IN QUEUE

00320 POKE (FEEK(Z2) 256K (PEERCZ241) ) ) v (ASCOMILE (MG =Xy 102

00330 REM IF CHARACTER 18 A NEW LINE CHARACTER INCREMENT LINE COUNTER
00340 If MIDG(M$sXs1)=CHR$(10) THEN FOKE Zis(PEEK(Z1141)

QOIS0 REM INCREMENT TAIL FOTNTER,IF THIS CAUSES IT TO POINT PAST THE
00360 REM END OF THE BUFFER MAKE 1T FOINY TQ THE HEAD OF THE BUFFER
00370 FOKE Z2s (PEEK(Z2)41)

00380 IF PEEK(Z2)=FEEK(Z5) THEN FOKE Z2,PEEK(Z4)

00390 REM CHECK IF QUEUE IS FULL

00400 IF PEEK(Z2)=PEEK(Z3) THEN FRINT "QUEUE FULL!":END

00410 REM GET NEXT CHARACTER

00420 NEXT X

00430 REM AlLL DONE

00440 END

SREMark « Issue 7 « 1979



The BASIC IDEA by Sam Cox seems to be one of the better ideas
HUG has published. I find myself referring to it whenever a
BASIC problem develops.

One of the most useful ideas is the money formatter routine, It
does, however, have one drawback and that is that values above
9,999.99 revert to engineering notation.

An easier and shorter method is one adapted from an article by
Dr. Marc I Leavy in the June issue of KILOBAUD/MICRO-
COMPUTING starting on Page 54.

The following is a listing of the process used to generate right
justified columns of figures:

1000 REM A= ENTRY A$=EXIT

1010 A1= —(INT(A)—A)

1020 A$= STR$(A1)

1030 IF A1<.10 THEN A$= “0.10"

1040 IF LEN(A$)= 4 THEN 1070

1050 IF LEN(A$)> 4 THEN A$= LEFT$(A$,4)

1060 IF LEN(A$)< 4 THEN A$= A$+0"

1070 A$= RIGHT$(A$,3)

1080 A$= STR$(INT(A))+A$

1090 PRINT“RIGHT JUSTIFIED NUMBER';TAB(40-
LEN(A$));A$

Line 1030 sets the minimum for A1. In other words, all dollar
values below 10¢.

The above method will allow dollar values up to 99,999.99
before reverting to engineering notation. If a leading dollar sign
is required change line 1090 to the following:

1090 PRINT “RIGHT JUSTIFIED NUMBER';TAB(33)"'$"";
TAB(40-LEN(A$);A$

The TAB values determine where the first digit of the $ or
number is to be printed therefore they can be set to any practical
value between 1 and 70.

Lines 1000 through 1080 can be used as a sub-routine while line
1090 would be a RETURN. The print out is still accomplished by
the information contained in the listing (line 1090).

Keep up the good work.

Larry T. Wier
1068 149P1. S.E.
Bellevue, WA 98007

Here is something that may be of interest to other HUG members.
In REMark Issue 3 (Page 17) there is a description of how to use
GET and PUT under program control by using a series of POKE's
to set up command mode instructions. The following routine
will simplify this process:

1000 FOR Q = 1 TO LEN(Q$)

1010 Q1% = MID$(Q$,Q.1)

1020 IF Q1% = “\" THEN Q1 = 13: GOTO 1050
1030 IF Q1$ = “+'' THEN Q1 = 34: GOTO 1050
1040 Q1 = ASC(Q1$)

1050 POKE 8301 + Q, Q1

1060 NEXT Q

1070 POKE 8301, LEN(Q$)

1080 RETURN

24

To use the routine, let Q% = the string of instructions we wish to
execute in command mode. **\"" will generate a carriage return
and “+" will generate a double quote. For example, to simulate
the GET routine on Page 17 (lines 65000-65060) we merely
write:

Q$="UN\GEZ$\ YCON\":GOSUB 1000:STOP

Now that there is a simple way to force the computer into
command mode, there are some other interesting things that can
be done. While in command mode we can add or delete program
lines. That is, a BASIC program can be self-modifying. Here are
two useful applications.

(1) One of the problems in using GET is that all program vari-
ables in use before using GET are lost; i.e. set to zero or loaded
with some other value from tape. Suppose we wish to retain a
variable “X"' so it will have the same value after GET as it had
before. We place in the beginning of the program a dummy line:
100X = 0. Now, when we wish to GET a new record from tape we
write:

Q$="100 X=" + STR$(X) + "“\UN\GETT\YCON\":GOSUB
1000:STOP

When the preceding line is executed, command mode is en-
tered, line 100 is replaced with a line saying “X = whatever-
the-current-value-of-X-is", and GET is executed. After CON-
TINUE the program jumps to the start of the program, line 100 is
executed, and X will be set back to its previous value.

(2) The second application concerns a common problem in
many BASIC programs. Most programs have some initializing
routine, commonly in the form of a series of user instructions
that must be printed out at the start of the program. On a large
program with limited memory, one must make a trade-off be-
tween giving adequate instructions and leaving enough mem-
ory to execute the program. Here is a simple solution:

Suppose lines 10 through 90 are a series of print instructions to
be executed one time at the start of the program. For line 100 we
write the following:

Q$="DEL10,100\RU\":GOSUB 1000:STOP

When the preceding line is executed, command mode is en-
tered, lines 10 through 100 are deleted and the program is
immediately reRUN, this time with both the print instructions
and the delete instructions missing. One could of course also
delete subroutine 1000-1080 or any REMarks.

There are unlimited possibilities of self-modifying programs.
One must only keep in mind that if program lines are tobe added
or deleted which precede the instruction STOP (causing the
command mode to be entered), then one must use RUN rather
than CONTINUE as the final command mode instruction.
Otherwise the BASIC interpreter will try to continue at an in-
valid address, the program statements having been shifted in
memory. However, after GET, the program will jump to the first
program instruction in any case and CONTINUE must be used to
retain the variables just loaded from tape.

Paul Doudna

seREMark « Issue 7 « 1979



There is frequent need to pull data out of any array in random
sequence, particularly for games. This method random “cuts”
any even numbered array, S$(F), of F *“cards” at C, finds the
midpoint, M, to form two equal ‘‘stacks”, and one-on-one ‘rif-
fles” the “‘stacks’’ together, arithmetically. It then repeats the
whole performance, resulting in a computed ‘‘random two-riffle
shuffle”’, without actually moving the data.

Before the game starts, provide for the variables:

50 DIM S$(F),C(2).M(2):FOR A=1TO F:READ S$(A):NEXT A

60 C=RND(-PEEK(8219)):REM — SEED FROM TICCNT

70 FOR A=1TO 2:C(A)=INT(F*RND(1))+1:REM ~ RANDOM
CUTS

80 M(A)=C(A)+F/2:IF M(A)>F THEN M(A)=M(A)-F:REM -
MIDPOINTS

90 NEXT A

During the game, start each turn, S, (counted up or down,) by
calling this subroutine:

300 D=S:FOR A=1TO 2
310 IF INT(D/2)=D/2THEN E=2:C=M(A):GOTO 330:REM -
FOR EVEN TURNS

320 E=1:C=C(A):REM — FOR ODD TURNS

330 FOR B=E TO D STEP 2:C=C+:IF C>F THEN C=1:REM —
RIFFLE

340 NEXT B:D=C:NEXT A:RETURN :REM — D IS THE DRAW

The playeratturn S will “‘draw card D", S$(D), just as though the
data had been literally cut, shuffled and dealt.

If you want to see how effectively this shuffler will work on the
alphabet, add these lines to the above and watch it:

10 CLEAR :F=26:FOR X=1TO 8:IF X>1GOTO 70

200 FOR $=1TO F;GOSUB 300:PRINT S$(D);:NEXT S

210 PRINT * C1 =",C(1);” M1 =";}M(1);" C2 ="/C(2);" M2
=+M(2)

220 NEXT X:END

500 DATA “A”,“B",“C",“D",“E" “F"","G",

510 DATA “H",“T","J" “K" “L",“M",“N"",

B2 DATA O B QRS R,

580 DATA VS WY R, Y o

Jim Tennant

MODIFICATION FOR BOOTUF PROGRAM
CAUSES BASIC TO BE LDADED UFON COMPLETION
OF BOOTSTRAF FROGRAM (CHAIN),

#CHUCK SADOIAN
#FPO0 BOX 112
i ALIF

i73618

CHANGES TO BOOTUFP.S5YS!

1660 167 iFATCH TO ADDED PROGRAMMING
1662 13474
42467 30440 i CHANGE VERSION NUMEER

10070 30440 #CHANGE VERSION NUMEBER

ADDED PROGRAMMING!:

15360 1002 JBNE 15364 (COMPLETE DISPLACED INSTRUCTIONS)
15362 167 __ #JMP 1664 (RETURN TO FROGRAM_IF ERROR)
15364 164276

15366 12700 #THIS ROUTINE TRANSFERS THE FILE NAME
15370 500 _ . _i"SY BASIC SAV' TO THE CHAIN AREAs

15372 12720 iLOCATIONS 500-507

15374 75250 iNOTE: FILE NAME IN RADS0 FORM

15376 12720 _ _175250="SY * - —

15400 6273 i6273="BAS"

15402 12720

15404 34270 . 334270="IC *

15406 12720

15410 73376 i73376="5AV"

_15412 12700 . __¥SET UP EMT CODE FOR_.CHAIN _ s .
15414 4000 FEMT CODE FOR .CHAIN IS 4000, CHAN #0
15416 104374 i +CHAIN TO BASIC

15420 END _OF ADDED FROGRAMMING _

THE BEST WAY TO MODIFY THE BOOT PROGRAM IS TO BRING THE FILE INTO
_MEHORY WITH A *GET® COMMAND: MODIFY THE FROGRAM USING ODT,
AND THEN SAVE (HE PROGRAM USING THE FOLLOWING:

SAV SY:BOOTUF.SYS 1000-15420

ALSOy IT IS NECESSARY TO CHANGE WORD #44 IN THE BASIC FPROGRAM

YOU ARE _CHAINING TO. THIS IS EASILY ACCOMFPLISHED BY USING THE
FATCH PROGRAM. CHANGE #44 TO 400. THIS WILL SET BIT 48

OF THE JOB STATUS WORD TO INDICATE TO THE MONITOR THAT THIS PROGRAM
_HAS BEEN CHAINED TO. THIS WILL ASSURE LOCATIONS S500-776 ARE
FROFPERLY LOADED. THIS IS NECESSARY BECAUSE BASIC USES

LOCATIONS BELOW THE NORMAL STARTING ADDRESS OF 1000(8).

SrREMark « Issue 7 = 1979

25



ULTIMATE NAME INPUTTER

By James A. Tennant
Ketchikan, AK

Inputting names for CAI programs and games is easy if you ‘line
input’ them seperately, but I have found that many newcomers,
particularly children, resent this formality and lose their spon-

tanei

ty. (They are demeaned by being systematically introduced

to a machine). This inputting routine is lengthy, but it is worth
using when you want to minimize inhibitions and instill confi-
dence.

sg C
6¢ P
7¢ L
8¢ P
9g P
148
119
128
139
149
154
164
17¢
188
199
284
214
224
23g
249
254
268
278
289
299
349
319
328
338
34¢
359
368
asg
3og
498
414
424
43¢
444
458
468
478

1754
1769
177¢

1788

1799

18dg
181¢
1829
1838
1844
185¢ PRINT :PRINT

26

ULTIMATE NAME INPUTTER

BY JAMES

LEAR :DIM P$(8),NS$(8)
RINT :PRINT :PRINT "ARE YOQU READY TO BEGIN";
INE INPUT "? ";QS:IF LEFTS(Q$,1)<>"Y"THEN END
RINT
RINT "PLOCASE TELL ME WHO YOU ARE. (YOU MAY ENTER UP
LINE INPUT "? ";N$:IF ASC(LEFTS (N$,1))<65G0TO 1f§
PRINT :Z=@:L=f:W=§:FOR E=1TO LEN(N$)+1l
IF ASC(MIDS (N$,E,1))>9¢ OR ASC(MIDS(NS,E,Ll))<65 GOTO
L=L+1:IF L=1THEN K=E
GoTo 31f
IF L=gcoTo 31¢
IF MIDS (N$,K,L)="AND"GOTO 3#g
Z=Z+1:IF Z>BTHEN PRINT "TOO MANY NAMES!
PS$(Z)=MID$ (N$,K,L) :IF LEN(PS$(2))<9G0T0 34¢
PRINT "SORRY,
A=A+1:LINE INPUT
FOR D=1TO LEN(AS$)
IF ASC(MIDS (AS,D,L1))>980OR ASC (MIDS (A$,D,1))<65GOTO 254
NEXT D
IF D<1gcoTO 298
IF A=3GOTO 274
PRINT "USE ONLY LETTERS - NO MOREC THAN EIGHT,
IF Z>LTHEN Z=2Z-1:PRINT :GOTO 3¢#
PRINT "I HAVE NO TIME FOR FOOLISHNESS,":STOP
PRINT "OK,
L=g
NEXT E
IF Z=1THEN N$(1l)=P$(1):G0TO 474
PRINT "DO WE AGRCE THAT THERE ARE";Z;
LINE INPUT "OF YOU? ";AS
IF LEFTS (AS,1)<>"Y"THEN PRINT "THEN, ";:GOTO 9¢
FOR C=1TO Z
FOR A=1TO 2
N$=P5 (M)
FOR B=1TO 2
IF N$>P$ (B) THEN NEXT A
NEXT B
NS (C)=N$:P$(A)="[":NEXT C
N$=N$ (1) : IF Z=2GOTO 468
FOR G=2TO Z-1:N$=NS$+", "+NS(G) :NEXT G
N$=NS+" AND "+N$ (Z) :PRINT
P5=N5 (1) :0=2
PRINT :PRINT :PRINT "ALRIGHT, ":;P$;:IF 0=1GOTO 179%¢
PRINT MIDS (N$,LEN(P$)+1,LEN (N$)-LEN (NS (0))-4-LEN(PS));
IF LEN(N$)>4@THEN PRINT
PRINT TAB(S5)RIGHTS (N$,LEN (NS (D)) +4);
PRINT ", LET'S GET STARTED!"

"WHAT SHORTER NAME DO YOU USE? ";AS$

REM - FOLLOWING LINES ADDED FOR DEMONSTRATION, ONLY
PRINT :D=g:FOR A=1TO 2

PRINT TAB(B)"N$ (";MID$ (STRS(A),2,1);")
p=B+24:IF B=8FTHEN PRINT :B=§

NEXT A:IF INT(Z/4)<>Z/4THEN PRINT

"N§ = ";NS:PAUSE 3@#f:GOTO 6§

"3NS(A);

JAT

Here is what you get for your fifty lines:

no required entry format (allowing ‘ands’)
eight-name limit

individual re-entry prompts for overlength names
auto-dropout of three-time entry ‘goof-offs’
alphabetized, discretely stored names

a recallable ‘comma, comma, and’ name string

N

If you want to see the results of the organizer, add the last six
lines for a printout and try it.

A. TENNANT

TO LIGHT MAMES.)"

158

ONCE AGAIN, ":GOTO 9¢

";PS$(Z);" BUT YOUR NAMC IS TOO LONG.":h=@

NOW," :GOTO 20¢

";P$(2);", I'LL CALL YOU ";A$;".":P$(Z2)=AS:PRINT

arREMark « Issue 7 « 1979



H17 TRACK SECTOR ACCESS

B. Watzman

From time to time there have been in-
quiries as to how to access a diskette at the
track/sector level. However, there are no
entry points in the H17 ROM [public or
otherwise) that allow this unless the disk-
ette is a valid HDOS diskette and the vol-
ume number is known in advance. One of
the features designed into the H17 is that
the address of every major routine in the
ROM is stored in a jump table in RAM at
040130 and all inter-routine calls and
jumps are via this jump table rather than
directly. This makes possible selective
modification of the H17 ROM, which, in
turn, will permit track/sector access. The
only problem is that any attempt to return
to HDOS without a cold boot may result in
damage to currently mounted diskettes!
With that precaution in mind, let’s look at
a procedure for track/sector access of the
H17 system.

The normal read routine (R.READ) is cal-
led via a jump at 040147 however, it is
expecting a block number.. A volume
number and certain other file parameters
and will not run correctly where a file is
not being accessed. To correct for this
situation, patch the jump table so that the
Seek Track Routine is called by the read
routine instead of the decode track/sector
(from block) routine. Specifically:

LXI H,R.SDT
SHLD R.DTS+1

Where R.SDT = 040166 and R.DTS =
040163. Then store the desired track
(0-39) at R.TT and the desired sector (0-9)
at R.TS. Next we have to keep the H17
ROM from getting upset because he
doesn’'t know the volume number (part of
the sector header) in advance. This can be
accomplished by replacing the Locate
Proper Sector routine with a similar
routine which dosen't bother to check for
the volume ID. Specifically:

LXI H,OURLPS
SHLD R.LPS+1

Where R.LPS = 040177

JREMark « Issue 7 « 1979

SEEK DESIRED TRACK

THIS SECTOR
WAIT SYNC CHARACTER

OF RETRYS FOR R.LFS

TITLE ‘TRACK SECTOR ACCESS ROUTINE -

R.ERRT EGQU 0402324 + ERROR HANDLER
R.STZ EQU 0042134 i SEEK TRACK ZERD
R.SOT EQU 0401466A i
R.TT EQU 040240A i TRACK
R.TS EQU 040241A i SECTOR
R.STS EQU 0402104 } SKIP
R+WSC EQU 0402214 i
R+RDE EQU 0402024 i READ DATA BYTE
R.LFSA EQU 040116A + NUMBER

0402444 i

R.DLYHS EQU
*

* REPLACEMENT FOR R.LPS - LOCATE FPROLFER
*

HEAD SETTLE TIME DELAY

SECTOR ROUTINE

% ESSENTIALLY THE SAME ROUTINE THAT IS IN HDOS BUT DOESN’T CHECK

* VOLUME ID AT ALL.
x

LPSO CALL R.STS i SKIF THIS SECTOR
OURLFS LDA R.LFSA i (A) - & OF TRYS FOR THIS SECTOR
MOV ErA
LDaA R.DLYHS
ANA A
JINZ LFSO i WAIT FOR HEAD TD SETTLE
*
LF51 DI # DISABLE INTERUFTS
CcALL R.WSC i WAIT SYNC CHARACTER
Jc LFS3 i NONE
CALL R.RDE i READ VOLUME 1D
LXI HsR.TT
CALL R.RDE
CHP M i SEE IF FPROFER TRACK
JINZ LFSS i WRONG TRACK
INX H
cALL R.RDB i READ DATA BYTE
CHF M
JNZ LPS2 i WRONG SECTOR
*
% GOT RIGHT SECTOR. READ CHECKSUM
*
MOy HeD
CALL R.ROE
CMF H
RZ i ALL OK
MVI Ls270Q 7 HEADER CHECKSUM ERROR CODE
LFS1.,5 HMVI Hr400Q #+ (HL) = ERROR BYTE ADDRESS
CALL R.ERRT FGET ERROR HANDLER
x
* WRONG SECTOR OR BAD DATA. TRY AGAIN
*
LFS2 caLL R.ETS # SKIF THIS SECTOR
DCR B
JINZ LFS1 i TRY AGAIN
STC i ENOUGH TRYS
RET i GET OUT
*
LFS3 HUI L»2660 # HEADER SYNC ERROR
JHFP LPS1.5
*
X NOT ON RIGHT TRACK
b
LPSS EI
CaLL R.STZ # FIND TRACK ZERO
CALL R.SOT # NOW FIND DESIRED TRACK
HUI L2720 i BAD TRACK NUMBER
JMFP LPS1.5 i RECORD ERROR AND RETRY OFERATION
END OURLFS

To select the desired drive; store binary 0
or 1 at AIO.UNI (041.061). Note that this
must be updated before every read or
write since the code does not ‘remember’
the last drive selected.

We can now do a read by calling R.READ
at 040.147 with the number of consecu-
tive sectors to be read in REG (B) ... (C)
must be 0! And the memory buffer ad-

dress in (DE). A carry flag set on return
indicates an error.

To perform a write; call R WRITE at
040.155 with the sameregister usage. The
dangers inherent in tinkering with the
disk system cannot be underestimated,
however this information is necessary at
times.

EOF

27



EC.FNF
EC.VFM

$HOVE
FIND

DIRO

DIR1

DIR2

DIR3

DIR4

DIR4.5

x
ERROR

b
DIRS

EXIT

CNTRL.C

CNTA
DIRC
DIRD
DIRE
DIRF

28

TITLE
XTEXT
XTEXT
EQU
EQU
ORG
EQU
EQU
XRA
SCALL
JC
MVI
SCALL
JC
MVI
SCALL
MVI
LXI
SCALL
LXI
DAD

MOV
INX
CPI
JZ

CPI

DCX
PUSH
MOV
CPI
Jz

INX
ANA
JNZ
JHP

FOF
PUSH

LXI
LXI
XCHG
CALL
LXI
SCALL
JNC
CFP1
JNZ
JHP
LXI
SCALL

LXI
SCALL
SCALL

SCALL
LXI
SCALL
Jc
EQU
FOP
PUSH
LXI
MVI
SCALL
JNC
CPI
Jz

MVI
SCALL
JHP

POP
HVI
ScALL

SCALL
XRA
SCALL
LXI
SCALL
LXI
SCALL
JMP

DB
DB
DB
DB

END

‘FIND FILE NAME
ASCII
HOSLDEF
140
410
422004
302524
*

A
+LOADO
ERROR
Arl
+LOADD
ERROR
Ar=1
+CLEAR
AsCTLC
HsCNTRL.C
«CTLC
Hr0

SP

ArM
H

’ +
DIRO
TAB
DIRO
H

H
ArM

DIR2

H
A
DIR1
DIR3

H
H

Be3
DsDIRC

$MOVE

H»DIRC
+HONMS
DIR4.5
EC.VPH
ERROR

DIR4.5
HsDIRC
« DMNMS
ERROR
HsDIRF
+PRINT
+SCIN
DIR4

+CLRCO
H:BIRC
+MONMS
ERROR

Arl
+CLEAR
HsDIRE
+PRINT
A
JEXIT
HsCNTA
+FRINT
H:DIRC
+ MONMS
EXIT

‘Tre’Cf42000
‘SY0L 0
“SY0 2 0r0+0

-

-

- W

-

REGARDLESS OF WHICH DISKETTE IT’S ON’

MAKE SURE WE GET OVERLAY 0

NOWr GET THE OTHER OVERLAY
NO USE

CLOSE THE
PROCESS ~C

+LINK CHANNEL

MUST PLACE THE FILE NAME ON THE COMMAND LINE

SEE IF SPACE
IT WAS

IS IT A TAB
NO GOOD

GOT CHARACTER
SEE IF HE SPECIFIED A DEVICE (MUST DO!)
HE DID GOOD.

NOT TO END OF LINE YET
OK

TRY MOUNTING A DISK ANYWAY. MIGHT BE EMPTY
BUT DON’ SAY ANYTHING ABOUT IT

0K

WE DO HAVE A DISK IN THE HOLE
FIND FILE

GET ANOTHER DISKETTE

i ASK USER FOR ANOTHER DISK

-

WAIT FOR HIM TO RESPOND

GET ON DISK.. BUT DON’T SAY ANYTHING

FILE NOT FOUND

LET HDOS LOOK UP ERROR MESSAGE

FOUND IT! TELL ABOUT IT

JOB DONE.

NL»BELL»"FILE FOUND’ rENL

NL+BELL» "CAN’“T FIND IT HERE..

FIND

This program will work only with VER 1.5
of HDOS —

New SYScalls that should be added to
your HDOS.ACM file are:

.LOADO = 11Q
MOUNT = 200Q
.DMOUNT = 201Q
NOMNS = 202Q
.DMNMS = 203Q
.OVLO =0

.OVL1 =1

DO NOT interchange VER 1 and VER 1.5
system files, PIP and SYSCMD.SYS!

:JB:

GIMME ANOTHER DISKETTE’.’:’+200Q

4rREMark « Issue 7 « 1979




+TITLE FORMAT — INIT H27 DISKETTES TO IEM 3740 FORMAT
¥ FORMAT uses the formatting carability of the H27 to initialize
¥ a diskette in DRIVE # 1 to the IEM 3740 format

+SBTTL Frodram rarameters

+ENABLE LC

.enabl ama

«nlist TTMsBEX

+MCALL JREGDEFs».PRINTs».TTYIN

+MCALL JEXITr.. V2.,

+REGDEF

P2

F#ASCII Characters

JTTYIN

LF = 12
Cr = 15
¥ H27 Commands
FC.HOS = 11 # HOS Escare
FC.DV1 = 20 i Drive 1 select
HF .FMT = 140 i FORMAT
#F H 27 Status PBRits
FS.DON = 40 # Done Bit
FS.TR = 200 # Data Transfer Bit
i H 27 Redisters
RXCS = 177170 # Command and Status
RXDB = 177172 # Data (in and out)
+Page
+Sbttl Main
i Frogram begins execution at FC = 1000 when assembled
# using HT 11, Thus: the label ‘FORMAT’ is at location
¥ 1000 Octal
FORMAT: +PRINT #FMTA i Print instruction Messasde
JSR FCr INFUT i Get Resronse
BITE #CRsR1 i Was it a Carriage Return 7
BEQ FMT4 ¥ No.
MoV $FC.HOS+FC.DV1 ,@4RXCS # Drive ‘1’ HDS Command
FMT1: RITR #FS. TR, @#RXCS # Wait for TR
BEQ FHMT1 i If no TR wet
MOVE #HF .FMT»@#RXDB # Format Command
FMT2: BITE #FS.DON,@#RXCS # Wait for Done ERit
BEQ FHTZ2 i If no DONE bit
+PRINT #FMTB
JSR FCr INFUT i Get resronse
CMFB #'YeR1 i Was it Yes?
BNE FMT3 i If no
BR FORMAT # Elses do again
FMT3: +EXIT i Return to monitor
FMT4: +PRINT #FNTC i Print INPUT error messade
BR FORMAT i Tru adain
FHTA? +ASCII <CR><LF>/This routine will only format a diskette inserted/
+ASCII <CR><LF>/in Drive 1/
+ASCIT1 <CR><LF><LF>
+ASCII <CR><LF>
+ASCII 7/ 1) Insert disk with write enable tab into/
+ASCII <CR><LF>/ drive ‘1° and close the door./<CR><LF>
+ASCII <LF>/ 2) Set the H27 ‘FORMAT’ switch to DRIVE 1/<CR><LF>
+ASCII <CR><LF>/ 3) Hit ‘RETurn’/
+BYTE 200
FMTB: +ASCII <CR>»<LF>/ 00 YOU WISH TO FORMAT ANOTHER DISKETTE?- - > /
+BYTE 200
FMTC: +vASCIZ <CR><LF>/ INVALID ENTRY+ss Try adain!/
+EVEN
+FAGE
«SETTL Input Character
r
i
INPUT: TTYIN R1 # Save first character in R1
is: STTYIN # Gobble ur rest of characters!
CHPE $LFsRO # Did last character = LF
BNE 1% # No det new
RTS PC
+END FORMAT

Y-REMark « Issue 7 = 1979

NOTE: When I finished assembly of this
program, naturally, Iwanted to try it.
Right? It cost me about half of the manus-
cript for this magazine plus the program
itself. Enough said? :JB:

29



SOFTWARE CONTROL FOR 5 LEVEL PRINTERS

By: Adam L. Keller, W9EF
354 Southwood Drive
Michigan City, IN 46360

Using Heath Extended BASIC ‘USR’ func-
tion with the software/hardware package
described by Howard L. Nurse in June,
1978 issue of KILOBAUD magazine.

About a year ago, I was intrigued by the
article in the June, 1978 issue of
KILOBAUD magazine by Howard Nurse,
describing his use of a 5 level baudot TTY
machine with the H8 Heath Computer via
an H8-2 PIO board and external UART. In
fact, I was intrigued enough to purchase a
model 28 ro printer and H8-2 PIO board
and try the set-up for myself. I found that
the printer would produce excellent re-
sults, but that the use of the printer all the
time slowed down the whole system to
110 baud. When writing programs, this
speed was just not fast enough, and when
executing programs the printer was not
needed all of the time. The following
short article will describe the use of the
basis ‘USR' function to control the
printer. The function can be used in either
‘program’ or ‘command’ mode, so can be
used at will during the writing or execu-
tion of programs.

The following software changes will
permit the ‘USR’ function to turn on the
printer (if it was off), or to turn off the
printer (if it was on). Each time the ‘USR’
function is called, the printer will reverse
states. It can be called as any valid ‘USR’
function, such as ‘LET A (E) USR (A)’, or
‘PRINT USR (A)’, or any other ‘USR’ use.

The following software changes need to
be made, in conjunction with Mr. Nurse's
article:

1. Make the changes as described in Mr.
Nurse's Table #3.

2. In the Heath ‘BASIC’' manual, under
“Entry Points to Utility Routines
(Appendix D) find the address for the
routine called ‘USRFCN’. In version
10.02.01, this address is 106.106. In
version 10.01.01, it is 103.163. Other
versions will have different addres-
ses, determine from your software
manual what yours is.

In Mr. Nurse's Table #4, add the fol-
lowing memory changes to his 5
changes;

30

At ‘USRFCN’ (106.106 for 10.02.01)
enter 320 at 'USRFCN’ (+) 1(106.107)
enter 136

These two bytes make up the begin-
ning address of the software routine
described in Figure 1. If you put the
Figure 1 routine as a diffenent loca-
tion, enter that address at ‘USRFCN’
and ‘USRFCN'’ (+) 1, lo byte first. The
Figure 1 routine should be entered in
memory just above Mr. Nurse's driver
program, wherever you decide to put
that.

Enter the Figure 1 program in mem-
ory just above Mr, Nurse's driver
routine. Using 16K of RAM, Iused the
memory space starting at 136.320,
where his driver ends at 136.314.

Make a dump of the memory from the
beginning of Mr. Nurse’'s AS-
ClI/Baudot driver, to the end of the
program entered in (3.) above. I
dumped this memory block on tape
immediately following my config-

tem running with a minimum of ef-
fort.

Now, when the ‘GO’ function is given
after loading BASIC and the whole TTY
routine, the printer will be running. Any
valid ‘USR’ function will cause the
printer to stop running and the system
will run at full terminal speed. Another
‘USR’ will activate the printer again, etc.

Your printer has now become a valuable
tool, not just a source of irritating noise!!!!

Have fun!!! (ES GL)

(P.S. I found that my particular printer
generated a considerable amount of elec-
trical noise, and had to add a .0022 UFD
capacitor from the H8-2 PIO connector,
pin 10, to ground to eliminate flase ‘data
taken’ signals. Try that change if you are
having trouble with your 28 printing
‘gibberish’ no matter what setting you
have on the new ‘baud rate’ potentiome-
ter.)

ured BASIC, so thatIdotwo consecu- A.K.
tive ‘loads’ and have the whole sys-
(¢.9]
136.320 BEGIN CRG 1363204 START ROUTINE
186, | B6 USR EQU 186186A 'USRFCN', 108.22.01
240.111 CRT £qU Badl11A CRT ONLY
136.027 PRNTER EQU 1368274 CRT & PRINTER BOTH
B4R 365 DRIVER EQu 2423654 DRIVER JMP ADDRESS
(X)
X)
136.328 345 START PUSH H SAVE H,L
136,321 ©4] 111 042 LX1 H,CRT TO0 RuUt CRT ONLY!
136,324 376 33| MvI A,331Q 'USRFCN' NXT 'USR®
136,326 383 337 136 JMP DOIT AND DO IT!
136.331 345 #2PASS PUSH H SAVE H,L
136,332 B4) 827 136 LX! H,PRNTER Ryl PRINTER & CRT
136,335 976 328 nvi A,320Q "USRFCN' NXT 'uSR"
136,337 @62 106 186 DOIT STA USR CHANGE JUMP ADRESS
136,342 @42 365 240 SHLD DRIVER CHANGE DRIVER JMP
136,345 34| POP H RESTORE H,L
136,346 31 RET RETURN TO BASIC
136,347 END START

S REMark - Issue 7 1979



BITS AND NIBBLES

SOFTWARE:

Even though you have a new software
catalog, there are more ‘goodies’ already
available . . . NOW.

SMALL BUSINESS PACKAGE — pre-
pared by Nick Niamo of St. Louis, hereisa
package that has been a long time coming
for the H8. Nick worked almost a year on
developing this system and it has been in
use in his business as well as some others
for some time. Therefore, it should be
pretty reliable. The system:

1. Prints statements.

Prints mailing labels for all ac-

counts or a specific zip code.

Providesaccount aging reports.

4. Provides Balance reporting for
all accounts or any specific ac-
count.

5. Prepares Invoices and Credit
memos.

6. Outputs a Journal, Ledger and
Profit/Loss statement.

7. Outputs monthly sales totals
and compares with any month
from past year/s.

had

This system requires 24K memory and a
dual drive floppy. Order HUG P/N 885-
1041 $50. Includes two diskettes and
written documentation.

MORSE 8 — Send and receive Morse
Code on your H8. Morse 8 is intended to
facilitate communication by Morse Code
over a wide range of code speeds,
dot/dash ratios, signal strengths, and
noise conditions. Many commonly used
abbreviations (CQ, DE, call sign etc.) are
generated by a single key stroke. Package
includes schematic of hardware interface
and user manual. Available in source
code and object code on cassette only.
HUG P/N 885-1027 — $11.

RTTY COMMUNICATIONS PROCES-
SOR — As described in Issue #6 of RE-
Mark, this complete package is now av-
ailable on cassette. HUG P/N 885-1028
$11.

VECTORED FROM PAGE 16

i R1
ey P22 L . ICé l::l'r v cs TI Ver
Tow |- : L@y 2 rpi-state ax PO 2 32 ’ . A -
i 23| yper (-) Bociionc o bl s s
26 12 11 15 - 20 19 1 s AL
0k p—12]1c4)0 = . { GND VREF (4) == . ———— ! i i
37 10 1c3 L H@o = 16 start  ExPAND|S 5V Supply H 0 AL
36 5 2 AW ALE vec A2 ' : e
= 35 3 | cowparator |12 Ijl7 »
AT 1— ¥} .
| m |2 13 12 sV W%I CHANNEL b hd L
3 ra——— 19}5} 2@ o] [ 1> £ Aocose
B — A A
al g Lz 2 18 31| g 0 3% Figl.ll‘e 2
§ = e 17 3 - 1 is
| s 15 4 16 29 L6 N ¥ |
2 m 14 15 5 28| . P10 ADDR | PIN NO
14 27 4
§ o3 12 Y 1c2 . — ATOR ATOW
| o A2 13 7 26| 5 8
@ 5 L1 8 12 25/ . 7 @g-15| 12 4
T | g Lao 11 9 24], o 7 &
'tl 10 |8 s 16-31) 11 5
f)——‘
g EE 33| yre 10 5 32-47| 148 6
= |32 24 App C il 2
¥ "
o R 2 35| ae . L= = 48-63 9 7
o ) Bapp 4 N1s (A4 o 74LS155 |
ano 2y
Figure 1

Changing your address? Be sure and let us know since the software catalog and REMark
are mailed bulk rate and it is not forwarded or returned.

_____________________________________________________ CUT ALONG THIS LINE

HUG MEMBERSHIP RENEWAL FORM

You can determine your expiration date by examining the last six REMEMBER — ENCLOSE CHECK OR MONEY ORDER
digits of your ID number — example: 780202 indicates your
membership began 02/02/78 and expires one year from then. CHECK THE APPROPIATE BOX AND RETURN TO HUG

NEW MEMBERSHIP?

FEE IS: \

IS THE INFORMATION ON THE REVERSE SIDE
CORRECT? IF NOT FILL IN BELOW

Name e RENEWAL RATES

US DOMESTIC $11 ] $14 []
Address CANADA $13 [] US FUNDS $16 [

INTERNAT'L* $18 [] US FUNDS  $24 [
City-State

* Membership in England, France, Germany, Belgium,
Zip Holland, Sweden and Switzerland is aquired through

the local distributor at the prevailing rate.

#REMark = Issue 7 = 1979 31



THE HUG PRODUCT PRICE LIST
B A CK PART NUMBER DESCRIPTION PRICE
885-1100 ‘HUG’ Tee Shirt Small $ 4.50
PAG E 8685-1101 Medium $ 4.50
S— 8685-1102 Large $ 4.50
Keep your volumes neat with a:
266-945 Cassette Holder (holds 2 cassettes) $ 2.45
885-4 and a ‘HUG’ binder $ 5.75
NEW INTERFACE CARDS 885-1008 Volume I Documentation $ 9.00
FOR THE H8? 885-1009 Tape I — H8 Cassette Tape $ 7.00
We hope to be able to offer new interfacit.lg ideas for gg:_:g;g .?:::?Imie“s g&hlgllscl; Canséits :1323
the H8 before the end of the year. Here is how that 885-1013 Volume IT Documentation $12.00
might happen. We know that several, perhaps many 885-1014 Tape Il — H8 (Assembly) Cassette $ 9.00
H8 users have developed their own unique interfac- 885-1015 Volume III Documentation $12.00
ing cards that do any number of tasks, such as playing 885-1018 HDOS Programming Guide $ 5.00
music, monitoring temperatures in large buildings 885-1019 HDOS Device Driver — H8 Disk $10.00
and many other things. If you are such a person, we 885-1022 HDOS Editor — H8 Disk $15.00
have a plan to modestly compensate you for your 885-1023 RTTY Communication Processor — H8
circuit and then distribute a ‘mini-manual’ to the rest Disk & Documentation Ja2.00
of the HUG members so they may do something simi- 885-1024 Disk T — H8 Software , §50:00
o g : F 885-1025 Runoff Word Processor — H8 Disk $35.00
lar. If that sounds interesting, write HUG for details. 885-1026 Tape IIl — H8 Cassette Tape
Financial & Amateur Packages $ 9.00
CONTEST #6 WINNERS 885-1027 Morse 8 — H8 Cassette & Documentation $14.00
885-1028 RTTY Communications Processor — H8
Robert Mathias of the Detroit area won Contest #6 Cassette & Documentation $11.00
with his version of H8 RUNOFF, a text formatter. 885-1029 Disk II — H8 Software ‘Games 1’ $18.00
885-1030 Disk Il — H8 Software ‘Games 2’ $18.00
John Boesel of Evanston Il submitted several prog- 885-1031 Df"‘k IV — Hs M“ic' 2 Disks $23.00
rams for HT11 Software. Congratulations to John and 885-1032 DTSk V—Hs M“SF' Software $18.00
Bob. 885-1033 Disk [ — HT‘.l‘l Misc. Software $19.00
885-1034 Character Editor — H8
Cassette Tape & Documentation $11.00
H8 MODEM COMMUNICATION LINK 885-1035 Co-resident Editor/Assembler — H8
Cassette Tape & Documentation $11.00
We have just acquired a super program that allows 885-1036 Tape IV — H8 Misc. Software* $ 9.00
H8/H17/H8-4 users to exchange gossip and disk files 885-1037 Volume IV Documentation* $12.00
over the telephone with full CRC etc. — P/N 885-1043 885-1038 WISE — H8 Disk Software $18.00
— $21.00. 885-1039 WISE — H8 Cassette Tape $ 9.00
885-1040 PILOT — H8 Cassette Tape & Documentation $11.00
885-1041 Small Business Package (2 disks & DOC.) $50.00
* Available September

BULK RATE
U.S. Postage

y PAID
UserS Heath Users’ Group

Group
Hilltop Road
St. Joseph Ml 49085

POSTMASTER: if undeliverable,
please do not return.

885-2007



	REMark_issue7_1979_Page_01
	REMark_issue7_1979_Page_02
	REMark_issue7_1979_Page_03
	REMark_issue7_1979_Page_04
	REMark_issue7_1979_Page_05
	REMark_issue7_1979_Page_06
	REMark_issue7_1979_Page_07
	REMark_issue7_1979_Page_08
	REMark_issue7_1979_Page_09
	REMark_issue7_1979_Page_10
	REMark_issue7_1979_Page_11
	REMark_issue7_1979_Page_12
	REMark_issue7_1979_Page_13
	REMark_issue7_1979_Page_14
	REMark_issue7_1979_Page_15
	REMark_issue7_1979_Page_16
	REMark_issue7_1979_Page_17
	REMark_issue7_1979_Page_18
	REMark_issue7_1979_Page_19
	REMark_issue7_1979_Page_20
	REMark_issue7_1979_Page_21
	REMark_issue7_1979_Page_22
	REMark_issue7_1979_Page_23
	REMark_issue7_1979_Page_24
	REMark_issue7_1979_Page_25
	REMark_issue7_1979_Page_26
	REMark_issue7_1979_Page_27
	REMark_issue7_1979_Page_28
	REMark_issue7_1979_Page_29
	REMark_issue7_1979_Page_30
	REMark_issue7_1979_Page_31
	REMark_issue7_1979_Page_32

